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Abstract

Optical mapping is a technique that produces an ordered restriction map of a bacterial or eukaryotic chromosome. We have devel-

opedanewmethod, theBOPmethod, tocompareexperimentalopticalmapswith in silicoopticalmapsofcompletegenomes to infer

the presence/absence of short DNA sequences (bops) in each genome. The BOP method, as implemented by the Optical Mapping

suite of four programs, circumvents the necessity of whole-genome multiple alignments and permits reliable strain typing and

clustering on the basis of optical maps. We have applied the Optical Mapping Suite to 125 strains of Acinetobacter sp., including

11 completely sequenced genomes and 114 Acinetobacter complex from three US military hospitals. We found that optical mapping

completely resolves all 125 strains. Signal to noise analysis showed that when the 125 strains were considered together almost 1/3 of

the experimental fragments were misidentified. We found that the set of 125 genomes could be divided into three clusters, two of

which included sequenced genomes. Signal to noise analysis after clustering showed that only 3.5% of the experimental restriction

fragments were misidentified. Minimum spanning trees of the two clusters that included sequenced genomes are presented.

The programs we have developed provide a more rigorous approach for analyzing optical map data than previously existed.
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Introduction

Molecular epidemiology involves tracking the spread of path-

ogens to determine the sources of disease outbreaks and to

understand the dynamics of those outbreaks (van Belkum

et al. 2001; Hall and Barlow 2006). The ability to follow and

characterize outbreaks relies on strain typing (Olive and Bean

1999) and estimating the relationships among isolates by phy-

logenetic or clustering methods. One problem inherent in

these methods is the trade-off between depth of information

and having too much information to analyze. Many methods

for whole-genome analysis are too computationally intensive

for standard desktop computers. Additionally, they may re-

quire specialized knowledge of programming languages such

as Perl or Python.

Comparisons of the genomes of multiple isolates within

several species have led to the concept of the bacterial pan-

genome. For the majority of bacterial species, there is a set of

genes that are present in all members of the species (the core

genes) and an additional set of genes that are present in some,

but not all, members of the species (the accessory or

distributed genes) (Ehrlich et al. 2005; Tettelin et al. 2005;

Lindsay et al. 2006; Hiller et al. 2007; Hogg et al. 2007;

Lefebure and Stanhope 2007; Willenbrock et al. 2007;

Lapierre and Gogarten 2009; Hall et al. 2010; Boissy et al.

2011). The great variability between isolates in the presence/

absence of accessory genes has been shown to be a powerful

tool for distinguishing among isolates. Analysis of complete

genome sequences to determine the presence/absence of ac-

cessory genes provides much better resolving power than

does MLST (Hall et al. 2010), but even that approach, being

limited to accessory coding sequences, does not use all of the

information in completely sequenced genomes.

Optical mapping is a powerful technique that is able to

capture the presence/absence of accessory geneses without

sequencing. The data produced from optical mapping are or-

dered restriction maps of bacterial or eukaryotic chromosomes

(Cai et al. 1998; Jing et al. 1998). The restriction sites in those

maps can be aligned with whole-genome sequence data to

identify the physical location of sequence on a digested
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chromosome. Optical maps are useful for generating correct

assemblies of the whole genomes and also contain informa-

tion about the similarities of whole genomes from multiple

strains that are optically mapped. We cannot, however, di-

rectly compare those optical maps to infer the presence/

absence of DNA sequences based on the presence/absence

of restriction fragments because the restriction fragments are

inherently degenerate in the same sense that the genetic code

is degenerate. Just as multiple codons encode the same amino

acid, in a set of maps multiple fragments may include the

same DNA sequence. Consider homologous portions of two

optical maps with restriction fragment lengths (fig. 1).

Direct comparison shows that the two maps have only four

fragments in common, the 8, 12, 13 and 34-kb fragments.

However, the inference that the sequences in the 20, and in

the14- and 6-kb fragments are not shared would be incorrect.

Those approximate sequences (not taking into account base

substitutions and indels too small to be detected by optical

mapping) can be inferred by comparing experimental optical

maps with in silico restriction maps of completely sequenced

genomes.

