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Abstract
Converging evidence increasingly implicates shared etiologic and pathophysiological characteristics among major
psychiatric disorders (MPDs), such as schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD).
Examining the neurobiology of the psychotic-affective spectrum may greatly advance biological determination of
psychiatric diagnosis, which is critical for the development of more effective treatments. In this study, ensemble clustering
was developed to identify subtypes within a trans-diagnostic sample of MPDs. Whole brain amplitude of low-frequency
fluctuations (ALFF) was used to extract the low-dimensional features for clustering in a total of 944 participants: 581
psychiatric patients (193 with SZ, 171 with BD, and 217 with MDD) and 363 healthy controls (HC). We identified two
subtypes with differentiating patterns of functional imbalance between frontal and posterior brain regions, as compared to
HC: (1) Archetypal MPDs (60% of MPDs) had increased frontal and decreased posterior ALFF, and decreased cortical
thickness and white matter integrity in multiple brain regions that were associated with increased polygenic risk scores and
enriched risk gene expression in brain tissues; (2) Atypical MPDs (40% of MPDs) had decreased frontal and increased
posterior ALFF with no associated alterations in validity measures. Medicated Archetypal MPDs had lower symptom
severity than their unmedicated counterparts; whereas medicated and unmedicated Atypical MPDs had no differences in
symptom scores. Our findings suggest that frontal versus posterior functional imbalance as measured by ALFF is a novel
putative trans-diagnostic biomarker differentiating subtypes of MPDs that could have implications for precision medicine.

Introduction

Definitive biomarkers have remained elusive in psychiatry,
while other fields of medicine have amassed an armory of
biomarkers for diagnosis and treatment. This is not entirely
surprising as studies have primarily utilized nosology that
differentiates neuropsychiatric disorders based on clinical
phenomenology in the absence of any biological determi-
nant, albeit the Diagnostic and Statistical Manual of Mental
Disorders (DSM) has revolutionized the field and advanced
it to its current state. Long conceptualized as distinct
diagnostic categories, major psychiatric disorders (MPDs),
consisting of schizophrenia (SZ), bipolar disorder (BD), and
major depressive disorder (MDD), share substantial core
features as implicated by converging lines of evidence from
genetic, molecular, histological, and neuroimaging studies
[1–6]. Thus, there appears to be a greater continuum
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between psychotic and affective disorders than previously
thought. Consequently, understanding the core changes in
MPDs is critical for mapping the principal neural pathways
resulting in psychopathology and the crossroads at which
divergent paths lead to varying clinical phenomenology
within and across diagnoses.

Several studies have adopted alternative approaches to
identifying brain-based biomarkers that transcend tradi-
tional diagnostic boundaries [7, 8]. Recently, Clementz
et al. conducted a k-means clustering analysis of cognitive
and electrophysiological measures using trans-diagnostic
data generated from the Bipolar-Schizophrenia Network for
Intermediate Phenotype consortium [7]. They identified
three “biotypes” that were largely orthogonal to the DSM-
IV diagnoses and significantly different with respect to
external validating measures such as brain structure and
function [9, 10]. Their approach has been touted as an
important step toward a more neurobiologically based
understanding of psychosis [11]. Subsequently, pioneering
work by Drysdale et al. identified four biotypes in depres-
sion using canonical correlation analysis of the Hamilton
Depression Rating Scale (HAMD) to characterize con-
nectivity features [8]. Their work presented yet another
strategy for refining classification within clinically hetero-
geneous diagnoses, as well as identifying individuals who
may be more responsive to transcranial magnetic
stimulation.

Neuroimaging has offered a wealth of potential bio-
markers for neuropsychiatric disorders. Abnormal brain
function has been proven to be useful in the assessment of
pain [12] and shows great promise for application to
neuropsychiatric illnesses. Resting-state functional mag-
netic resonance imaging is well-established and has been
widely performed for noninvasive exploration of the
brain’s intrinsic functional architecture using measure-
ments of spontaneous low-frequency fluctuations (LFFs)
in the blood oxygenation level-dependent (BOLD) signal
[13, 14]. Although their underlying mechanism is not
exactly clear, LFFs appear to arise from neurovascular
activity [15] and have been associated with glutamatergic/
GABAergic synaptic currents and glial activity [16, 17].
Furthermore, the amplitude of BOLD signal fluctuations
is proportional to regional cerebral blood flow, which is
an established marker of brain metabolic activity [18].
The amplitude of low-frequency fluctuations (ALFF;
generally in the range of 0.01–0.08 Hz) appears to be an
efficient index of local spontaneous neuronal activity at
rest [19]. Regional variability in ALFF reflects sponta-
neous fluctuations in a given voxel independent of its
neighboring, regional, or network connectivity. Moreover,
ALFF exhibits moderate to substantial test-retest relia-
bility [20] ensuring a high upper bound for its validity as a
regional functional measure to detect individual

