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Introduction

The discovery and application of Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) and 
CRISPR-associated (Cas) systems for genetic modifica-
tion have revolutionized biomedical research in just a few 
years. The CRISPR-Cas9 system has proven itself to be a 
robust genome editing tool in mammalian cells and ani-
mal models, and has rapidly shown its great potential in 
diverse fields such as functional genomics, genome-wide 
screening studies, therapeutic gene therapy and agricul-
tural applications. The technology based on CRISPR-Cas9 
has surpassed other nucleases that preceded it, such as the 
zinc finger nucleases (ZFNs) and transcription-activator-
like effector nucleases (TALENs) in terms of simplicity, 
efficiency and amenability to multiplexing, becoming the 
most broadly implemented approach for genome engineer-
ing today.

CRISPR-Cas systems are natural RNA-guided adap-
tive immune systems of bacteria and archaea that provide 
sequence-specific resistance against viruses or other invad-
ing genetic material. This immune-like response has been 
divided into two classes on the basis of the architecture of 
the effector module responsible for target recognition and 
the cleavage of the invading nucleic acid (Makarova et al. 
2015). Class 1 comprises multi-subunit Cas protein effec-
tors and Class 2 consists of a single large effector protein. 
Both Class 1 and 2 use CRISPR RNAs (crRNAs) to guide 
a Cas nuclease component to its target site where it cleaves 
the invading nucleic acids. Due to their simplicity, Class 
2 CRISPR-Cas systems are the most studied and widely 
applied for genome editing.

Abstract  Robust and cost-effective genome editing in a 
diverse array of cells and model organisms is now possible 
thanks to the discovery of the RNA-guided endonucleases 
of the CRISPR-Cas system. The commonly used Cas9 of 
Streptococcus pyogenes shows high levels of activity but, 
depending on the application, has been associated with 
some shortcomings. Firstly, the enzyme has been shown 
to cause mutagenesis at genomic sequences resembling the 
target sequence. Secondly, the stringent requirement for a 
specific motif adjacent to the selected target site can limit 
the target range of this enzyme. Lastly, the physical size of 
Cas9 challenges the efficient delivery of genomic engineer-
ing tools based on this enzyme as viral particles for poten-
tial therapeutic applications. Related and parallel strategies 
have been employed to address these issues. Taking advan-
tage of the wealth of structural information that is becom-
ing available for CRISPR-Cas effector proteins, Cas9 has 
been redesigned by mutagenizing key residues contribut-
ing to activity and target recognition. The protein has also 
been shortened and redesigned into component subunits in 
an attempt to facilitate its efficient delivery. Furthermore, 
the CRISPR-Cas toolbox has been expanded by exploring 
the properties of Cas9 orthologues and other related effec-
tor proteins from diverse bacterial species, some of which 
exhibit different target site specificities and reduced molec-
ular size. It is hoped that the improvements in accuracy, tar-
get range and efficiency of delivery will facilitate the thera-
peutic application of these site-specific nucleases.
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CRISPR‑Cas9 system

Cas9, the nuclease, is active when it forms a complex 
with two naturally occurring RNA species, the tracrRNA 
and the crRNA (Jinek et  al. 2012). The first 20 nucleo-
tides of the crRNA sequence define the specificity of the 
nuclease, which occurs by complementary base pairing 
with the target sequence within genomic DNA. Once acti-
vated, the nuclease generates a double-strand break (DSB) 
at the target site. Cas9 uses two distinct active sites, RuvC 
and HNH, generating site-specific nicks on opposite DNA 
strands (Gasiunas et al. 2012; Jinek et al. 2012). By simply 
specifying the targeting sequence of the crRNA, one can 
direct the CRISPR-Cas9 system to the appropriate genomic 
target site. An additional requirement for Cas9-mediated 
genome cleavage is the presence of a short and conserved 
protospacer adjacent motif (PAM) flanking the genomic 
target site. Functionality in mammalian cells was rapidly 
demonstrated and the native bacterial system was further 
simplified into a two-component system, with the crRNA 
and tracrRNA fused together to form a single-guide RNA 
(sgRNA) (Cho et  al. 2013; Cong et  al. 2013; Jinek et  al. 
2013; Mali et al. 2013a).