If an experimental optical map includes a particular restric-

tion fragment, and we know, from an in silico map based on a

sequenced genome of the same species, the DNA sequence of

the homologous in silico fragment, then we can infer that the

optical map includes a homologous sequence. There are,

however, two major obstacles to inferring sequences from

optical maps:

1. There are likely to be multiple restriction fragments that
have identical lengths but are not homologous.

2. Among in silico maps of sequenced genomes, the same
fragment may have slightly different lengths as the result
of small indels.

To ameliorate the first problem, it is necessary to identify

fragments with additional criteria besides length. The ordered

arrangement of restriction fragments obtained by optical

mapping provides the lengths of the fragments immediately

flanking a fragment. This allows each segment to be uniquely

identified by its own length and the length of its two neigh-

bors. Although there may be multiple unrelated fragments of

the same length, they are unlikely to be flanked by unrelated

fragments of the same lengths. For instance, the 12-kb frag-

ment in figure 1 would be named 8-12-20 in map A but be

named 8-12-14 in map B. Although information about the

flanking fragments is given in this scheme, its only purpose in

this is for identifying the middle fragment.

The second problem is ameliorated with a method called

“Fuzzy Matching.” Optical mapping is inherently noisy, small

fragments are detected inefficiently, and fragment sizes are

calculated imprecisely (OpGen, Inc., personal communication).

With that in mind, it is not practical to match fragment lengths

precisely, instead, for fragments less than 20 kb, fragment

lengths are considered to match if their lengths differ by less

than 0.5 kb, and for fragments�20 kb, they are considered to

match if their lengths differ by less than 2.5% of the longer

fragment.

Because of the degeneracy of restriction fragments, it is

necessary to conceptually break each in silico fragment

down to short approximately 200-bp subfragments that we

call “bops.” It is then possible to determine that two strains

may indeed have the same bops even though their restriction

patterns may be quite different. To infer the presence of a

particular bop in a strain that has been experimentally optically

mapped, it is only necessary that that the experimental optical

map contains a restriction fragment that fuzzy matches a frag-

ment in the in silico map of a sequenced genome. If we can

infer the presence/absence of each bop from an experimental

optical map, we can then use that information to infer rela-

tionships among the optically mapped strains by clustering or

to infer phenotypes by comparison with strains whose phe-

notypes are known (Hall BG, Cardenas H, Barlow M, unpub-

lished data).

In this article, we propose an approach for optical map

comparison called “The BOP Method.” This method depends

on identifying short (~200 bp) homologous sequences (bops)

without regard to their positions in the genome. It can be used

to estimate relationships among strains by minimum spanning

trees (MSTs). We then apply this method to 114 optical maps

generated from 114 clinical isolates of Acinetobacter

baumannii.

Materials and Methods

Strains

Accession numbers of the sequenced genomes are in supple-

mentary table S1, Supplementary Material online. The 114

Acinetobacter complex strains that were experimentally opti-

cally mapped were isolated from three US military hospitals

over a period of 7.5 years.

DNA Sample and Whole-Genome Map Preparation

High-molecular-weight genomic DNA for each reference mi-

crobe was prepared directly from isolated colonies or broth

culture using the OpGen Sample Preparation Kit (OpGen, Inc.,

MD) and Agencourt Genfind v2 Kit (Beckman Coulter, FL). In

brief, cells were lysed using OpGen lysis buffer and the lysate

diluted for direct use. To reduce DNA shearing, wide-bore

pipette tips were used, and DNA-containing solutions were

A

B

8 12 20 10 13 34

8 12 13 3414 6

FIG. 1.—Illustration of degeneracy of restriction fragments.
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not vortexed. Whole-genome maps were produced using the

Argus Whole-Genome Mapping System (OpGen Inc.,

Gaithersburg, MD). An optimal restriction enzyme for

Acinetobacter strains, NcoI, was chosen using a software

program called Enzyme Chooser (OpGen Inc.) that identifies

enzymes that result in a 6–12 kb average fragment size and no

single restriction fragment larger than 80 kb across the

genome.

