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Abstract: Considering that the processes of PEEK discoloration caused by either intrinsic or extrinsic
factors require elucidation, the aim of this study was to investigate the long-term effect of the
combined action of ageing and immersing solutions on the optical properties and color stability of
PEEK material, related to surface processing (polishing or glazing). (2) Methods: This study aims
to determine the influence of different ageing and staining protocols on optical properties, color
changes, and surface roughness of a reinforced PEEK material (bioHPP, Bredent, Senden, Germany).
For ageing, specimens were submitted to 5000 cycles in a 55 ◦C bath and a 5 ◦C bath filled with
distilled water. For staining, thermal cycling was performed in a hot coffee bath (55 ◦C) and a bath
filled with distilled water (37 ◦C) and in a cold juice bath (5 ◦C) and a bath filled with distilled water
(37 ◦C). Translucency (TP) and opalescence (OP) parameters were determined, the total color change
value (∆E*) was calculated, specimens’ surface roughness was analyzed, and statistical analyses were
performed. (3) Results: The mean TP values of the studied samples were in the interval of 1.25–3.60,
which is lower than those reported for natural teeth or other aesthetic restoration materials. The OP
values of PEEK were registered in the range of 0.27–0.75, being also lower than those of natural teeth
or other aesthetic restoration materials. OP has a very strong positive relationship with TP. The mean
registered Ra values for all subgroups were below 0.13 µm. Artificial ageing and staining in hot
coffee proved to increase the roughness values. (4) Conclusions: The glazing of PEEK has a favorable
effect on surface roughness and opalescence, irrespective of the artificial ageing or staining protocols.
Artificial ageing damages the color stability and roughness of PEEK, regardless of surface processing,
and decreases the translucency and opalescence of glazed surfaces. Immersion in hot coffee leads to
perceivable discolorations.

Keywords: dental polyetheretherketone; optical properties; color stability; artificial ageing; staining

1. Introduction

The development of thermoplastic high-performance polymers (HPP) has led to an
increasing interest in dentistry due to their excellent properties, which has made them
suitable for many applications in the field of restorative and prosthetic dentistry. The pol-
yaryletherketone (PAEK) family shows ultra-high mechanical performances and chemical
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resistance among all the thermoplastic polymers. These materials were introduced to sub-
stitute well-known metallic alloys and ceramics for achieving different fixed restorations
and removable prostheses [1–3].

The term PAEK covers a number of closely related high-performance thermoplastics,
like polyetheretherketone (PEEK), polyetherketoneketone (PEKK) and aryl ketone polymer
(AKP). Polyetheretherketone (PEEK) is a linear, aromatic, semi-crystalline thermoplastic,
developed from bisphenol salts and aromatic dihalides via nucleophilic substitution. The
structures of PEEK and PEKK both have aromatic rings, which differ in terms of the ratio
of ether and the keto group [4].

PEEK is a material known for its high biocompatibility, favorable mechanical proper-
ties, high temperature resistance, chemical stability, high polishing potential, low specific
weight, good wear resistance, low plaque affinity, and good bond strength with veneering
composites and luting cements. Compared to other materials, such as zirconia, glass ce-
ramics, and metal alloys, PEEK has a low modulus of elasticity (4 GPa), similar to those of
bone, and is therefore better from a biomechanical point of view, and it absorbs destructive
fracture energy and functional stresses, reducing the forces transferred to the abutment
teeth. PEEK composites reinforced with carbon fibers (CFR-PEEK) have a higher elastic
modulus (18 GPa). PEKK shows better mechanical properties in terms of flexure, tensile,
and compressive strength [2,5–12].

Reinforcing agents may be used in order to absorb and transfer occlusal forces from
the weak polymeric matrix to the stronger filler material [1,13,14]. HPP are expected to
withstand occlusal loads during functions and consequently have to display mechanical
strength, in order to prevent cracks, fractures, plastic deformation, or even failures [12,15].

The thermal properties of dental polymers are essential for predicting their lifetime
performances, developing adequate processing protocols, and monitoring the effects of
ageing [16]. After ageing in different solutions, PEEK had lower solubility and water
absorption values compared to composite resins, hybrid materials, and PMMA-based
materials [17].

Veneering or glazing is challenging due to the stable chemical structure and the
unreactive and inert surface characteristics of HPP [18–21].