CRISPR-Cas9 systems promote genome editing by 
inducing a DSB at a target genomic loci, which is quickly 
acted upon by the cell’s DNA repair machinery. The gen-
erated ends of DNA can be religated by non-homologous 
end joining (NHEJ), a process known to be quite precise 
(Bétermier et al. 2014) but which can also introduce indel 
mutations at the DSB site (Lieber 2010), especially when 
the nucleases are active in the cell for a prolonged period. 
Alternatively, regions of homology flanking the DSB can 
lead to a process known as microhomology mediated end 
joining (MMEJ), also introducing indel mutations at the 
target site (Sinha et  al. 2017). These indel mutations pro-
vide a means of disrupting protein coding or other func-
tional DNA sequences. An additional pathway, homology 
directed repairs (HDR), can be adopted by the cell to repair 
the lesion accurately if homologous DNA sequences are 
present (Greene 2016). The HDR repair pathway enables 
intentional replacement of endogenous genomic sequence 
with information on a homologous donor molecule, pre-
sented to the cell. These templates can be delivered as sin-
gle stranded oligodeoxynucleotide (ssODN) harbouring 
desired nucleotide changes (Cong et al. 2013) or as conven-
tional double-stranded DNA targeting constructs (Chu et al. 
2016), in both cases with regions of homologous sequence 
flanking the sequence change.

Among the different bacteria harbouring CRISPR-Cas 
systems, the human pathogen Streptococcus pyogenes was 
one of the first bacteria in which CRISPR type II loci were 
characterized (Deltcheva et al. 2011). Furthermore, it was 
SpCas9 that was first used to cleave and edit a specific 

region of the genome of a human cell (Cho et  al. 2013; 
Cong et al. 2013; Jinek et al. 2013; Mali et al. 2013a). In 
the following months, many groups applied SpCas9-medi-
ated genome editing successfully across a broad range 
of animal models, including yeast, nematode, fruit fly, 
zebrafish, mouse, pig, rabbit and monkey (reviewed by 
Sander and Joung 2014).

SpCas9 modification: SpCas9 nickase

Despite the simplicity and high levels of mutagenesis 
reported with SpCas9, concerns about specificity were 
quickly raised; it was found that the crRNA could toler-
ate certain mismatches to the DNA target and could cleave 
and thus mutagenize the genome at these mismatched 
sequences—so-called off-targets (Cradick et  al. 2013; Fu 
et  al. 2013). Although the real importance of off-target 
effects is still under study (Iyer et  al. 2015), these speci-
ficity limitations would clearly complicate potential thera-
peutic applications and produce a source of variability in 
biological studies. With the objective of reducing potential 
off-target effects without decreasing efficiencies, Cas9 vari-
ants were developed which had each of the two nuclease 
domains silenced by a point mutation of a key catalytic 
residue (D10A for HNH and H840A for RuvC) (Fig.  1a; 
Table  1) (Cong et  al. 2013; Mali et  al. 2013b; Ran et  al. 
2013). These so-called nickases (nSpCas9) retained the 
specificity of action but only cleaved a single strand of the 
DNA. This approach benefits from the fact that individual 
nicks in the genome are repaired with high fidelity (Dianov 
and Hübscher 2013), while nicking of both DNA strands by 
a pair of opposite orientated Cas9 nickases in close prox-
imity would lead to a DSB that would then be processed 
by the NHEJ or HDR activities of the cell. Although this 
approach clearly reduces the number of possible target sites 
available within the genome, the method has been used 
successfully to facilitate efficient genome engineering with 
minimal off-target effects in mammalian cells and mouse 
zygotes (Cho et al. 2014; Cong et al. 2013; Ran et al. 2013; 
Shen et al. 2014).

Using paired nSpCas9 to induce large deletions, up to 
1 kb deletions have been reported in human cells without 
observing unwanted translocations (Cho et al. 2014). More 
recently, efficient bi-allelic targeting of a silent locus and 
a single nucleotide substitution has been described using 
nSpCas9 in patient derived induced pluripotent stem (iPS) 
cells (Eggenschwiler et  al. 2016) and fibroblasts (Osborn 
et  al. 2015). Also in human iPS cells, Wu et  al. reported 
a GFP insertion by nSpCas9 (Wu et al. 2016). Addressing 
an episomal target, nSpCas9 was used successfully to target 
multiple Hepatitis B virus closed circular DNA in HepG2 
cells without apparent off-target mutations (Sakuma et  al. 
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2016). In two studies performed in vivo in mouse zygotes, 
knock-in manipulations, generating a floxed allele (Lee and 
Lloyd 2014) and a single nucleotide substitution (Mianné 
et  al. 2016), were successfully performed by the injec-
tion of nSpCas9 as mRNA with paired sgRNA guides and 
ssODN donor templates.