DNA Sequence Contig Alignment Using MapSolver

DNA sequence contig data in Fasta formatted files were ob-

tained for A. baumannii strains. Fasta files were imported into

MapSolver software and converted into in silico maps using

the same restriction enzyme as was used to generate the re-

spective whole-genome map. DNA sequence contigs were

aligned to the whole-genome maps using the sequence place-

ment function of MapSolver, which uses a dynamic program-

ming algorithm that finds the optimal alignment of two

restriction maps according to a scoring model that incorpo-

rates fragment sizing errors, false and missing cuts, and miss-

ing small fragments. Therefore, longer alignments between

more similar restriction patterns produced higher scores.

Map Alignment

The MapSolver alignment algorithm used the patterns of frag-

ments and their sizes to generate a final alignment score. In

brief, the number of aligned fragments in an alignment de-

pends on the nearness of the match and the MapSolver align-

ment settings. By default, the initial minimum is determined by

the advanced option of “minimum aligned cuts,” which was

set to 4 and corresponds to three fragments. The other limit is

the alignment score, which for every pair of matched frag-

ments can be up to a score of 1 if the fragments match in size

perfectly. As the fragment sizes diverge in size, the scoring

function awards less of a score.

Initial Clustering with StructureOptMaps

StructureOptMaps uses a set of optical maps, both experi-

mental and in silico, to generate a list of the unique restriction

fragments contained in the set. It then describes each strain as

a binary string that indicates the presence or absence of each

of those fragments. It then calls Structure 2.3.1, a widely used

Bayesian inference population structure program (Pritchard

et al. 2000), to cluster strains on the basis of the presence/

absence of those restriction fragments. The user specifies a

maximum number of clusters, Kmax. StructureOptMaps
assigns individuals to k¼1, 2, . . . Kmax clusters by a

Bayesian algorithm. For each number of clusters, k, a log like-

lihood (ln L) is reported. The number of clusters with the high-

est ln L is the most likely number of natural clusters of the

data. It is typical to observe that ln L increases sharply with

increasing k until a plateau is reached for a few values of k,

then starts to decline. StructureOptMaps automatically

selects the number of clusters with the highest ln L. When

there is more than one k with very similar ln L, it is more

realistic to choose the lower value of k as representing the

most likely natural clustering. Indeed, in such circumstances, it

is quite common to see that for the higher k, one cluster is

empty. StructureOptMaps allows the user to select a value of

k different from the automatically chosen maximum ln L. It

also reports for each strain the probability that the strain

belongs to each cluster. Strains are assigned to their most

probable cluster.

The BOP Method

The BOP method is applied to a set of finished (completely

sequenced and closed) genomes as follows: The genomes are

digested in silico with one of several restriction enzymes to

produce an ordered restriction map. Each fragment is given an

ID that consists of its length (rounded to the nearest 100 bp)

and the lengths of the fragments that flank it. Thus, a

16,542-bp fragment flanked by a 4,320 bp to its left and a

1,680 fragment to its right would be identified as

4.3-16.5-1.7. That particular 16.5-kb fragment is distin-

guished from all other 16.5-kb fragments by the lengths of

its flanking fragments. At this point, that system appears suf-

ficient to uniquely identify restriction fragments. Cases of mul-

tiple occurrences of the same fragment turn out to be

duplicated regions that contain the same internal restriction

fragments. Usually such regions represent multiple copies of

mobile elements or phages. The BOP method is implemented

with the program OptMapsIS.

OptMapsIS makes a list of all unique restriction fragments;

that is, as each of the sequenced genomes is considered, a

fragment is added to the list only if it not already in the list.

Restriction fragments cannot be used directly to assess

genome content because restriction fragments are degener-

ate; that is, multiple restriction fragments can include the

same homologous sequence. For instance, the appearance

of a new restriction site destroys an existing restriction frag-

ment and creates in its place two fragments whose lengths

sum to the length of the original fragment. To deal with re-

striction fragment degeneracy, each fragment is divided into

approximately 200-bp sections called “bops.” Most bops are

exactly 200 bp, but bops at the end of a fragment may be less

than 200 bp. If a bop is less than 100 bp, it is joined to the

previous bop, thus generating a bop of up to 300 bp.

