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Abstract 
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and 

Christiane N俟  sslein鄄  Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, 
proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to 
cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow鄄  up 
studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well 
as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now 
believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of 
specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances 
in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh鄄  
mediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for 
Hh signaling and their clinical implications. 
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Major advances in understanding the hedgehog (Hh) 
pathway have been made in the last 30 years. The Hh 
gene was identified in 1980 through genetic analyses of 

fruit fly segmentation [1] . In early 1990爷s, three 
vertebrate homologues of the Hh gene were identified [2­6] . 
As an essential signaling pathway in embryonic 
development, the Hh pathway is critical for maintaining 
tissue polarity and stem cell population. In 1996, 
inactivation of this pathway was linked to the hereditary 
developmental disorder holoprosencephaly, whereas 
hyperactivation of this pathway was linked to human 
cancer [7­11] . More recently, an inhibitor of Hh signaling 
was successfully used in clinical trials of human cancer, 
further indicating the feasibility of Hh signaling inhibitors 
for cancer therapeutics. Figure 1 lists the major 
milestones of research on Hh signaling as related to 
cancer. 

The general signaling mechanisms of the Hh 
pathway are conserved from flies to humans [12] . In the 
absence of Hh ligand, Smoothened (SMO), the seven 
transmembrane domain containing protein, serves as the 
key signal transducer, whose function is inhibited by 
another transmembrane protein Patched (PTC). An 
active Hh ligand (Shh, Ihh, Dhh, or the fly Hh 
homologue) binds to its receptor PTC and relieves this 
inhibition, allowing SMO to signal downstream, leading to 
the activation of Gli transcription factors. As a 
transcription factor, Gli protein associates with specific 

Figure 1. Major milestones in the studies of hedgehog signaling as 
related to human diseases, particularly cancer. For all references, please see 
the text for details. 
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consensus sequences located in the promoter region of 
target genes, regulating target gene expression [13,14] . 
Figure 2 shows a simplified diagram of the Hh signaling 
pathway. 

Signal Transduction of the Hedgehog 
Pathway 
Hh proteins [one Hh in  and three Hhs in 

mammals要Sonic Hedgehog (Shh), Indian Hedgehog 
(Ihh), and Desert Hedgehog (Dhh)] are secreted during 
development, functioning at short range to nearby cells 
and at long range to distant cells [15­17] . After translation, 
the Hh protein precursor undergoes auto­processing to 
release its N­terminal fragment (HhN), which is then 
covalently bound to a cholesterol moiety at the 
C­terminal end. Palmitoylation mediated by the Skinny 
Hedgehog acyltransferase occurs at the N­terminus of 
HhN  [18­21] . Several molecules are involved in the 
movement, extracellular transport, and release of Hh 
proteins, including the transmembrane transporter­like 

protein Dispatched (Disp) [22­24] , metalloproteases [25] , the 
heparan sulfate proteoglycans Dally­like (Dlp) and 
Dally  [26,27]  or their regulators [28] , as well as enzymes such 
as Sulfateless and Tout velu [29­31] . 

Several molecules are engaged in the reception of 
Hh ligands, with PTC (one PTC in fly and two PTCs in 
vertebrates要PTCH1 and PTCH2) as the major receptor [32] . 
Studies from tissue cultured cells indicate that PTC 
inhibits SMO at a sub­stoichiometric concentration [33] . The 
Hh­interacting protein (HIP) can compete with PTC to 
bind Hh, resulting in the negative regulation of Hh 
signaling [34] . On the other hand, Ihog (or its vertebrate 
homologues CDO and BOC), GAS1, and Glypican­3 
serve as co­receptors of Hh [35­42] . It is not clear how 
binding of Hh proteins results in the pathway activation. 
It is proposed that PTC limits SMO signaling by 
transporting small endogenous molecules specifically 
targeted to SMO. Candidates of these small molecules 
include PI4P, lipoproteins, and pro­vitamin D3 [43­46] . 
However, how these molecules regulate SMO signaling 
is unknown. 