Side-by-side analysis of mutation efficiencies using 
either wild-type SpCas9 or a paired nickase have revealed 
conflicting results. An initial study reported higher activ-
ity for the wild-type enzyme than the nickase on a mutant 
eGFP gene (Bialk et al. 2015), although whether this result 
would hold up across many different loci in unclear. In a 
further comparison, oncogenic chromosome transloca-
tions were induced by either wild-type SpCas9 enzymes 
or paired nSpCas9 combinations with lower translocation 
frequency reported for paired nSpCas9 (Ghezraoui et  al. 

2014). In the results, the deletions observed at the translo-
cation junctions generated with nSpCas9 were significantly 
longer than those generated from wild-type Cas9, presum-
ably due to processing of large overhangs generated by the 
nickase enzyme. With the aim to characterize HDR/NHEJ 
ratios, a comparison between single and dual nSpCas9 sys-
tems found that single, dual and tandem (Cas9-D10A plus 
Cas9-H840A) nSpCas9 can induce more HDR than NHEJ 
in HEK293 cells (Miyaoka et  al. 2016). In agreement, 
nCas9 was found to promote HDR and minimize NHEJ in 
a traffic light reporter assessment of DNA repair fates in 
this same cell type (Osborn et  al. 2015). Potentially, this 
might also be due to the staggered overhangs which inevi-
tably occur following the action of paired nickases which 
are considered to be more recombinogenic than the blunt 
ends generated by the wild-type Cas9. Future work must 
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Fig. 1   Position of mutagenized residues in SpCas9. a Crystal struc-
ture of SpCas9 in complex with sgRNA and target DNA (PDB ID 
4OO8). The position of the catalytic residues responsible for the 
HNH (Asp-10) and the RuvC (His-840) nuclease activity, which are 
mutated in the D10A and H840A nickases, are shown in black and 
grey respectively. b Detail of the PAM interaction domain in complex 
with guide RNA and target DNA showing the position of the key resi-
dues mutated in variant Cas9 with altered PAM specificities and how 

they are mutated. c and d Detail of the target interaction domain in 
complex with guide RNA and target DNA showing the position of 
the key residues mutated in SpCas9-HF1 (c) and eSpCas9 (d) and 
how they are mutated. Residue Arg-1060, mutated in eSpCas9 (1.0) 
and (1.1), is not annotated in the crystal structure. The 20 bp target 
DNA is shown in white and the sgRNA is shown in red. (Color figure 
online)
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examine whether these observations hold true across multi-
ple genomic loci and cell types and the analysis of knock-in 
efficiencies might cast light on how the overhangs can be 
designed to enhance HDR repair.

Recently, concerns about the use of paired Cas9 nick-
ase for genome editing has been raised (Richardson et  al. 
2016). Using single nickase ribonucleoprotein electropora-
tion, single nicks induced by either Cas9-D10A or Cas9-
H840A were able to stimulate HDR (~10%) in cells when 
provided with the ssDNA, and also silenced a BFP reporter 
gene, probably by inducing error-prone NHEJ. Similarly, 
single nicks have been shown to promote efficient HDR 
via an alternative HDR pathway (Davis and Maizels 2014), 
with little accompanying mutagenic end joining observed, 
which is of course ideal for genome engineering applica-
tions. It is as yet unclear how universal these phenomena 
are, and it is becoming clear that both the cell type and 
the delivery route of the nuclease or nickase may play an 
important role in determining repair outcome (Kim et  al. 
2014). Certainly, the suggestion that single nicks can 
be recombinogenic undermines the argument that these 
lesions within the genome are accurately repaired, thus 
questioning the validity of the paired nickase approach for 
reducing off-target mutagenesis.