After introducing the restriction sites and creating the bops,

the program lists all unique bops. As each bop is considered

for addition to the list, it is aligned against each of the bops

already in the list by the blast2seq program (National Center

for Biotechnology Information). If a bop shares �80% se-

quence identity over >50% of its length with a bop already

in the list, it is not added to the list. At the same time, lists of

each bop in each restriction fragment are maintained. Thus,

from the ordered restriction map of a genome, we know
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which bops are present. Because we know the sequence of

each bop, we know the sequence information that is present

in each genome.

After characterizing the sequenced genomes, the restric-

tion fragments defined by experimental optical maps are used

to infer the presence/absence of each bop in the experimen-

tally mapped genomes. The presence of a bop from an exper-

imental optical map is determined when the bop is present in

a restriction fragment that matches a restriction fragment pre-

sent in one of the sequenced strains.

Finally, each genome is described by a binary string in

which the ith character indicates the presence of bop

number i by a 1 and its absence by a 0. Note that homologous

bops (those that share >80% sequence identity) are consid-

ered equivalent. Minor variation in sequence is lost to this

analysis, as is the position of a sequence in the genome. The

binary strings that describe the presence/absence of each bop

in each of the genomes are contained in the OptMapsIS

output file with the extension “.scores.”

Fuzzy Matching

Although in silico optical mapping of a sequenced strain is

absolutely accurate (or at least as accurate as is the genome

sequence), for two reasons experimental optical mapping is

not: first, small fragments are detected inefficiently and sized

unreliably (OptGen, personal communication). With that in

mind, we define valid fragments as fragments �5 kb. Only

valid in silico restriction fragments are recorded and listed,

and only valid experimental fragments are considered.

Second, experimental sizing of restriction fragments is far

from precise. As a result, it is very unlikely that a restriction

fragment, identified by its size and the sizes of its flanking

fragments, will precisely match a fragment in the list derived

from the sequenced genomes. Furthermore, absolute sizing

accuracy varies with the fragment size. Because it is not pos-

sible to precisely match experimental fragments with in silico

fragments, fuzzy matching is required to determine whether

an experimental fragment matches an in silico fragment.

Fuzzy matching not only brings with it the possibility of

failing to match an experimental fragment with one of the

in silico fragments, but it also bring the possibility of incorrectly

matching an in silico fragment. When that happens, we in-

correctly infer the presence of bops that may not be present in

that genome. We consider experimental fragments that cor-

rectly match in silico fragments as “signal” and those that

incorrectly match as “noise.” The signal to noise ratio indi-

cates the degree to which we can trust the inference that a

bop is present in an experimentally mapped strain. To estimate

the signal to noise ratio, the program S2N is used to compare

the fragment sequences that are inferred to be present by

OptMapsIS with the fragment sequences that are actually

present in a sequenced strain.

Efficiency

The efficiency with which restriction fragments in experimen-

tal optical maps are found among the in silico optical map

fragments in a set of sequenced genomes was determined by

the program Efficiency, and the signal to noise ratio (ratio of

correctly detected fragments to falsely detected fragments)

was determined by S2N.

Some information is lost from an experimental map as the

result of experimental fragments that fail to match any of

the in silico fragments. That failure can have two sources: 1)

the experimental fragment is genuinely not present in any of

the sequenced strains or 2) it is present but the size reported

falls outside the fuzzy matching criteria. (Only fragments

�5 kb are considered.) In either case, we are unable to infer

the presence of any of the bops that are actually in that

fragment.

StructureOptMaps, OptMapsIS, Efficiency, and S2N for

Macintosh OS X are available as part of the Optical Mapping
Suite at no cost upon request to barryghall@gmail.com.