differences [21]. Prior studies, including a multi-center
study and our previous work, have shown significant
alterations in ALFF across MPDs compared to healthy
controls (HC), most prominently in frontal, subcortical,
and temporal regions, as well as in visual regions (pre-
cuneus and cuneus); however, inconsistencies have been
reported [6, 22, 23].

In this study, we present a novel clustering method uti-
lizing deep learning to identify subtypes across the
psychotic-affective disorder spectrum in a trans-diagnostic
sample of MPDs. We used a deep stacked AutoEncoder to
extract low-dimensional features of ALFF followed by an
ensemble clustering method to identify ALFF-based sub-
types that were maximally dissimilar from each other in
MPDs. We then validated the resulting subtypes using
cortical thickness, white matter integrity as measured by
fractional anisotropy (FA), polygenic risk scores (PRS), and
risk gene expression tissue profile. We also examined the
effects of medication status on symptom severity to eluci-
date possible pharmacologic effects within each of the
subtypes.

Methods

Samples and measures

The study included a total of 944 participants consisting of
581 patients with MPDs (193 with SZ, 171 with BD, 217
with MDD) and 363 HC, who were recruited and scanned at
a single site with identical inclusion and exclusion criteria.
MPD participants were recruited from the inpatient and
outpatient services at Shenyang Mental Health Center and
Department of Psychiatry, The First Affiliated Hospital of
China Medical University, Shenyang, China. HC partici-
pants were recruited from the local community by adver-
tisement. Behavioral symptoms were assessed using the
HAMD and Brief Psychiatric Rating Scale (BPRS). Cog-
nitive function was assessed using the Wisconsin Card
Sorting Test (WCST). Demographic and clinical char-
acteristics are detailed in Supplementary Tables 1 and 2.
Whole blood samples (243 patients and 193 HC) were
collected. All participants provided written informed con-
sent after receiving a detailed description of the study. The
study was approved by the Institutional Review Board of
China Medical University.

Functional MRI, structural MRI, and diffusion tensor
imaging (DTI) were acquired in a GE Signa HD 3.0T
scanner with a standard 8-channel head coil at the First
Affiliated Hospital of China Medical University, Shenyang,
China. Functional images were collected with a gradient
echo planar imaging (EPI) sequence for ALFF measures.
Three-dimensional, high-resolution, T1-weighted images

2992 M. Chang et al.



were collected using a 3-D fast spoiled gradient echo
sequence to measure cortical thickness. DTI used a single-
short spin-EPI sequence to measure FA for assessing white

matter integrity. For all scanning sequence parameters and
image preprocessing, please see “Methods” in the Supple-
mentary information.

Identifying and validating subtypes within major psychiatric disorders based on. . . 2993



Genotyping, imputation and calculation of PRS, and risk
gene expression were also performed. Details about how
they were performed can be found in “Methods” in the
Supplementary information.

Ensemble clustering method based on deep
learning

Clustering algorithms group data points (i.e., participants)
based on their similarity in dimensional space. For high-
dimensional data, such as whole brain ALFF, the number of
dimensions must be reduced to avoid the “curse of dimen-
sionality” [24]. Consequently, clustering results are dependent
on the dimensional representation selected for analyses;
however, there is no established standard for selecting an
appropriate dimensional representation. Thus, our algorithm
was designed to perform clustering analyses for multiple
dimensional representations and then use consensus group
assignment followed by a robustness optimization protocol to
achieve the most reliable and stable subtype assignment.
Subtypes were identified in n= 581 patients with MPDs
using a novel ensemble clustering method based on deep
stacked AutoEncoder in the following steps (Fig. 1).