FokI‑fused catalytically inactive Cas9

One of the main differences between ZFNs and TALENs 
endonucleases and CRISPR-Cas based system concerns 
specificity and this is clearly a result of its mechanism of 
action. As previously discussed, Cas9 is a monomeric 
nuclease which acts when coupled to its guiding sgRNA to 
produce a DSB at its target site. In contrast, the nuclease 
domain of ZFNs and TALENs requires dimerization for 
activity and subsequently these dimeric nucleases cleave 
DNA only when two simultaneous, adjacent monomer-
binding events take place. The likelihood of dimeric off-
target binding events is considerably smaller than the like-
lihood of a monomeric off-target binding event and thus 
specificity is markedly improved. With these principles in 
mind, SpCas9 has been adapted to a dimeric nuclease with 
a similar mode of binding, potentially matching the spe-
cificities of ZFNs and TALENs, although similar to the 
double nickase approach, the number of potential genomic 
target sites for these Fok1-dimeric nucleases is reduced. 
SpCas9 was rendered catalytically inert by mutation of 
both nuclease domains, creating what is known as a “dead-
Cas9” (dCas9) which was then fused to the Fok1 nuclease 
domain (fCas9) (Aouida et al. 2015; Guilinger et al. 2014; 
Tsai et  al. 2014). Functionality of this enzyme in achiev-
ing mutagenesis of target sites in human cells was dem-
onstrated and these reports also confirmed the specificity 

of the approach—cleavage activity of fCas9 depends on 
the simultaneous binding of two guide sgRNAs to their 
genomic DNA targets with a defined spacing and orienta-
tion (15–25 base pairs apart). The fCas9 approach was used 
to correct the phenylalanine hydroxylase gene in COS-7 
cells (Pan et  al. 2016). fCas9 has also been shown to be 
suitable for the generation of knockout mice by microinjec-
tion of zygotes with fCas9 mRNA and two sgRNAs spaced 
14–19 bases apart (Hara et  al. 2015). This study reported 
similar genome editing efficiencies than those observed 
using wild-type SpCas9 and nSpCas9. To further simplify 
the production of mutant mice, genetically modified mice 
were obtained using chemically synthesized crRNA and 
tracrRNA plus nSpCas9 or fCas9 by microinjection into 
fertilized eggs (Terao et al. 2016). A side-by-side compari-
son using fCas9, nSpCas9 and wild-type SpCas9 to target 
six human genes showed average indel frequencies of 14.9, 
20.6 and 28.2%, respectively (Guilinger et  al. 2014), sug-
gesting a drop in efficiency with these Cas9 variants.

Engineered Cas9 variants with novel PAM 
specificities

One of the key factors that determine CRISPR-Cas spec-
ificity is the nature of the PAM sequence. In the case of 
SpCas9, a DSB is produced when a NGG sequence 
(canonical PAM) lies immediately 3′ of the target DNA 
sequence. However, it has been reported that alternative 
PAM sequences (3′ NAG and NGA) can, to an extent, be 
recognized by the SpCas9–sgRNA complex (Kleinstiver 
et al. 2015b; Zhang et al. 2014), potentially increasing the 
likelihood of off-target mutagenesis. The requirement for a 
3′ NGG PAM is, however, considered quite stringent and, 
depending on the primary sequence of DNA, this might 
limit the sequences that can be addressed, particularly in 
A/T-rich regions of the genome. One potential solution to 
address targeting range limitations would be to engineer 
Cas9 variants with novel PAM specificities. Kleinstiver 
et al. explored the possibility of rendering SpCas9 sensitive 
to alternative PAM sequences by introducing mutations 
into the PAM-interacting domains of wild-type SpCas9 
(Kleinstiver et  al. 2015b). SpCas9 variants were success-
fully engineered which recognize NGCG (variant VRER, 
D1135V/G1218R/R1335E/T1337R), NGAG (variant 
VQR, D1135V/R1335Q/T1337R) or NGAG (variant EQR, 
D1135E/R1335Q/T1337R) (Fig.  1b; Table  1), previously 
inaccessible sites, and these enzymes showed similar (or 
better) genome-wide specificities compared to wild-type 
SpCas9 in human cells and zebrafish embryos. In addition, 
a D1135E mutation in SpCas9 was found to improve the 
PAM recognition and specificity of SpCas9, decreasing 
off-target mutagenesis with non-canonical NAG and NGA 
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PAMs and/or mismatched target sites. A NAAG specific 
SpCas9 variant (variant QQR1, G1218R/N1286Q/I1331F/
D1332K/R1333Q/R1335Q/T1337R) (Fig. 1b; Table 1) was 
engineered and tested in vitro, revealing a slower cleavage 
activity than that of wild-type SpCas9 (Anders et al. 2016).