Estimation of MSTs

MSTs were estimated by MSTgold as described in Salipante

and Hall (2011). MSTgold for Macintosh is available at no cost

at bellinghamresearchinstitute.com/software/.

Results

The 114 Acinetobacter sp. Isolates used for this analysis were

obtained from three US Army hospitals between March 2003

and October 2010. In figures 3 and 4, isolate IDs are shown in

boldface next to nodes that are colored according to the hos-

pital from which the isolate was obtained. The isolation dates,

where known, are indicated above and slightly offset from the

isolate ID in lightface. To determine the similarity structure of

the isolates, we performed the following analysis.

Efficiency and Accuracy

We used the BOP method to analyze and perform clustering

analysis on 125 strains of Acinetobacter sp., including 11 com-

pletely sequenced genomes and 114 Acinetobacter strains

from three US military hospitals. Approximately 15% of the

optical mapping information was lost as the result of discard-

ing small fragments. For the 114 experimental maps, effi-

ciency (the fraction of an experimental optical map that

could be matched with fragments from an in silico map of a

sequenced genome) ranged from 36.4% to 70.4% with a

mean of 48.9�0.6%.

The accuracy with which this process matched an experi-

mental optical map fragments to the correct in silico fragment

was then determined using the program S2N. Only one ex-

perimental optical map (1311) was available for one se-

quenced strain, AB0057. For that comparison, the signal to

noise ratio was 94:47, meaning that an experimental

Clustering Bacteria by Optical Mapping GBE
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fragment was only about twice as likely to be correctly

matched as incorrectly matched. A 66.6% level of confidence

in inferring the presence of sequences is not sufficient to make

a method useful, so we refined our method to increase the

signal while decreasing the noise. We found that performing

preliminary clustering analyses improve the accuracy of our

results by making correct matches between optical mapping

data and sequence data more likely.

Preclustering with StructureOptMaps

To perform preliminary clustering before implementing the

BOP method, we used the following approach: An MST

based on the combined experimental and in silico optical

maps showed that the sequenced genomes were not well

dispersed among the experimental optical maps (result not

shown). We reasoned that the more distantly related an ex-

perimental genome is to a sequenced genome the more likely

is the sequenced genome to include, by chance, a fragment

that falsely matches a fragment in the experimental genome.

By extension, we reasoned that the signal to noise ratio might

be improved if we could subdivide the set of genomes, then

investigate each subset on the basis of sequenced genomes

contained in that subset. We decided, despite the degeneracy

of restriction fragments, to cluster all the genomes on the

basis of the presence/absence of restriction fragments. For

the 125 Acinetobacter sp. Strains, there were 5,145 unique

restriction fragments.

There are a number of methods, including the famous K-

means algorithm, to assign individuals to a specific number of

clusters on the basis of overall similarity. The problem is that

we do not know in advance the number of clusters that best

reflects the natural clustering of a population of individuals.

Structure (Pritchard et al. 2000) offers two alternatives for

the user to consider. If recombination is not allowed,

Structure assumes that each strain belongs to only one clus-

ter. If recombination is allowed, it assumes that a strain may

be drawn partially from one cluster and partially from one or

more other clusters, that is, that there is exchange between

strains of different clusters. Unless the recombination situation

is well understood from other sources, it is a good practice to

run StructureOptMaps both with and without recombina-

tion and to choose whichever gives the higher maximum ln L.

In both cases, the most likely number of clusters for the 125

Acinetobacter sp. strains was k¼ 3. The log likelihood (ln L) of

the clustering can be used to assess which clustering approach

is preferred; the approach with the higher ln L is preferred.

With recombination ln L was�148,531.5 and without recom-

bination ln L was�147,402.7. Further analyses were based on

clustering with k¼3 and without recombination.

Without recombination, StructureOptMaps sorted the

125 strains into three clusters (fig. 2). Cluster 1 contained

66 genomes including eight sequenced genome. The eight

sequenced genomes contained 3,598 unique NcoI fragments

that included 39,568 unique bops. Cluster 2 contained 33

genomes but no sequenced genomes. Cluster 3 contained

26 genomes including three sequenced genomes. The three

sequenced genomes contained 425 unique NcoI fragments

that included 18,488 bops.