Figure 2. A simplified model for Hh signaling in mammalian cells. SMO is the key signal transducer of the Hh pathway. A, in the absence of the Hh 
ligands, the Hh receptor PTC is thought to be localized in the cilium to inhibit SMO signaling (via an unknown mechanism). Gli molecules are processed with 
the help of Su(Fu)/KIF7 molecules into repressor forms, which disable the Hh signaling pathway. B, in the presence of Hh, PTC is thought to be shuttled out 
of cilium and is unable to inhibit SMO. Co鄄  receptors of Hh ligands include CDO, BOC, and GAS1. Hh reception promotes SMO conformational change, 
facilitating Gli activation (GliA), stimulating Hh target gene expression. This process can be inhibited by KIF7 and Su (Fu). (Positive regulators are in red, 
negative regulators are in blue and target genes are in orange.) 
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Hedgehog signaling in human cancer 

Significant progress has been made toward our 
understanding of SMO signaling, with recent reports 
linking SMO to G protein coupling [47­50] . In particular, a 
study in  provides direct evidence for 
SMO­coupling to G琢  i in the regulation of Hh pathway 
activation [48] . The physiological relevance of G protein 
coupling to SMO in Hh signaling during carcinogenesis is 
unknown. In  , SMO function is stimulated 
through protein phosphorylation by PKA and Casein 
kinase I at the C­terminus [51,52] . SMO mutants lacking 
these phosphorylation sites are defective in Hh signaling. 
However, these phosphorylation sites are not conserved 
in vertebrate SMO, indicating a different mechanism for 
SMO signaling in higher organisms [52] . There are two 
important events during mammalian SMO signaling. 
First, the SMO protein undergoes a conformational 
change favoring SMO signaling [53] , although the regulatory 
mechanism underlying this conformational change is 
unclear. Second, the ciliary translocation of mammalian 
SMO protein is critical for Hh signaling (see below). 

Accumulating evidence indicates that primary cilia 
play an important role in the Hh pathway  [54­59] . The 
function of primary cilium is regulated by protein 
complexes involved in intra­flagellar transport (IFT), 
which functions in retrograde and anterograde movement 
of cargo within the primary cilia  [60] . Mutations in IFT 
protein involved in predominantly primary cilium 
anterograde transportation are shown to result in mice 
with Hh loss of function phenotypes [55,61] . Gli3 processing is 
the most significantly affected event in IFT mutants [56,57,61] . 
The presence of several Hh components upon Hh 
stimulation, including SMO and Gli molecules at the 
primary cilium, further supports the relevance of cilium in 
Hh signaling [62­65] . It has been shown that a SMO mutant 
lacking a ciliary translocation signal cannot mediate Hh 
signaling [54] . However, the translocation of SMO to cilium 
is not sufficient to activate Hh signaling  [64,65] . Using 
tissue­specific gene knockout, recent studies have 
revealed dual roles of cilium (via knocking out cilium 
component  ) in Hh signaling­mediated 
carcinogenesis in mice [66,67] . Whereas the  gene is 
required for activated SMO­mediated tumor formation, 
and knocking out  accelerates Gli2­mediated 
carcinogenesis. How SMO is translocated to the cilium in 
response to Hh signaling and how SMO activates 
downstream effectors are unclear. However, 茁  ­arrestin 2 
can regulate ciliary localization of SMO [68] . The role of 
cilium for Hh signaling downstream of SMO is less clear, 
as not all of the signaling events occur in cilium. For 
example, cilium is not required for Su (Fu)­mediated 
regulation of Gli functions [69,70] . 

Several molecules have been identified to be 
genetically downstream of SMO signaling in  , 
including COS2 and Fused. How their vertebrate 
homologues function in Hh signaling is yet to be 

established. Recent  studies support that a COS2 
homologue KIF7 functions in the Hh pathway, but no 
direct interaction between SMO and KIF7 is detected [71,72] , 
suggesting that the function of COS2 in vertebrates may 
be replaced by a few molecules. The phenotype of 
vertebrate Fused knockout mice is not similar to that 
observed in Shh null mice [73­75]  and no changes of Hh 
signaling are observed in Fused null mice, suggesting 
that Fused is not critical for Hh signaling during early 
embryonic development of vertebrates. 

In addition to the  homologues, 
mammalian cells have several novel cytoplasmic 
regulators of Hh signaling, including Rab23  [76]  and 
tectonic [77] . Rab23 and tectonic are negative regulators 
downstream of SMO, but their exact mechanism of 
action remains to be elucidated. Unlike many Rab 
proteins, Rab23 is localized in the nucleus and 
cytoplasm [78] , suggesting that Rab23 may have other 
uncharacterized functions apart from membrane 
trafficking. Through siRNA­based screenings, several 
additional molecules are identified to be involved in Hh 
signaling in mammalian cells [79,80] but their exact functions 
are unclear. 