DNA‑binding domain fusions

Cas9 has also been fused to other programmable DNA-
binding domains, such as Zinc Finger binding domains and 
TALE domains, designed against sequences lying down-
stream of the Cas9 target site. By tethering the Cas9 in this 
sequence-specific manner, the requirement for the 3′ NGG 
PAM was partially overcome and cleavage of alternative 
PAM sequences was achieved (Bolukbasi et al. 2015). The 
same study combined this tethering idea with Cas9 muta-
tions that compromised the key PAM recognition residues 
(Arg1333 and Arg1335). These attenuated Cas9-program-
mable DNA-binding domain (Cas9-pDBD) nucleases 
showed improved precision as judged by deep sequencing 
of previously characterized off-target sites for 3 genomic 
target sites. An unbiased assessment of off-target mutagen-
esis also revealed no new sites are generated by the Cas9-
pDBD fusions (Bolukbasi et al. 2015).

Engineering enzymes with increased fidelity—
SpCas9‑HF1/eSpCas9

Application of genome engineering in biomedicine is a 
major challenge and for successful clinical use, off-target 
mutagenesis needs to be eliminated on a genome-wide 
scale. One recently explored approach raised the idea of 
redesigning the DNA-binding domain of SpCas9 to reduce 
non-specific DNA contacts, thus increasing specificity. 
Studies of the crystal structure of SpCas9–sgRNA–target 
DNA complex have concluded that the SpCas9–sgRNA 
complex might possess more energy than is needed for 
optimal recognition of its intended target DNA site, which 
might then be responsible for off-target binding activity 
(Kleinstiver et al. 2016; Slaymaker et al. 2016). With this 
hypothesis in mind, 15 SpCas9 variants with residue sub-
stitutions in positions that form hydrogen bonds with the 
DNA backbone were constructed and the variant enzymes 
characterized for on and off-target activity (Kleinstiver et al. 
2016). One of the SpCas9 variants with four residues sub-
stitution showed similar on-target efficiency, with at least 
70% of the activity observed with native SpCas9, but exhib-
ited considerably higher genome-wide specificity (SpCas9-
HF1, N497A/R661A/Q695A/Q926A) (Fig.  1c; Table  1), 
reducing nearly all genome-wide off-target effects to near 
undetectable levels. In addition, this study demonstrated 

that the introduction of substitutions at other non-specific 
DNA contacting residues into the SpCas9-HF1 protein 
(similar to the above mentioned D1135E mutation) could 
further reduce some of the residual off-target activity that 
prevail for certain sgRNAs. In a complementary approach, 
Slaymaker et al. suggested that positively charged residues 
positioned between the HNH, RuvC, and PAM-interact-
ing domains in SpCas9, in the so-called non-target strand 
groove, are involved in stabilizing the non-target strand of 
the target DNA (Slaymaker et  al. 2016). Thus, a way to 
reduce the energy of the non-target strand binding would 
be to neutralize the positive charges positioned in this 
groove. After the characterization of 31 SpCas9 mutants, 
three were identified with similar efficiency than wild-type 
SpCas9 (SpCas9-K855A, eSpCas9 [1.1] [K848A/K1003A/
R1060A] and eSpCas9 [1.0] [K810A/K1003A/R1060A]) 
(Fig.  1d; Table  1). The off-target assessment showed that 
two of the variants, SpCas9-K855A and eSpCas9 (1.1), 
exhibited a genome-wide reduction in off-target cleavage 
without generating any new off-target sites. Both studies 
(Kleinstiver et  al. 2016; Slaymaker et  al. 2016) reinforce 
the idea that mutations designed to weaken interactions 
in the SpCas9–sgRNA–target DNA complex can lead to 
a considerable improvement in specificity. It will be inter-
esting to see whether, when applied in a variety of differ-
ent experimental settings, the activity of these engineered 
enzymes at their designated targets matches that of the 
unmodified enzyme at all genomic target sites.

Modifications in the sgRNA may also increase the target 
specificity of the CRISPR-Cas9 system. A simple strategy 
of truncating the sgRNA sequence at the 5′ end with shorter 
regions of target complementarity has been reported with a 
reduction of off-target mutagenesis at some loci (Fu et al. 
2014). As an alternative approach, the addition of two extra 
guanine nucleotides at the 5′ end of sgRNA has been shown 
as a factor that can affect mutation frequencies both on- 
and off-target (Cho et  al. 2014). This manipulation of the 
sgRNA, advantageous for their efficient transcription by the 
T7 polymerase, was shown to decrease off-target site cleav-
age substantially (Kim et al. 2014; Kim et al. 2015). How-
ever, lower on-target mutagenesis efficiency was reported 
for certain target sites (Cho et al. 2014).