Step one: dimension reduction

To identify principal ALFF alterations, we extracted voxels
with significantly different ALFF between MPDs and HC
using a general linear model (GLM). For GLM analyses,
gender (male/female) and group (MPDs/HC) were included
as discrete factors and age as a continuous factor, and the
effect of group on ALFF was the primary interest of the
analysis. The significance level was set at voxel p < 0.001
with the Gaussian random field (GRF) correction for cluster
p < 0.05. A total of 2175 voxels were identified as sig-
nificantly different in ALFF between MPDs and HC from
the whole brain of 42,185 voxels. We then used Auto-
Encoder [25], a deep artificial neural network, to further
reduce the dimensions of the input data to d∈ [2, 10].
AutoEncoder included an encoder and a symmetric decoder.
The encoder compressed the 2175 voxels obtained as

described above into a low-dimensional representation
consisting of nine layers with sizes 2175-2048-1024-512-
256-128-64-32-d and the symmetrical reconstruction by the
decoder as the output. Mean square error was used as the
loss function to minimize the differences between the input
of 2175 voxels and the reconstructed voxels at the output
layer. Compared to the conventional dimensionality
reduction methods such as principal component analysis,
AutoEncoder is capable of learning intrinsic, nonlinear
relationships in the input data and therefore better suited for
high-dimensional nonlinear data [25].

Step two: ensemble clustering

A common problem of clustering high-dimensional data is
that inappropriate low-dimensional representations of data
will lead to unreliable clustering results. To avoid this
problem, we designed a new ensemble method to integrate
hierarchical clustering results from multiple d-dimensional
representations (d∈ [2, 10]) (Supplementary Fig. 1) which
obtained from the autoencoder. The Euclidean distance was
used to compute the distance between participants and the
complete linkage method was used to compute the distance
between clusters. For each d-dimensional representation
(d∈ [2, 10]), we obtained a set of clustering results for all
participants. Therefore, each participant was subsequently
assigned nine class labels, one for each of the clustering
result based on nine d-dimensional representations. A
consensus was determined by the majority of the nine class
labels and served as the cluster assignment for each parti-
cipant. Therefore, the ensembled result can better reflect the
inherent clustering characteristics of the data, because it
integrates the results from multiple low-dimensional repre-
sentations of participants.

Step three: optimization of clustering robustness

While the ensemble clustering method was effective, it was
relatively sensitive to the low-dimensional representations
obtained from the autoencoder. To improve the robustness of
the clustering results, we merged some clusters based on
multiple runs of the clustering method. To this end, we first
introduced a new index to quantify the robustness of a cluster.
The robustness index Ri of cluster i was calculated as

Ri ¼ j\jC
j
i j

j∪ jC
j
i j
, where Cj

i is the j-th run of the clustering method on

cluster i. A larger robustness index Ri means a more stable
cluster i. We then adopted an iterative, hierarchical scheme to
merge clusters with low robustness. Specifically, we iteratively
combined the two clusters with the lowest robustness indices
until all clusters were robust enough, i.e., their robustness
indices were greater than a threshold δ. In our analysis, δ was
set to 0.8 based on our experiment on the brain image data.

Fig. 1 Schematic of using deep learning-based hierarchical clus-
tering to define clusters of MPDs. Step one: identification of sig-
nificant functional alterations in MPDs and using AutoEncoder to
reduce the dimension of the identified alterations to d∈ [2,10]. Step
two: for each of the nine low-dimensional data from step one, we
obtained nine different class labels based on clustering analyses, and
five clusters (cluster A, B, C, D, and E) were identified. Step three: we
performed the clusters merging process according to six runs of
clustering and obtained two final subtypes. Furthermore, the subtypes
varied in patterns of amplitude of low-frequency fluctuation alterations
as compared to HC (voxel p < 0.001 with Gaussian random field
correction for cluster p < 0.05). MPD major psychiatric disorder; HC
healthy control; L left; R right; d dimension.
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Subtype-related validation across multi-level
biological data

Comparison of ALFF alterations with HC

Group comparisons of ALFF values were performed by
DPABI [26]. For each voxel, GLM was performed to
examine the difference in ALFF between each subtype and
HC. For GLM analyses, gender and group were included as
discrete factors and age as a continuous factor, and the
effect of group on ALFF was of primary interest. Statistical
significance was determined by combining individual voxel
p (uncorrected) < 0.001 with GRF correction for cluster-
level inference of p < 0.05.