Several evidences indicate that Suppressor of 
Fused [Su(Fu)] functions as a tumor suppressor gene in 
mammalian cells. Su(Fu) is originally identified genetically 
in  by its ability to suppress active 
mutations, but itself is not required for pathway activity. 
Unlike in  ,  null mouse mutants fail to 
repress the pathway  [81]  and have some phenotypes 
similar to  inactivation.  mice are 
predisposed to developing medulloblastoma, 
rhabdomyosarcoma, and basal cell carcinomas  [82­84] , 
whereas  mice predominantly develop basaloid 
epidermal proliferation. Su (Fu) plays a central role in 
pathway repression, as indicated by data derived from 

null MEFs and wild­type cells treated with Su(Fu) 
siRNA [81] , where loss of Su(Fu) results in the activation of 
Hh signaling. At the molecular level, Su (Fu) associates 
with and inhibits Gli molecule function, and is required 
for Gli3 processing [85,86] . One potential molecular basis by 
which Hh signaling releases the suppressing activity of 
Su(Fu) is the enhanced Su(Fu) protein degradation upon 
the activation of Hh signaling [87] . 

Hh signaling activation ultimately activates downstream 
Gli transcription factors, which can regulate target gene 
expression by directly binding to a consensus binding site 
(5'­TGGGTGGTC­3') in the target gene promoter [13,14,88,89] . 
The activity of Gli transcription factors can be regulated 
at several levels. First, the nuclear­cytoplasmic shuttling 
of Gli molecules is tightly regulated [85,90­92] . Protein kinase 
A can retain Gli1 protein in the cytoplasm via a PKA site 
in the nuclear localization signal domain  [90] , whereas 
activated Ras signaling induces Gli nuclear localization [92] . 
Second, ubiquitination, acetylation, and protein 
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degradation of Gli molecules is regulated by several 
distinct mechanisms, including 茁  ­TRCP­, cul3/BTB­ and 
numb/Itch­mediated Gli ubiquitination  [93­98] . In addition, 
Gli3 (Gli2 to a less extent) can be processed into 
transcriptional repressors, which may be mediated by the 
茁  ­TRCP E3 ligase [95] . Defects in the retrograde motor for 
IFTs can affect Gli3 processing  [99] . Furthermore, the 
transcriptional activity of Gli molecules is tightly 
regulated. Su (Fu) prevents nuclear translocation of Gli 
molecules and inhibits Gli1­mediated transcriptional 
activity [100] . 

Several feedback regulatory loops exist in this 
pathway, maintaining the level of Hh signaling in a given 
cell. PTC, HIP, GAS1, and Gli1 are components as well 
as target genes of this pathway. PTC and HIP provide 
negative feedback regulation, whereas Gli1 forms a 
positive regulatory loop. On the other hand, GAS1 is down­ 
regulated by the Hh pathway but it is a positive regulator 
for Hh signaling. Alterations of these feedback loops 
would lead to abnormal signaling of this pathway, such as 
inactivation of PTCH1 in basal cell carcinoma (BCC). 

The Link of Hh Signaling to Human 
Cancer 

The initial link between Hh signaling and human 
cancers was made from the discovery that mutations of 
human  are associated with a rare and hereditary 
form of BCC­basal cell nevus syndrome (also called 
Gorlin syndrome)  [101­103] . Gorlin syndrome is a rare 
autosomal genetic disease with two distinct sets of 
phenotypes: a predisposition to develop cancer such as 
BCC and medulloblastoma, and developmental defects 
such as bifid ribs and ectopic calcification. The tumor 
suppressor role of  is demonstrated in knockout 
mice, where  mice develop tumors in addition to 
other features observed in patients with Gorlin syndrome, 
such as spina bifida occulta [83,84,104] . A variety of cancers 
are associated with the activation of hedgehog signaling 
(Figure 3 and Table 1) [105,106] . 
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Figure 3. Activation of Hh signaling in human cancer. Following the discovery of Hh signaling activation in Gorlin syndrome, increasing evidence suggests that 
Hh signaling is frequently activated in human cancer. Based on current findings, we group these cancers into three groups. Group one is associated with Gorlin 
syndrome, including basal cell carcinomas, medulloblastomas, and rhabdomyosarcomas (in muscle) (in red). Group two includes cancer types with reproducible data 
of Hh signaling activation from several groups, such as oral cancer and many gastrointestinal cancers (in blue). Group three includes cancer types with limited or 
variable results from different groups (in black). Several common cancer types are included in group three; further investigation will provide insight as to the 
significance of Hh signaling in these different types of cancer. 
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Activation of the Hedgehog Pathway 
in Human Cancer 