The mean efficiency (percent of the total genome repre-

sented by NcoI fragments that matched an in silico fragment)

for the 58 experimental genomes in Cluster 1 was

43.8�0.9%, with the range being 32.2–62.4%. That effi-

ciency is slightly worse than when all of the genomes were

analyzed together. The mean efficiency for the 23 experimen-

tal genomes in Cluster 3 was 44.8�1.5%, with the range

being 34.7–63.1%. That efficiency is, again, slightly worse

than when all of the genomes were analyzed together.

Cluster 3 includes the sequenced genome AB0057 and its

corresponding experimental genome 1311 and thus permits

calculation of the signal to noise ratio. For that comparison,

the signal to noise ratio was 138:5, meaning that an experi-

mental fragment had a 96.5% probability of being correctly

matched with an in silico fragment. That dramatic increase in

signal:noise results from preclustering the genomes using

StructureOptMaps. Without the availability of an experimen-

tal map of a sequenced genome in cluster 1, we are forced to

assume that cluster 1 had a similar increase in signal:noise.

Minimum Spanning Trees

MSTs based on the presence or absence of each bop and

calculated by MSTgold are shown in figures 3 and 4. Just

as a phylogenetic tree is a graph that illustrates the

Cluster 1
66 members

8 sequenced genomes

Cluster 2
33 members

0 sequenced genomes

Cluster 3
26 members

3 sequenced genomes

0.250
0.238

0.173

FIG. 2.—Clustering of Acinetobacter strains by StructureOptMaps.
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relationships among individuals and their hypothetical ances-

tors based on identity by descent, an MST is a graph that

illustrates the relationships among individuals based on iden-

tity by state. On an MST, each node represents an individual,

and nodes are connected by edges whose lengths reflect the

distance between the nodes. In this case, the distance be-

tween a pair of genomes is shown as the number of

differences in the state of the bop (0 or 1) divided by the

number of bops. A spanning tree is a subset of a fully con-

nected graph in which there is a single path from any node to

any other node. An MST is the shortest spanning tree of all the

possible spanning trees. Depending on the order in which the

nodes are considered, it is possible for there to be more than

one MST (Salipante and Hall 2011). For Cluster 1 (fig. 3), there

FIG. 3.—MST of cluster 1 from figure 2. Strain IDs are in boldface, and edge lengths are in lightface in a smaller font.
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was only one MST, but for Cluster 3, there were 16 MSTs that

had the same total length. The reliability of the MSTs was

evaluated by bootstrapping with 100 replicates. Cluster 3

tree number 6 had the highest average bootstrap value and

is shown in figure 4.

In figures 3 and 4, edges that were present in�90% of the

bootstrap replicates are drawn as thick lines, and those that

were present in less than 90% of the replicates are drawn as

thin lines. Although in phylogenetic analyses, bootstrap per-

centages more than 70% are generally considered to be trust-

worthy, for MSTs bootstrap probabilities are typically lower

and must be considered relative measures of reliability,

rather than a hard and fast cutoff of believability (Salipante

and Hall 2011). Indeed, the average bootstrap percentages for

the MSTs in figures 2 and 3 are typical of the maximum

average bootstrap percentages observed by Salipante and

Hall (2011) in their study.

To determine the consistency of our results with other

accepted methods, we compared our MST with a published

Acinetobacter UPGMA cladogram (McQueary et al. 2012) that

had been assembled from a pairwise distance matrix of optical

maps. Although it is impossible to directly compare these

methods because UPGMA creates a bifurcating tree and

MSTs are presented as clusters, we did find that the groupings

of most similar strains was largely consistent between

methods.