Therapeutic delivery: size constraints

In addition to accuracy, for a realistic chance of applying 
genome editing tools in a therapeutic context, an efficient 
delivery mechanism must be assured. Adeno-associated 
virus (AAV) vectors are one of the most widely used deliv-
ery mechanisms for gene therapy (Naldini 2015). However, 
the cargo size of AAV (around 4.7 kb) is a limitation for 
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packaging the SpCas9 (4.2  kb) and its promoter driven 
sgRNA in an “all in one” vector.

Structural studies of SpCas9 revealed a potential redun-
dancy with the recognition lobe of the protein and thus a 
candidate region for shortening the protein, facilitating its 
therapeutic delivery. A deletion mutant (Δ175–307) was 
generated which did indeed retain nuclease activity, how-
ever overall activity was reduced by half which was a con-
siderable price to pay for a saving of only 133 amino acids 
(Nishimasu et al. 2014). An alternative strategy for reduc-
ing the size of SpCas9 involved the separation of the recog-
nition lobe from the nuclease lobe into two separate vectors. 
When used in combination with the sgRNA, a functional 
CRISPR-Cas9 nuclease was reconstituted, although activ-
ity as measured by indel mutagenesis in mammalian cells 
was reduced compared to the native enzyme (Wright et al. 
2015). A similar split Cas9 approach, which used a dimeri-
zation domain to facilitate enzyme reconstitution, demon-
strated similar functionality but also reported lower rates of 
mutagenesis (Zetsche et al. 2015b). Trans protein splicing 
using the intein–extein system provided a more robust solu-
tion of delivering, effectively, the native enzyme, with the 

two lobes of SpCas9 encoded on separate vectors (Truong 
et al. 2015). Indeed, successful packaging into recombinant 
AAV and delivery into cells in vitro was shown to achieve 
mutagenesis. Interestingly, there was sufficient capacity 
within the two recombinant viruses to include a homology 
template. Thus, delivery of site-specific nucleases together 
with a therapeutic template could be achieved in two mod-
estly sized viral vectors.

Cas9 orthologues

Another route to solving the delivery problem of the 
CRISPR-Cas9 components is to consider alternative 
CRISPR effectors from other bacterial and archeal spe-
cies which are smaller in size (Fig. 2). Indeed, orthologous 
enzymes from other bacteria have been investigated and 
applied in mammalian systems, including the mouse zygote 
(Table 2). Interesting, as explored below, these orthologous 
enzymes show different substrate specificities, frequently 
recognizing a different length of target sequence and a dif-
ferent PAM. Thus, the use of Cas9 orthologues or other 
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Table 2   Characteristics of CRISPR-Cas effector orthologues used for genome editing

Species and effec-
tors

Class and type Size (aa) PAM sequence Target length PBD ID Cell line/organ-
ism targeted

References

Staphylococcus 
aureus Cas9

Class II type II 1,053 NNGRRT 20 to 24 nt 5AXW and 5CZZ 
(Nishimasu 
et al. 2015)

Human cells and 
mice (in vivo 
delivered by 
AAV delivery)

Ran et al. (2015)

Mouse zygotes Zhang et al. (2016)
Mouse (in vivo 

delivered by 
AAV)

Kaminski et al. 
(2016)

Human hemat-
opoietic stem 
and progenitor 
cells

Ye et al. (2016)

HEK293FT cells Nishimasu et al. 
(2015)

Staphylococcus 
aureus Cas9 
Nickase

1,053 NNGRRT 24 nt HEK293T cells Friedland et al. 
(2015)

Staphylococcus 
aureus KKH 
Cas9 variant

1,053 NNNRRT 21 nt U2OS cells Kleinstiver et al. 
(2015a)

Streptococcus 
thermophilus1 
Cas9

Class II type II 1,122 NNAGAAW 19 to 20 nt HEK293FT cells Cong et al. (2013)
HEK293T cells Esvelt et al. (2013)
Mouse zygotes Fujii et al. (2016)
HEK293T cells Muller et al. (2016)

Streptococcus 
thermophilus3 
Cas9

Class II type II 1,393 NGGNG 19 nt HEK293T cells Xu et al. (2015)
HEK293T cells Muller et al. (2016)
HEK293T cells Glemzaite et al. 