BCC and medulloblastoma 

Almost all BCCs have activated Hh signaling derived 
from  (50% ),  gene mutations (10% ), or 
other genetic alterations  [107­111] . Unlike wild­type SMO, 
expression of SmoM2, an activated SMO mutant 
identified in human BCCs, in mouse skin results in the 
formation of BCC­like tumors [107] .  is also mutated 
in a few BCCs [109] . From the compiled data, the genetic 
alteration of the Hh pathway is detected in about 70% of 
BCCs. Since most BCCs have activated Hh signaling, 
we predict that alterations in other Hh signaling 
molecules or related molecules may be responsible for Hh 
pathway activation in 30% of sporadic BCCs. At molecular 
level, activated Hh signaling in BCCs leads to cell 
proliferation through elevated expression of PDGFR琢  [112] , 

whereas targeted inhibition of the pathway causes 
apoptosis via the induction of Fas [113] . 

About one third of medulloblastomas have activated 
Hh signaling. Like BCCs, loss­of­function mutations of 
PTCH1 are often responsible for the pathway activation. 
Mutations in  and  are found only in a few 
cases. In addition, non­canonical activation of Gli2 via 
ATOH1 and Yap1 has been detected in 
medulloblastomas. Hh signaling is activated both in the 
desmoplastic form (more often) and the classic form of 
medulloblastomas. 

Activation of Hh signaling in cancers not 
associated with Gorlin syndrome 

Accumulating data supports the activation Hh 
signaling in many types of human cancer, including 
those associated or not associated with Gorlin 
syndrome. It is estimated that over 30% of human 
cancers demonstrate activated Hh signaling to a given 

Tumor type 
BCCs 

Medulloblastoma 

Rhabdomyosarcoma 

Esophageal cancer 
Gastric cancer 
Liver cancer 
Pancreatic cancer 

Gliomas 

Breast cancer 

Prostate cancer 
Lung cancer 
Melanoma 
Ovarian cancer 
Colon cancer 
Osteochondromas 
Kidney cancer 
Endometrial cancer 
Multiple myloma 
Chronic myeloid leukemia 

Gene alteration 
PTCH1, SMO, Su(Fu) 
PTCH1, 

SMO, Gli2, Su(Fu), 
Gli1, Ren 

PTCH1, Gli1, 
Su(Fu) 

Shh, Gli2 
Shh 
Shh 
Shh, 
Ihh 
Gli1, 
Shh 
Ihh, 
Shh 
Shh 
Shh 
Shh 
Shh 
Shh 
Gli2 
Shh 
Shh 
Shh 
Shh 

Mouse models 
Ptch1 +/- ; 
R26鄄  SmoM2/K14鄄  cre; 
K5鄄  SMO (or Gli2); 
K14鄄  Shh Ptch1 fl/fl /cre (K6a, K14 or Mx1) 
Ptch1 +/- ; 
SuFu +/- /p53 -/- ; 
R26鄄  SmoM2/cre (Math1, hGFAP, Pax7); 
Ptch1 fl/fl /cre (Math1, hGFAP, Olig2) 
Ptch1 +/- ; 
Su(Fu) +/- /p53 -/- ; 
SuFu +/- /Ptch1 -/- ; 

R26鄄  SmoM2/CAG鄄  CreER 
Surgical rat models 
Not available 
Not available 
R26鄄  SmoM2/CAG鄄  CreER; 
orthotopic 
PDGF鄄  B based mouse model; 
xenograft 
Ptch1 +/- (transient) 

Not available 
Xenograft 
Xenograft 
Xenograft 
Xenograft 
Tg (Gli2;ColIIAI); p53 +/- 

Not available 
Not available 
Xenograft 
Not available 

Functions 
Driver 

Driver 

Driver 

Unknown 
Unknown 
Unknown 
Metastasis 

Micro鄄  environment 

Unknown 

Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Unknown 
Cancer stem cell 
Unknown 

Hh鄄  based clinical trial 
Phase II/III 

Phase II 

Phase II 

Phase II 

Phase II (suspended) 
Phase II (suspended) 

For references, please check reviews by Yang et al. [105] , Teglund et al. [106] , and references therein. 
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extent, including brain tumors, melanomas, leukemias, 
lymphomas, gastrointestinal, prostate, lung, and breast 
cancers. Unlike the situation in BCCs and 
meduloblastomas, which are associated with Gorlin 
syndrome (type I cancer), gene mutation is not primarily 
responsible for activated Hh signaling in those cancers 
not associated with Gorlin syndrome (type II cancer) [114,115] . 
The current understanding is that Hh signaling activation 
in type II cancers is caused by ligand­dependent 
mechanisms or non­canonical Hh signaling activation. 
The association of ligand­dependence (or ligand­ 
independence) with a specific cancer type, tumor 
morphology or tumor stage has not yet been established. 