Cortical thickness and white matter integrity

Group comparisons of cortical thickness were performed
vertex-wise on the cortical surface by Freesurfer
(MRI_glmfit), and FA values were calculated in SPM8
(http://www.fil.ion.ucl.ac.uk/spm). For each vertex or
voxel, GLM was used to examine differences in cortical
thickness and FA between each subtype and HC. GLM
design and statistical significance were the same as those in
ALFF analyses.

Genetic loading analysis

Association of PRS (PRS-SZBD and PRS-MDD) with each
subtype was performed with logistic regression, and
Nagelkerke’s pseudo-R2 was calculated to measure the
proportion of variance explained. We estimated and ana-
lyzed high-resolution PRS at 105 different levels of PT

(ranging from 0 to 0.5 with increments of 0.005 plus 10−6,
10−5, 10−4, 0.001, and 1). To correct for multiple compar-
ison, a significance threshold of p= 0.004 was adopted as
suggested by Euesden et al. [27].

Clinical and cognitive measures

Two-sample t-tests were used to examine differences in
HAMD and BPRS total and factor scores and WCST
scores between subtypes. Statistical significance was set at
p < 0.05 with FDR correction for multiple comparisons.
HAMD and BPRS factor scores were identified
from exploratory factor analysis using the principal
component factor method in MPDs (n= 581) (“Methods”
in Supplementary information, Supplementary Tables 3
and 4). Subsequently, the resulting HAMD and
BPRS factors were used in a group analysis where we
performed two-sample t-tests (p < 0.05 with FDR correc-
tion) to examine the effects of medication status for each
subtype.

Clinical diagnosis-related validation across multi-
level biological data

We also performed analogous analyses on ALFF, cortical
thickness, white matter integrity, PRS, risk gene expression,
and effects of medication status based on clinical diagnosis.

Results

Identified subtypes and relation to clinical
diagnoses

The novel ensemble clustering method identified two sub-
types in the MPDs sample (n= 581), Archetypal MPDs
(cluster A, 60% of the MPDs sample) and Atypical MPDs
(Fig. 1 and Supplementary Table 5). The distribution of
clinical diagnosis (SZ, BD, and MDD) varied between
Archetypal and Atypical MPDs. A greater proportion of SZ
appeared in Archetypal MPDs (40%) than Atypical MPDs
(16%). BD and MDD represented 27% and 33%, respec-
tively, in Archetypal MPDs and 35% and 49%, respectively,
in Atypical MPDs (Supplementary Fig. 2a). From the per-
spective of clinical diagnoses, there were more SZ belong to
Archetypal MPDs (86%). While the proportion of BD and
MDD subtyped as Archetypal MPDs were relatively smaller
(65 and 61%, respectively), BD and MDD comprised much
larger portions of Atypical MPDs than SZ. 86% of SZ were
subtyped asArchetypal Mods (Supplementary Fig. 2b).

Subtype-related characteristics

Subtype-related ALFF alterations

In Archetypal MPDs (n= 411), ALFF was significantly
increased in frontal areas (prefrontal cortex, limbic, para-
limbic, and striatum) and significantly decreased in poster-
ior areas (primary sensory and motor cortices and unimodal
association cortices), compared to HC (n= 363) (Cohen’s
d= 0.64, p < 0.001) (Subtypes definition in Fig. 1). The
converse was observed in Atypical MPDs (n= 170): ALFF
was significantly decreased in frontal areas (prefrontal
cortex, limbic, paralimbic, and striatum), and was sig-
nificantly increased in posterior areas (primary sensory and
motor cortices and unimodal association cortices), com-
pared to HC (n= 363) (Cohen’s d= 0.43, p < 0.001)
(Subtypes definition in Fig. 1).

Subtype-related cortical thickness and white matter
integrity

In Archetypal MPDs, cortical thickness (n= 377) and FA
values (n= 397) were significantly decreased in multiple
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brain regions compared to HC (n= 353 and 359) (cortical
thickness: Cohen’ d= 0.28; p= 0.002. FA values: Cohen’
d= 0.52; p < 0.001) (Fig. 2). In Atypical MPDs, no significant
differences in cortical thickness (n= 159) and FA values (n=
164) were observed compared to HC (n= 353 and 359).