Discussion

The BOP method as implemented by OptMapsIS permits the

analysis of optical maps for strain typing and for estimating

strain relationships by clustering. That implementation

requires comparing experimental optical maps with in silico

optical maps based on completely sequenced genomes of the

Mean boot strap percent is  48 ± 4.6

0.0053

0.0054

0.0101

0.0064

0.0080

0.0077

0.0052

0.0067

0.0055

0.0079
0.0079

0.0062

0.0056

0.0066

0.0079

0.0111

0.0112

0.0081

0.0090

0.0071

0.
00

68

0.0094

0.0054

0.0092

Hospital 1

Hospital 2

Hospital 3

AB307_0294

AYE

AB0057 1311

Acinetobacter sp
Cluster 3
Bootstrap of Tree #6

959
9.1.08

953
8.3.08

899
12.25.07

906
1.12.08

960
10.15.08

409
11.16,.09 718

717

58
6.22.10

59
6.23.10

61
6.25.10

408
11.16.09

63
6.27.10

60
6.23.10

62
6.27.10

1309
5.13.07

1181
1.30.10

1197
2.3.10

963
5.22.09

1415
8.13.10

856
5.18.07

79
7.30.10

Sequenced genome

Mean edge length is 0.0075

0.0087

FIG. 4.—MST of cluster 3 from figure 2. Strain IDs are in boldface, and edge lengths are in lightface in a smaller font.
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same organism. Signal to noise ratio analysis showed that

comparing the undifferentiated set of 114 experimental

maps with the 11 in silico maps results in misidentifying

one-third of the experimental restriction fragments.

Population structure analysis using Structure showed that

the set of 125 genomes could be divided into three clusters,

two of which included sequenced genomes (fig. 2). Signal to

noise analysis after clustering showed that only 3.5% of the

experimental restriction fragments were misidentified, con-

firming the importance of comparing experimental maps

with in silico maps that are as closely related as possible.

MSTs of the genomes in clusters 1 and 3 showed that,

although there are obvious instances of migration between

hospitals, genomes clustered well according to the hospital of

origin and the date of isolation. It is noteworthy that the

genomes in Cluster 3 are about seven times more similar to

each other than are the genomes in Cluster 1.

In this study, the relationships of only 71% of the experi-

mental genomes could be estimated because Cluster 2 in-

cluded no sequenced genomes. For those strains whose

relationships could be estimated, less than half of the infor-

mation in each genome could be utilized for those estimates,

that is, the average efficiency was about 44%. The efficiency

is a function of how well the experimental restriction frag-

ments are represented among the sequenced strains. In

these cases, the genotypes of the sequenced strains were

not well dispersed among those of the experimental strains.

The efficiency could probably be greatly improved by sequenc-

ing a few additional strains in each cluster, for example, 1197

and 408 in Cluster 3 and 1198, 88, and 939 in Cluster 1.

Similarly, an MST based on the presence/absence of restriction

fragments in Cluster 2 could be used to identify 4 or 5 well-

dispersed genomes for sequencing. That additional sequenc-

ing, although time consuming and expensive, would permit

estimating relationships among all the strains and would prob-

ably significantly increase efficiency, and thus reliability of the

resulting MSTs. Unfortunately, the resources to sequence

those genomes in this study are not presently available.

Efficiency and accuracy, in the sense of signal to noise ratio,

are also affected by the fuzzy matching algorithm. In this case,

we have only one strain, AB0057, that has been sequenced

and has also been optically mapped (as 1311). Optical map-

ping of several other sequenced genomes, particularly in

Cluster 1, would permit better evaluation of accuracy.

Recent versions of the optical mapping software from

OpGen calculate the standard errors on the size of each frag-

ment. Those standard errors could very possibly allow the de-

velopment of better fuzzy matching criteria that would

improve accuracy and perhaps efficiency as well.

Unfortunately, that software cannot be applied retrospectively

to the current data sets. The preservation of the original

images is data storage intensive and as a mapping service,

OpGen Inc. provided only the assembled consensus maps.

These results indicate that optical mapping has the

potential to serve as a viable alternative to whole-genome

sequencing for elucidating relationships among strains

on the basis of almost-complete genome sequence

information.

Supplementary Material

Supplementary table S1 is available at Genome Biology and

Evolution online (http://www.gbe.oxfordjournals.org/).
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