The Role of Hh Signaling in Cancer 
Initiation, Progression, and Metastasis 

Increasing evidence suggests that Hh signaling is 
involved in a specific stage of carcinogenesis in a given 
cancer type. In Barrett爷s esophagus, an early precursor 
of esophageal adenocarcinomas, both Shh and Ihh are 
highly expressed in the epithelium, which is associated 
with stromal expression of Hh target genes  and 

[116] .  , a target gene of  , is highly 
expressed in the epithelial lesion  [116] . These results 
indicate that Hh signaling plays an important role in the 
initiation of esophageal adenocarcinomas. In pancreatic 
cancer, activation of this pathway is found in (prostatic 
intraepithelial neoplasia, PIN) lesions as well in 
metastases  [117­120] , indicating that Hh signaling plays a 
significant role in pancreatic cancer. However, transgenic 
mice with pancreatic­specific expression of  or 
develop undifferentiated pancreatic tumors which differ 
from pancreatic ductal adenocarcinomas (PDAC) [120­122] , 
suggesting that sole activation of Hh signaling is not 
sufficient to drive PDAC development. In other tumors, 
such as gastric and prostate cancers, the activation of 
Hh signaling is associated with cancer progression [123­127] . 
Consistent with these findings, the inhibition of Hh 
signaling in prostate and gastric cancer cells reduces cell 
invasiveness [124,127,128]  (our unpublished data). Reports also 
suggest that Hh signaling is required for development 
and progression of melanoma, glioma, breast cancer, 
ovarian cancer, leukemia, and B­cell lymphoma  [129­134] . 
However, the role of Hh signaling in each cancer type 
has not been completely established. It is suggested that 
Hh signaling plays an important role for cancer stem 
cells in several cancer types, such as glioma, 
medulloblastoma, and possibly breast cancer (see more 
discussion below). 

Increasing evidence indicates that Hh signaling is 
critical for cancer stem cell maintenance and function [135­137] . 
For example, leukemia stem cell maintenance and 
expansion is dependent on Hh signaling [135,136] . Alteration 
of the Hh pathway is reported to affect the hematopoietic 

stem cell (HSC) population in some studies, but does 
not change HSC in other studies [136,138­141] . Based on the 
cancer stem cell theory, it is anticipated that the 
activation of Hh signaling will exert resistance to cancer 
chemotherapy and radiotherapy  [142] . Indeed, several 
studies have shown that the activation of Hh signaling is 
associated with resistance to chemotherapy and 
radiotherapy  [143­145] . The Hh signaling inhibitor IPI­926 
enhances the delivery of the chemotherapeutical drug 
gemcitabine in a mouse model of pancreatic cancer [144] . 
Further investigation is certainly warranted to determine 
the role of Hh signaling in the cancer stem cells of solid 
tumors. 

Upon reviewing the literature on Hh signaling in 
human cancer, conflicting results concerning the 
activation of Hh signaling are often reported for the same 
cancer type. These discrepancies may arise due to the 
following reasons. First, the function of Hh signaling in 
human cancers may be context dependent, occurring in 
some tissues or cell lines but not in others. For example, 
accumulating data suggests that Hh signaling functions 
in maintaining cancer stem cell proliferation [135­137] , but not 
the proliferation of all cancer cells. The percentage of 
cancer stem cells varies greatly among tumor types. 
Second, heterogeneity in tumor tissue often accounts for 
differences in the analysis of Hh target gene expression 
by real­time PCR. For example, prostate cancer 
specimens can be obtained from prostatectomy or 
transurethral resection of the prostate (TURP). Whereas 
the prostatectomy specimens contain only 5% ­10% of 
tumor cells in the tissue, the TURP specimens generally 
have more than 70% of tumor cells. Thus, the data from 
these two types of specimens may differ due to the 
percentage of cancer cells in each tissue  [127] . Laser 
microscope captured tissues will also have a significant 
amount of non­cancerous cells, with the percentage 
varying between operators. Third, a standard defining the 
activation of Hh signaling is required. Some investigators 
use the increased expression of Gli1 as the read­out [92,130] , 
whereas others examine the expression of several Hh 
target genes , such as Gli1 , PTCH1 , sFRP1 , and 
HIP [120,124,125,146,147] , or only use immunohistochemistry to 
detect the activation of Hh signaling [133,148] . In all, however, 
most studies use multiple approaches. Thus, the 
literature must be accepted with caution. Particular 
attention should be paid to the methodology used in the 
studies and the reproducibility of the results. In our view, 
employing immunohistochemistry to detect activation of 
the Hh signaling pathway for one Hh target gene is 
unreliable. 