Subtype-related polygenetic risk

Four PRS-SZBD scores at PT of 10
−6 (NSNPs = 300), 10−5

(NSNPs= 565), 10−4 (NSNPs = 1203), and 0.001 (NSNPs=
2978) showed significant differences between Archetypal

a

0 6

bFig. 2 Significant differences
in (a) cortical thickness and (b)
white matter integrity between
Archetypal MPDs and healthy
controls. Significance level was
set to voxel p < 0.001 with
Gaussian random field
correction for cluster p < 0.05.
The color bar represents t value.
MPD major psychiatric disorder.
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Fig. 3 The variance (y-axis) of case-control status explained by the
PRS-SZBD and PRS-MDD in Archetypal and Atypical MPDs. x-
axis represents p value threshold, y-axis represents PRS model fit: R2

(Nagelkerke’s). The bars represent ten best-fit PRS scores calculated at

different p value threshold. ***p < 0.001; **p < 0.01. PRS-SZBD,
polygenetic risk score of schizophrenia and bipolar disorder, PRS-
MDD, polygenetic risk score of major depressive disorder. MPD major
psychiatric disorder.
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MPDs (n= 143) and HC (n= 192), explaining 5.6%,
4.9%, 4.3%, and 4.0%, respectively, of the variation in
Archetypal MPDs. The scores remained significant after
multiple comparison correction. Compared to HC, no
significant difference was observed in PRS-SZBD in
Atypical MPDs (n= 100) or PRS-MDD in either sub-
types. The ten best-fit PRS scores for each subtype are
presented in Fig. 3.

Subtype-related gene expression

Combining GWAS data and frontal cortex eQTL, we
identified 173 genes significantly associated with Arche-
typal MPDs (n= 143) and 138 genes with Atypical MPD
(n= 100) (Supplementary Excel 1). These genes were then
used as input to an expression enrichment analysis on the
web-based tool, FUMA. The two sets of genes showed
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Fig. 4 Differentially expressed risk genes across 53 tissues in (a) Archetypal and (b) Atypical MPDs. MPD major psychiatric disorder.
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differential expression profiles across 53 human tissues
from GTEx [28]. Archetypal MPDs-associated genes were
significantly expressed in 21 tissues; about half (11 tissues)
represent brain tissues (Fig. 4a). The genes associated with
Atypical MPDs were predominantly expressed in nonbrain
tissues including the heart, prostate, pituitary, pancreas,
thyroid, and liver (Fig. 4b).

Clinical characteristics within subtypes

Medicated Archetypal MPDs had significantly decreased
HAMD and BPRS factor scores than their unmedicated
counterpart (Fig. 5). Factors that differed significantly were
general somatic depressive symptoms (n= 377; 95% CI,
2.24–3.58; Cohen’s d= 0.94; p < 0.001), core depressive
symptoms (n= 377; 95% CI, 2.37–4.36; Cohen’s d= 0.70;
p < 0.001), somatization (n= 377; 95% CI, 1.26–2.51;
Cohen’s d= 0.66; p < 0.001), and mixed symptoms (retar-
dation, agitation, psychiatric anxiety, and insight) (n= 377;
95% CI, 0.52–1.17; Cohen’s d= 0.59; p < 0.001) in the
HAMD; and hostility and suspicion in the BPRS (n= 306;
95% CI, 0.52–3.13; Cohen’s d= 0.36; p= 0.007) (Fig. 5).
No significant differences in HAMD and BPRS factor
scores were observed between medicated and unmedicated
Atypical MPDs (Fig. 5).

Biological and clinical characterization based on
clinical diagnosis

Multimodal biological characterization based on clinical
diagnosis showed continuum alterations across SZ, BD, and
MDD. The details please see Supplementary results and
Supplementary Figs. 3–7.