Even though PEEK materials are the aesthetic alternative of metallic frameworks, due
to the grayish-brown or pearl-white opaque color, frameworks of fixed restorations have to
be veneered with a composite resin. If the veneer is only partial, a part of the framework
remains visible in the oral cavity. In addition, when using the material for the removable
partial denture frameworks, their compounds, either connectors, or direct retainers, clasps,
attachments, or double crowns, will be exposed in the oral cavity. Therefore, the surface
processing and finishing should be a challenge. Studies are needed in order to determine
optical properties and color stability during artificial ageing and staining.

The discoloration of dental prostheses may be caused by either intrinsic factors, such
as the type of resin matrix, percentage and filler size, composition and polymerization
mode, chemical reactions within the restorative material, age, and restoration processing
mode, or extrinsic factors, such as staining from food colorants, such as caffeine, theo-
bromine, anthocyanidins, tannins, and nicotine, in drinks, beverages, mouth rinses, and
smoking [22–25].

The processes of PEEK discoloration still remain to be elucidated. Color stability sig-
nificantly depends on surface roughness and surface-free energy during surface processing.
Several studies showed that there is a positive correlation between a high surface roughness
and the discoloration of denture resins, explained by the larger contact area [26–28].

The aim of this study was to investigate the long-term effects of the combined actions
of ageing and immersing solutions on the optical properties and the color stability of
PEEK material, related to surface processing (polishing or glazing). The null hypotheses
were: (a) surface processing by glazing has a positive effect on the optical properties,
color stability, and surface roughness, (b) artificial ageing has no effect on the optical
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properties, color stability, and roughness, and (c) immersion in staining beverages leads to
discolorations.

2. Materials and Methods

This study examined the influence of different ageing and staining protocols on optical
properties, color changes, and surface roughness of a reinforced PEEK material (bioHPP,
Bredent, Senden, Germany) The material was composed in 20% ceramic fillers with a size
of 0,3 -0,5 microns [29] (Table 1).

Table 1. The composition of the studied material.

Name of the Material Composition

BioHPP, Bredent, Senden, Germany 20% ceramic fillers in a high-performance polymer

2.1. Specimen Preparation

PEEK blanks were sliced in rectangular-shaped plates with a thickness of 1 mm.
They were polished using silicon carbide papers (600–2000 grit) and the final thickness of
each specimen was checked with a digital caliper. The specimens were finally manually
polished with a low-speed handpiece and diamond polishing paste, Renfert Polish (Renfert,
Hilzingen, Germany), ultrasonically cleaned for 10 min, degreased with 98% ethylic alcohol,
and dried. Specimen surfaces were then divided into 2 groups (n = 40) in terms of the
applied surface treatment method: conventional polishing (p) and glazing after polishing
(g). Resin Glaze Primer (Shofu, Kyoto, Japan) was applied to the PEEK surfaces for 60 s
and allowed to dry, and then two thin layers of glaze, Resin Glaze Liquid (Shofu, Kyoto,
Japan), were applied with a soft brush, in one direction to eliminate air bubbles, and were
polymerized for 180 s each in a light-polymerizing device, SIBARI Polymerizer SR620 (Sirio
Dental, Meldola, Italy), with a wavelength between 400–560 nm. The specimens of each
group were randomly divided into five subgroups (A, B, C, D, E) (n = 8) consisting of
different protocols. The specimens of subgroup A represent the control group (Table 2).

Table 2. Protocols according to each subgroup.

Subgroup Processing Protocol

Ap, Ag Control

Bp, Bg Storing in distilled water for 7 days

Cp, Cg Storing in distilled water + thermal cycling

Dp, Dg Storing in distilled water + thermal cycling + hot coffee staining

Ep, Eg Storing in distilled water + thermal cycling +cold juice bath (5 ◦C)

2.2. Ageing Protocol

Specimens of subgroups B–E were stored in distilled water at 37 ◦C for 7 days. Spec-
imens of subgroups C–E were subjected to 5000 cycles in a 55 ◦C bath and a 5 ◦C bath
filled with distilled water. Each cycle lasted 80 s: 30 s in a 55 ◦C bath, 10 s to transfer the
specimens to the other bath, 30 s in a 5 ◦C bath, and 10 s to transfer the specimens back to
the 55 ◦C bath.