Animal Models for Hh鄄  Mediated 
Carcinogenesis 

It is widely accepted that correlation of Hh target 
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gene expression with the tumor specimens is not 
sufficient to claim a role of Hh signaling in cancer. 
Establishing animal models using tissue­specific 
activation of Hh signaling is critical for understanding Hh 
signaling in carcinogenesis. Currently, mouse models for 
BCC and medulloblastoma are well established, whereas 
mouse models for other Hh­signaling mediated types of 
carcinogenesis need improvement. Table 1 summarizes 
the major mouse models for Hh signaling­mediated 
carcinogenesis [105,106] . 

Mouse models for BCCs 

Wild­type mice never develop BCCs, even after 
treatment with carcinogen, UV or ionizing radiation. 
Ptch1 +/­  mice are susceptible to BCC development 
following UV irradiation or ionizing radiation [104] . The 
frequency of BCC development under these conditions is 
around 50% with 1 or 2 tumors per mouse [113,149] . Due to 
the embryonic lethality of Ptch1 ­/­ , tissue­specific 
knockout of Ptch1 has been generated [150] . By combining 
conditional gene knockout and the inducible activity of 
the keratin 6a promoter, Krt6a­cre:Ptch1 neo/neo  mice 
develop BCC following stimulation with retinoic acid [151] . 
In addition to the Ptch1 knockout mouse model, 
transgenic mice expressing Smo using Krt5 or Krt14 
promoter also develop BCC­like tumors [107,152] . However, 
these transgenic mice eventually lose the expression of 
Smo by an unknown mechanism. Using conditional 
knock­in technology, skin­specific SmoM2 YFP 
(Krt14­creER: R26­SmoM2 YFP or Krt14­cre: R26­SmoM2 YFP ) 
knock­in mice develop multiple microscopic BCCs at a 
very early age, providing an easy genetic assay for Hh 
signaling downstream of Smo [153] . Su(Fu) +/­ mice develop 
skin lesions resembling skin hyperplasia but not BCC­like 
tumors [154] . Several transgenic mice have been developed 
using downstream transcriptional factors Gli1, Gli2, and 
Shh [155­157] . The inducible expression of Gli2 in the skin 
results in BCCs after a few weeks. These mouse models 
provide a rich resource for furthering our understanding 
of Hh signaling­mediated BCC development. 

Mouse models for medulloblastomas 

A small portion of Ptch1 +/­  mice (10%­30% ) develop 
medulloblastomas and rhabdomyosarcomas  [83,84] . The 
synergy between the p53 pathway and Hh signaling is 
clearly shown in the medulloblastoma model. Whereas 
p53 null mice do not develop this type of tumor, all 
Ptch1 +/­ p53 ­/­  mice develop medulloblastomas [158] . On the 
other hand, Ptch2 +/­  mice do not develop 
medulloblastoma per se, but Ptch1 +/­  mice have an 
increased incidence of medulloblastoma [159,160] . Su (Fu) +/­ 
mice develop skin phenotypes similar to Gorlin syndrome 
but are generally not tumor prone [154] . However, Su(Fu) +/­ 

mice with a p53 null background frequently develop 
medulloblastomas characterized by Hh signaling 
alterations [161] . Although Ptch1 +/­ :Su (Fu) +/­  mice are more 
likely to develop medulloblastoma than Ptch1 +/­ mice, the 
difference is not statistically significant [162] . In addition to 
the loss of tumor suppressor genes, transgenic mice 
expressing SmoM2 mutant under the control of neuroD2 
promoter results in medulloblastoma  [163] . Tissue­specific 
activation of Hh signaling via Ptch1 knockout or SmoM2 
expression using granule neuron precursor lineage 
specific promoters (Math1, GFAP, Oligo­2, TLx3), but 
not the purkinje neuron specific promoter, leads to the 
formation of medulloblastoma [164,165] , indicating that granule 
neuron precursors are the source for the development of 
medulloblastoma. Further analysis shows that CD15 is 
the medulloblastoma stem cell marker [137,166] . 

Mouse models for Hh signaling鄄  mediated 
carcinogenesis in other organ sites 

Postnatal induction of an activated allele of 
Smoothened (  ) using a ubiquitously 
expressed, inducible Cre transgene (  ) 
has been used to explore the role of Hh 
signaling­mediated carcinogenesis in mice  [153] . In this 
model, all mice developed rhabdomyosarcoma and basal 
cell carcinoma, with 40% also developed 
medulloblastoma. In addition, pancreatic lesions 
resembling low­grade mucinous cystic neoplasms in 
humans and diverticular harmartomatous lesions in both 
the intestine and stomach are observed. However, no 
other tumor types are observed in this mouse model, 
suggesting that activation of Hh signaling is not sufficient 
to initiate tumor development in the prostate, lung, breast 
and gastrointestinal tract. 