Discussion

In this study, we developed a novel clustering method uti-
lizing deep learning to identify two major ALFF-based

subtypes, Archetypal MPDs and Atypical MPDs, that dif-
fered in genetic, multimodal MRI, and clinical character-
istics. Archetypal MPDs (60% of the MPDs sample) had
significantly increased ALFF in frontal areas (prefrontal
cortex, limbic, paralimbic, and striatum) and significantly
decreased ALFF in posterior areas (primary sensory and
motor cortices and unimodal association cortices), sig-
nificantly higher genetic vulnerability with increased PRS-
SZBD, enriched risk gene expression in brain regions
including the frontal cortex, limbic system, basal ganglia,
hypothalamus, cerebellum, and substantia nigra, and sig-
nificantly decreased cortical thickness and white matter
integrity in multiple brain regions, compared to HCs.
Medicated Archetypal MPDs had significantly decreased
HAMD and BPRS factor scores than unmedicated Arche-
typal MPDs, suggesting the effect of medication status on
symptom severity in this subtype. In contrast, Atypical
MPDs (40%) were defined by significantly decreased ALFF
in frontal regions and significantly increased ALFF in the
posterior brain without associated differences in PRS
scores, cortical thickness, or white matter integrity com-
pared to HC. Risk gene expression was prominent in non-
brain tissues, such as heart, liver, pancreas, and pituitary,
which are regarded as somatic and endocrine-related tissues.
No significant differences in HAMD and BPRS factor
scores were observed between medicated and unmedicated
Atypical MPDs, suggesting the lack of medication status
effects on symptom severity in the subtype. Collectively,
our findings implicated functional imbalance between the
frontal and posterior regions as a core and differentiating
feature across the psychotic-affective disorder continuum.
Furthermore, the subtypes, Archetypal and Atypical MPDs,
delineated by this feature were differentially associated with
genetic vulnerability, risk gene expression, cortical thick-
ness, and white matter integrity. Interestingly, Archetypal
and Atypical MPDs were also distinct in the effects of
medication status on symptom severity, suggesting possible
differential pharmacologic effects in the two subtypes.
Additionally, multimodal biological characterization based
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on clinical diagnosis showed continuum alterations across
SZ, BD, and MDD. These findings further support that there
is a greater neurobiological overlap than previously thought
among these clinical diagnoses.

The observed ALFF pattern in Archetypal MPDs was
consistent with our prior findings of increased frontal and
decreased posterior ALFF as a shared feature across SZ,
BD, and MDD [6, 29, 30]. Significantly increased ALFF
appeared in frontal regions including the prefrontal cortex,
limbic, paralimbic, and striatum and significantly decreased
ALFF in the posterior primary cortices in MPDs [6].
Moreover, we also found that the ALFF ratio between these
regions in slow-4 was negatively correlated with measures
of negative and disorganized symptoms across SZ, BD, and
MDD [6]. Altogether, these findings suggest impaired bal-
ance between regions conventionally known for emotional
perception and processing and the visual cortices in MPDs.

Studies utilizing trans-diagnostic approaches are emer-
ging [5, 6, 9, 10] as converging evidence indicates core
features across MPDs and increasing focus on the brain and
neuropsychiatric disorders from a systems perspective (i.e.,
National Institute of Mental Health Research Domain Cri-
teria). Our findings in this study defined two subtypes
across clinical diagnostic boundaries. Each clinical diag-
nosis, SZ, BD, or MDD, was represented in each subtype
reported herein. We also performed multimodal biological
characterization based on clinical diagnosis and found
continuum alterations across SZ, BD, and MDD (for details
regarding methods and results, see Supplementary infor-
mation). Altogether, these findings further support that there
is a greater neurobiological overlap than previously thought
among the three clinical diagnoses. The mismatch between
subtypes and clinical diagnoses may in part explain frequent
inconsistent results among studies based on clinical diag-
nosis. The constraints of our current diagnostic system are
apparent [7, 9, 10, 31]. Refining the current diagnostic
system with relevant biological measures (e.g., frontal and
posterior ALFF imbalance) would yield more biologically
homogeneous groups, which are critically important for
developing more effective and personalized treatment.
Along these lines, we developed and compared two clas-
sification models using a 3D convolutional neural network
that categorized participants based on (1) subtypes, Arche-
typal and Atypical MPDs and (2) clinical diagnoses, SZ,
BD, and MDD. The accuracy and precision for the subtype-
based model were significantly higher than the model based
on clinical diagnoses, underscoring that clinical diagnoses
share more similar features and are less distinguishable from
each other in the classification models. For full details
regarding methods and results, please see Supplementary
information and Supplementary Fig. 8.