2.3. Staining Protocol

Specimens of subgroups D and E were subject to different staining protocols: thermal
cycling in a hot coffee bath (55 ◦C) and a bath filled with distilled water (37 ◦C) (D) and
thermal cycling in a cold juice bath (5 ◦C) and a bath filled with distilled water (37 ◦C),
respectively (E). Each cycle lasted 80 s: 30 s in a 55 ◦C or 5 ◦C bath, 10 s to transfer the
specimens to the other bath, 30 s in a 37 ◦C bath, and 10 s to transfer the specimens back
to the 55 ◦C or 5 ◦C bath. A total of 720 cycles were used for simulating 2 min per day
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of contact with the respective beverages. The instant coffee solution consisted of 1.8 g of
instant coffee powder (Nescafe Brasero, Nestle, Vevey, Switzerland) per 150 mL of boiling
water. Coca-Cola juice was used as cold, carbonated soft beverage (Coca-Cola Company,
Atlanta, GA, USA).

2.4. Optical Measurements and Color Change Determinations

Translucency and opalescence parameters were determined for all specimens before
and after thermal cycling. Optical properties were calculated under a D65 illuminant, using
a spectrophotometer, Vita Easyshade IV (Vita Zahnfabrick, Bad Säckingen, Germany). The
spectrophotometer was calibrated before each measurement.

Black (b) and white (w) backgrounds were used to assess the measurements, using
a grey card, WhiBal G7 (White Balance Pocket Card). L* is a measure of the lightness–
darkness of material (perfect black has an L* = 0, and perfect white has an L* = 100). The a*
coordinate represents the redness (positive value) or the greenness (negative value), while
the b* coordinate is a measure of the yellowness (positive value) or the blueness (negative
value) [30–32].

TP values were calculated using Equation (1):

TP = [(Lb − Lw)2 + (ab − aw)2 + (bb − bw)2]1/2 (1)

OP values were calculated using Equation (2):

OP = [(ab − aw)2 + (bb − bw)2]1/2 (2)

CR was achieved by Equation (3):

CR = Yb/Yw Y = [(L* + 16)/116]3 × 100 (3)

w and b are color coordinates of the specimens on the white and black backgrounds. In this
calculation, CR = 0 is considered transparent, and CR = 1 is regarded as totally opaque [33].

The color changes (∆E*) were calculated based on the CIE L*a*b*color system. L*
represents lightness (+ bright, and − dark), a* represents the color scale from red (+) to
green (−), and b* represents the color scale from yellow (+) to blue (−).

The total color change value (∆E*) was calculated according to Equation (4), which
represents the color difference before and after immersion:

∆E* = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (4)

Measurements were made for each group.
The National Bureau of Standards (NBS) system was used to quantify the levels of

color change (Table 3). To relate the color change to a clinical standard, the ∆E* values were
converted into NBS units: NBS = ∆E* × 0.92 [34–38].

Table 3. Levels of color change, according to NBS.

NBS Units Color Changes

0.0–0.5 extremely slight change

0.5–1.5 slight change

1.5–3.0 perceivable

3.0–6.0 marked change

6.0–12.0 extremely marked change

12.0 or more change to another color
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2.5. Surface Roughness Measurements

Specimens’ surface roughness was analyzed with a contact 2 µm stylus profilometer,
Surftest SJ-201 (Mitutoyo, Kawasaki, Japan), for each subgroup. Arithmetic average rough-
ness (Ra) and maximum absolute vertical roughness (Rz) measurements were performed
in 5 different directions and all data were recorded. The mean value of the 5 measurements
was calculated for each surface. The sampling length was 0.8 mm, and a force of 0.7 mN
was applied.

2.6. Statistical Analysis

Statistical analyses were performed by means of the IBM SPSS Statistics software
(IBM, New York, NY, USA). The differences among the variables were noted. Average
values and standard deviations (SD) were calculated. A paired t test was used to evaluate
the comparisons between the means. A p value of under 0.05 was considered statistically
significant. Spearman correlation was used to assess monotonic similar or dissimilar rela-
tionships (whether linear or not) between variables. It measures the strength of association
between variables and the direction of the relationship. The significance was related to:
0.00–0.19—“very weak”, 0.20–0.39—“weak”, 0.40–0.59—“moderate”, 0.60–0.79—“strong”,
and 0.80–1.0—“very strong”.

3. Results

L*, a*, b* values were registered on white and black backgrounds, and the calculated
TP, CR and OP values are displayed in Figures 1–3 for each subgroup.