Similar data are observed in other studies. For 
example, it is shown in orthotopic mouse models that Hh 
signaling is necessary for pancreatic cancer metastasis [167] 
(also our unpublished data). Pancreatic tissue­specific 
deletion of  , on the other hand, did not affect the 
formation of pancreatic ductal adenocarcinomas (PDAC), 
whereas  expression (CLEG2:Pdx1­cre mice) or 
Shh expression only lead to formation of undifferentiated 
pancreatic tumors  [120­122,168] . These results indicate that 
activation of Hh signaling alone is not sufficient to drive 
PDAC formation, but is essential for tumor progression 
and metastasis. In consistent with this theory, PDAC 
development in Kras +/G12D :Pdx1­cre mice is not affected 
by the removal of the  gene, and Pdx­1­driven 
expression of SmoM2 does not result in PIN lesions 
despite that paracrine Hh signaling is observed in the 
pancreatic tissue [122,168] . 

A recent study indicates that Shh expression in the 
epithelium of Barrett爷s esophagus can lead to stromal 
expression of Hh signaling target genes [116] . Using a Shh 
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transgenic mouse model, it is shown that epithelial 
expression of Shh can lead to stromal expression of the 
Hh target gene BMP4, its target gene Sox9 in the 
epithelium and a columnar phenotype of mouse 
esophageal epithelium, resembling a feature in human 
Barrett爷s esophagus. These data suggest that the 
activation of Hh signaling can drive the formation of 
some features resembling Barrett爷s esophagus in mice. 

For investigating the role of Hh signaling in other 
cancer types, the major models are based on xenografts 
in immunodeficient mice (nude or SCID mice) [106] . With 
potential implications of Hh signaling inhibitors for clinical 
cancer treatment, more established mouse models will 
be needed. Because modeling cancer metastasis is a 
challenge, we anticipate an increase in the use of 
orthotopic mouse models for studying Hh signaling in 
cancer progression and metastasis in the foreseeable 
future. 

Small Molecule Modulators of 
Hedgehog Signaling 

More than 50 compounds have been identified to 
have inhibitory effects on Hh signaling. Of these, 4 are 
being used in clinical trials. There are 3 major targeting 
sites for Hh signaling inhibitors identified so far: Hh 
molecules (Shh neutralizing antibodies, small molecule 
Robotnikinin); SMO protein (cyclopamine and its 
derivatives IPI­926, Cyc­T, and synthetic compounds 
GDC­0449, Cur61414, XL­139, and LDE­225); and Gli 
inhibitors (HPI­1, HPI­2, GANT­56, and GANT­61) [105] . 
We can divide Hh signaling inhibitors into three groups: 
natural products (cyclopamine and its derivatives, and 
other natural products), synthetic small molecules, and 
Hh signaling modulators. Table 2 lists major current Hh 
signaling inhibitors [46,113,125,169­186] . 

Natural products (cyclopamine, its derivatives, 
and others) 

Cyclopamine, a plant­derived steroidal alkaloid, 
inhibits Hh signaling through direct binding to the 
transmembrane helices of SMO [171] . Identification of specific, 
small molecule antagonists of SMO has revealed 
exciting new prospects for the targeted therapy of human 
cancers associated with Hh signaling. 

The specificity of cyclopamine varies depending on 
the concentration used. While cyclopamine at a low 
concentration (< 10 滋  mol/L) has specific inhibitory effects 
on Hh signaling, high doses of cyclopamine can result in 
cell death without affecting Hh target gene expression [187] . 
In several mouse models, the  effect of cyclopamine 
on tumor shrinkage has been demonstrated. Oral 
delivery of cyclopamine blocks the growth of UV­induced 
BCCs in  mice by 50% [113] . The treatment in this 
model also prevents development of additional 

microscopic BCCs, implying a cancer prevention 
potential of cyclopamine. Similarly, cyclopamine is 
shown to be effective in reducing the development of 
medulloblastoma in  mice [169]  and tumor growth of 
cancer cell lines in nu/nu mice [92,120,124,170] . Additional 
modifications on cyclopamine aiming at increasing acid 
stability and aqueous solubility are now available, such 
as IPI­926 and Cyc­T [176,188] . IPI­926 is now at use in a 
Phase I clinical trial. 