The differences between the two subtypes, Archetypal
and Atypical MPDs, in association with PRS for BD and

SZ, risk gene expression, cortical thickness, and white
matter integrity are of significant interest. Compared to HC,
Archetypal MPDs had increased PRS-SZBD, indicating a
greater genetic vulnerability in this subtype. Archetypal
MPDs had enriched risk gene expression in the brain (e.g.,
frontal cortex, limbic system, basal ganglia, hypothalamus,
cerebellum, and substantia nigra), whereas Atypical MPD
had risk gene expression more prominent in somatic and
endocrine-related tissues such as the heart, liver, pancreas,
and pituitary. Significant decreases in cortical thickness and
white matter integrity were found broadly in Archetypal
MPDs but not in Atypical MPDs. Findings in Archetypal
MPDs are consistent with previous studies of MPDs
[4, 5, 32–34]. Decreased neuronal and glial density, and
genetic and neurotransmitter alterations have been found in
multiple brain regions including the anterior cingulate cor-
tex, dorsolateral prefrontal cortex, and nucleus accumbens
across SZ, BD, and MDD [35]. Genetic imaging studies in
SZ and BD individuals and their relatives suggest decreased
gray matter volume [32, 36] and white matter integrity
[33, 37] as potential heritable biomarkers. Altogether, our
findings support the Archetypal MPDs as a genetic and
neurodevelopmental subtype of neuropsychiatric disorders.
Further studies are needed to determine the nature of Aty-
pical MPDs (e.g., stress-induced or stress diathesis) and
better understand the biological implications of this group.

Intriguingly, medicated Archetypal MPDs had sig-
nificantly decreased symptom severity as measured by the
HAMD and BPRS than their unmedicated counterpart but
no significant differences in symptom severity were
observed in medicated versus unmedicated Atypical MPDs,
suggesting differential pharmacologic effects between the
subtypes. This is further supported by the findings that the
associated decreases in cortical thickness and white matter
integrity in Archetypal MPDs could represent pathological
processes that are responsive to medications [38, 39] or
direct compensatory effects of medications [40, 41].
Moreover, we found enriched risk gene expression in the
brain in Archetypal MPDs but not in Atypical MPDs. Wang
et al. previously identified a genetic profile in SZ similar to
our Archetypal MPDs that consisted of brain-expressed,
high-risk genes enriched for targets of approved drugs [42].
Altogether, these findings raise questions as to whether
conventional pharmacologic treatment may be more effec-
tive in Archetypal than Atypical MPDs. Further studies are
needed to examine differences in treatment response
between the two subtypes.

Limitations

There are several limitations in this study. We used a single
biomarker (ALFF) approach in our clustering method to
identify subtypes within MPDs. There are likely other
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relevant biomarkers for clustering and subtyping, and
multimodal data could capitalize on cross-information of
the existing data [43]. Future studies are needed to identify
other relevant biomarkers and determine how best to com-
bine different measures of multimodal brain imaging fea-
tures in clustering analyses for psychiatric disorders. As
well as the potential use of the identified neuroimaging
markers for individualized prediction of clinical or cogni-
tive measures [44]. Further, while there appears to be a
biological mechanism underlying ALFF, the exact nature of
the ALFF alterations observed herein are not clear. They
could relate to factors such as the number of prior depres-
sive/manic/psychotic episodes. Unfortunately, we did not
collect specific data about prior illness episodes and were
not able to examine the relationship between ALFF altera-
tions and prior depressive/manic/psychotic episodes. The
ALFF alterations could also relate to other fMRI and bio-
logical measures aside from cortical thickness and white
matter integrity. For greater biological validity and pre-
dictive utility, other biological or clinical measures should
be included in future studies of the subtypes described here.
Moreover, some studies have found that dynamic functional
features are more conducive to information related to dif-
ferent mental activity than static features [45]. These
cannot be measured using static parameters. Future work
should consider applying dynamic functional features to
investigate the abnormal activity. In addition, factors such
as participant inclusion criteria, the size of our cluster-
discovery data set, and the ordinal nature of our clinical
measures could have restricted our ability to identify other
subtypes.

Conclusion

In summary, our findings implicated functional imbalance
between frontal and posterior regions as a core and differ-
entiating feature among MPDs. These findings could have
significant contributions to the development of biologically
informed diagnostic classifications and treatment guidelines
across the psychotic-affective disorder continuum.
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