The mean values within groups exhibited significant differences between Ag and Cg
(for TP and OP parameter) and between Ap and Bp (for CR parameter ) (Table 4). This
means that the significant differences of optical properties between hydrated polished
samples and the control group, and thermal cycled glazed samples and the control group,
are registered.

Related to the differences between the polished and glazed samples, p values are
unsignificant for TP (p = 0.120) and CR (p = 0.069), but significant for OP (p = 0.034),
meaning that glazed subgroups are more opalescent than polished ones, both in the control
subgroups, and after ageing and staining.

The correlations are positive and strong between TP and CR (r = 0.733) and CR and
OP (r = 0.624) and very strong between TP and OP (r = 0.939).

According to NBS units, perceivable color changes were calculated for ageing thermal
cycled groups and groups thermal cycled in coffee (Figure 4). Related to surface processing,
between polished and glazed samples, the differences were not significant (p = 0.061).

Figure 1. TP values (mean ± SD) for all tested groups.
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Figure 2. CR values (mean ± SD) for all tested groups.

Figure 3. OP values (mean ± SD) for all tested groups.

Figure 4. Levels of color change for each subgroup, according to NBS. b(black), w(white).
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Table 4. p values between groups, related to optical properties.

Comparison of Optical
Properties Values
between Groups

p Value for TP p Value for CR p Value for OP

Ap–Bp 0.534 0.045 0.891

Ap–Cp 0.328 0.594 0.352

Ap–Dp 0.199 0.018 0.864

Ap–Ep 0.495 0.050 0.153

Ag–Bg 0.323 0.953 0.453

Ag–Cg 0.004 0.433 0.000

Ag–Dg 0.086 0.944 0.212

Ag–Eg 0.427 0.558 0.067

Mean roughness values Ra and Rz with SD values are included in Figures 5 and 6.

Figure 5. Ra values (mean ± SD) for all tested groups.

Figure 6. Rz values (mean ± SD) for all tested groups.

Statistical analyses show significant Ra differences between the control group and the
group aged by thermocycling and stained by thermocycling in coffee. The glazed control
group shows additional significant differences with the group stored in water. Ageing
and thermal cycling in coffee increased the Ra values (Table 5). Between Ra and Rz is a
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very strong positive correlation (r = 0.915). Between the polished and glazed groups, the
roughness differences are significant (p = 0.020).

There is a very strong positive correlation (0.976) between the surface roughness (Ra)
and the color stability (∆E) for the glazed samples and positive strong correlation (0.634)
for the polished samples.

Table 5. p values between groups, related to Ra.

Comparison of Ra Values between Groups p-Value

Ap–Bp 0.409

Ap–Cp 0.005

Ap–Dp 0.014

Ap–Ep 0.205

Ag–Bg 0.005

Ag–Cg 0.000

Ag–Dg 0.000

Ag–Eg 0.454

The first hypothesis, (a) “surface processing by glazing has a positive effect on the
optical properties, color stability, and surface roughness”, is partially accepted; glazing has
a positive significant effect on OP values from the optical properties, and on the surface
roughness, but not on color stability.

The second hypothesis, (b) “artificial ageing has no effect on the optical properties,
color stability, and roughness”, is rejected; it has a negative effect on the TP and OP values
of glazed samples, and a negative effect on color stability and roughness for all samples.

Hypothesis (c), “immersion in staining beverages leads to discolorations”, is partially
accepted; only samples thermal cycled in hot coffee registered perceivable color changes.

4. Discussion

Computer-aided design (CAD) and computer-aided manufacturing (CAM) technology
enables processing PEEK by milling from prepressed blanks and is the most used at present.
Related to the processing technology, studies proved that milled fixed and removable
restorations showed appropriate mechanical properties. The use of different surface
processing and finishing methods may be a subject of interest, in terms of the effect of the
oral environment on the optical properties and color stability [3,12,39,40].

The optical properties of dental materials, such as translucency and opalescence,
are critical factors for aesthetics and to mimic the natural appearance of the restorations.
Translucency (TP) is defined as the difference in color at a uniform thickness measured by
a spectrophotometer device over white and black backings. If the material is completely
opaque, the TP value is zero. As the TP value increases, the translucency of the material
also increases. Opalescence is defined as a scattering of wavelengths of visible light, and
as a result, an object appears bluish and orange/brown in the reflected and transmitted
color [29,41–46].