Synthetic Hh signaling antagonists 

Increasing synthetic Hh antagonists are being 
reported in the literature, with most compounds targeting 
SMO. Four of these compounds are now in clinical trials 
(Table 2)  [182,183] , including GDC­0449. The successful 
clinical trials with GDC­0449 against human BCCs 
further encourage the translational investigation in this 
area  [183] . The clinical trial of the same compound in a 
medulloblastoma patient led to rapid tumor shrinkage, 
but was complicated by drug resistance due to a SMO 
mutation, disabling the binding of GDC­0449 to SMO. This 
case report implies a need for novel alternative strategies 
for treatment of cancers associated with Hh signaling. 
There are also several small molecules targeting at Shh 
or Gli  [185,189,190] . Due to the wide spread existence of 
non­conical regulation of Gli transcription factors and the 
potential resistance to SMO inhibitors, antagonists 
targeting downstream effectors of the Hh pathway 
constitute a valuable resource for developing 
chemotherapeutic strategies against Hh pathway­related 
cancers. 

Hh signaling modulators 

Recent studies indicate that vitamin D3, whose 
secretion can be facilitated by PTCH1, can inhibit SMO 
signaling through direct binding to SMO. This finding 
raises a possibility to treat BCCs with nutritional 
supplements [46] . Promising data show that the effect of 
tazarotene, a retinoid with retinoic acid receptor (RAR) 
beta/gamma specificity against BCC carcinogenesis is 
sustained after its withdrawal [191] . The common cooking 
ingredient curcumin has also been shown to block Hh 
signaling­mediated carcinogenesis. Several natural 
products, including genistein, EGCG and resveratrol, are 
also shown to affect Hh signaling in a mouse model of 
prostate cancer [192] . A commonly used antifungal agent 
itraconazole, is shown to affect Hh signaling  [186] . The 
detailed molecular mechanisms of action for these 
signaling modulators remain elusive. 

Summary 
The linkage of Hh signaling activation to a variety of 
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human cancers and the discovery of novel Hh signaling 
inhibitors provides opportunities for developing novel 
cancer therapeutic strategies. However, several major 
challenges must be overcome before Hh signaling 
inhibitors are thrust into clinical application. These 
include a lack understanding of the molecular 
mechanisms for Hh signaling­mediated carcinogenesis, 
identifying correct tumor types for therapeutic application, 
the need for reliable and reproducible mouse models 
for testing and optimizing drug dosages to minimize 
side effects, and novel stra tegies to mitigate drug 
resistance. 

Acknowledgment 
This work was supported by grants from the National 

Cancer Institute CA94160 and Wells Center for Pediatric 
Research. Due to a large number of publications in 
hedgehog signaling activation in human cancer, this 
manuscript only cited those with the most relevance. The 
authors wished to acknowledge the contribution of all the 
laboratories to this area of research. 

Received: 2010­11­17; revised: 2010­11­25; 
accepted: 2010­11­25. 

Inhibitor 
Cyclopamine 
KAAD鄄  cyclopamine 
Jervine 
Cyc鄄  T 
Cur鄄  61414 
Sant鄄  1,2,3,4 
Compound 5 
Compound Z 
2鄄  amino鄄  thiazole 
Gant鄄  58,61 
IPI鄄  926 
GDC鄄  0449 
BMS鄄  833923 (XL139) 
LDE鄄  225 
Vitamin D3 
Robotnikinin 
HPI鄄  1, 2,3,4 
Itraconazole 

Other name 

Cyclopamine tartrate salt 

Vismodegib 
XL139 

50% inhibition concentration (IC50) 
300 nmol/L 
20 nmol/L 
500 nmol/L 
20 nmol/L 
200 nmol/L 
20-200 nmol/L 
<100 nmol/L 
<1 nmol/L 
30 nmol/L 
5 滋  mol/L 
<20 nmol/L 
<20 nmol/L 
<20 nmol/L 
<20 nmol/L 
100 滋  mol/L 
>10 滋  mol/L 
<10 滋  mol/L 
<1.5 滋  mol/L 

In vitro/in vivo studies 
In vivo & in vitro 
In vitro cultured cells 
In vitro and cultured embryos 
In vitro & in vivo studies 
Phase I clinical trial 
In vitro studies 
In vitro studies 
In vitro studies 
In vitro studies 
In vitro & in vivo studies 
Phase I clinical trial 
Phase I/II/III clinical trials 
Phase I clinical trial 
Phase I clinical trial 
In vitro 
In vitro 
In vitro 
In vitro and xenograft 
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