Translucency can be expressed as the relative amount of light passing through the
unit thickness of a material. With respect to the factors which influence the translucency,
the surface conditions, water content, and illumination were reported. Surface finishing
procedures could modify surface topography and consecutive light scattering. As a result,
surface finishing significantly affects translucency. The mean TP values of 1 mm-thick
bovine enamel and dentine and human enamel and dentine were 14.7, 15.2, 18.7, and 16.4,
respectively. The adjustment of the translucency of aesthetic dental restorative materials
has been investigated, by the influence of filler size, and the difference between the trans-
mitted, reflected colors and the translucency of experimental restorative materials were
determined [47–49]. For zirconia, TP values were registered between 9.10 and 4.83 [50].
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In addition to the effect of filler in dental composite materials, the effects of thermo-
cycling and staining were found to influence TP values [51–56]. Even if PEEK materials
belong to types not used for monolithic restorations, they are an aesthetic alternative to
metallic frameworks. Therefore, their optical properties are important and have to be
related to the optical features of teeth. The mean TP values of the studied samples were
in the interval of 1.25–3.60, which is lower than those reported for natural teeth or other
aesthetic restoration materials.

The CR and TP values of aesthetic dental materials were compared in different studies.
As a result, CR varies inversely to TP (correlation coefficient: r = −0.93). The mean CR
values of human and bovine enamel and dentine were negatively correlated with TP values
(r = −0.93 to −0.78) [47,57,58]. This study shows a positive strong correlation between TP
and CR, which is proof that the optical properties are not similar to those of natural teeth
structures.

The OP value of the enamel–dentin complex was reported to be 4.8, and that of enamel,
7.4 [59,60]. The opalescence of tetragonal zirconia has been reported to be in the range of
1.25 to 2.83 [61]. The OP values of PEEK were registered to be in the range of 0.27–0.75,
which is also lower than those of natural teeth or other aesthetic restoration materials.

OP is strongly positively correlated to CR and very strongly positively correlated to
TP. The glazed samples proved to be more opalescent compared to the polished ones. A
possible reason for this could be due to the glaze layers that increase the yellowness of
the samples [62]. The behavior of the aesthetic dental restorations during their clinical use
is essential and in vitro studies may simulate the oral environment, based on the type of
material and processing method, in order to achieve reliable restorations. For the estimation
of the long-term clinical stability of dental restorative materials, studies conducting thermal
cycling tests to simulate oral environmental variables have been conducted [29,63,64].
Thermal cycling is a useful method to accelerate the artificial ageing of the samples. This is
useful because it can estimate the clinical performance by reproducing the temperature
in the oral environment, which contributes to long-term degradation [65]. The water
ageing method includes standardized thermal variations with baths ranging from 5 to
55 ◦C for several cycles [66]. The thermal ageing protocol was involved in the artificial
ageing simulation with 5000 cycles, simulating a clinical period of 6 months [65]. On the
other hand, the staining cycling period has been equated with an immersion of 2 min/day,
meaning 360 min/6 months, respective to 720 cycles for each sample and each beverage.

As the color of the restoration is also affected by the surface roughness, the roughness
parameters were also taken into consideration in this study. A rough surface reflects less
light than a smooth surface, altering the optical properties. In addition to the optical
properties, increased surface roughness values adversely affect the strength of the materials
and, implicitly, that of the restorations. Different surface roughness parameters are used to
measure surface roughness, recording the highest peaks and lowest valleys of the surface
profile [67–70]. Average roughness (Ra) is the most frequently used. Ra values below
0.2 µm are generally clinically accepted [71–73]. The mean registered Ra values for all
subgroups were below 0.13 µm. Artificial ageing and thermal cycling in hot coffee proved
to increase the roughness values. In this study, the maximum absolute vertical roughness
(Rz) was also registered and a strong positive correlation was found. A possibility for
the increased surface roughness after hot coffee immersion can be due to the absorption
of water and the solubility of the colorants. Coffee contains a high number of molecular-
weight, water-soluble colorants [74].

5. Conclusions

Within the limitations of this laboratory study, the following conclusions can be drawn:

1. The glazing of PEEK has a favorable effect on surface roughness and opalescence,
irrespective of the artificial ageing or staining protocols.

2. Artificial ageing damages the color stability and roughness of PEEK, regardless of
surface processing, and decreases the translucency and opalescence of glazed surfaces.
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3. Immersion in hot coffee leads to perceivable discolorations.
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