(2015)
Neisseria menin-

gitidis Cas9
Class II type II 1,109 NNNNGATT 23, 24 nt Human induced 

pluripotent stem 
and HEK293FT 
cells

Hou et al. (2013)

HEK293T cells Esvelt et al. (2013)
HEK293T cells Lee et al. (2016)

Francisella novi-
cida Cas9

Class II type II 1,629 NGG 22 nt 5B2O and 5B2P 
(Hirano et al. 
2016a)

Mice zygotes Hirano et al. 
(2016a)

RHA Francisella 
novicida Cas9 
variant

Class II type II 1632 YG 22 nt 5B2Q (Hirano 
et al. 2016a)

Mice zygotes Hirano et al. 
(2016a)

Treponema denti-
cola Cas9

Class II type II 1,423 NAAAAN 20 nt HEK293T cells Esvelt et al. (2013)

Acidaminococcus 
Cas12a (Cpf1)

Class II type V 1,308-1,310 TTTV 23, 24 nt 5KK5 (Gao et al. 
2016)

5B43 (Yamano 
et al. 2016)

Human 
HEK293FT 
cells

Zetsche et al. 
(2015a)

N2a mouse neuro-
blastoma cells

Toth et al. (2016)

Mice zygotes Watkins-Chow 
et al. (2017)

HEK293T cells Kim et al. (2016a)
HEK293T cells Kim et al. (2017b)
Mice zygotes Kim et al. (2016b)
Mice zygotes Hur et al. (2016)
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RNA-guided nucleases may not just provide a solution to 
the size limitation of using SpCas9 but might also widen 
the range of potential sequences that can be targeted.

To explore Cas9 orthologues, the sequence databases 
of bacterial genome sequences can be mined for Cas9-like 
enzymes. Ran et al., used this approach and screened over 
600 Cas9 sequences and discovered that they cluster into 
groups of either approximately 1350 amino acids (of which 
SpCas9 is a member) or a significant shorter 1000 amino 
acid group (Ran et al. 2015). The following section reviews 
orthologues with which appreciable activity has been dem-
onstrated in mammalian systems.

Staphylococcus aureus Cas9

Staphylococcus aureus (SaCas9) was found to have simi-
lar levels of gene targeting compared to SpCas9 (Ran et al. 
2015). This enzyme targets sequences between 21 and 
24 bp in length and requires a 3′ NNGRRT PAMs sequence. 
The shorter size of SaCas9 was compatible with packaging 
into an all-in-one AAV vector, which was shown to mediate 
efficient editing in vivo when delivered to mice (Kaminski 
et al. 2016; Ran et al. 2015). Further highlighting the thera-
peutic potential of SaCas9, efficient ex vivo genome edit-
ing of hematopoietic stem and progenitor cells was demon-
strated by AAV delivery (Ye et al. 2016). SaCas9 has also 
revealed good levels of specificity with some improvement 
on SpCas9 in a side-by-side comparison (Friedland et  al. 
2015; Ran et  al. 2015). In attempts to further restrict off-
target mutagenesis, the nickase approach has also been 

applied to SaCas9, and interestingly the SaCas9 nickase, 
along with two sgRNA expression cassettes could be pack-
aged into a single AAV vector (Friedland et al. 2015).

Whether the apparent increase in specificity reported 
for SaCas9 relates to the requirement for a longer PAM 
sequence remains to be explored. Clearly, the longer PAM 
sequence presents some disadvantages as the range of puta-
tive target sites would be reduced in comparison with the 
SpCas9 which recognizes a more simple and thus com-
monly occurring sequence. Perhaps to address this limi-
tation, the PAM specificities of SaCas9 have also been 
manipulated by mutagenesis of the SaCas9 and a vari-
ant recognizing a NNNRRT PAM motif (variant E782K/
N968K/R1015H, KKH SaCas9) has been reported which 
shows similar efficiency and specificity as the wild-type 
SaCas9 (Kleinstiver et  al. 2015a). Although SaCas9 is a 
smaller enzyme than SpCas9 and thus may be more ame-
nable for therapeutic delivery as a single virus, structural 
analysis of the SaCas9 has also allowed the design of a 
split-enzyme, which could potentially allow further effi-
ciency improvements for the delivery of this nuclease 
(Nishimasu et al. 2015).

SaCas9 has also been applied to the fertilized zygote 
for generating genetically modified mice. Both single and 
multiplex gene disruptions were demonstrated and the gen-
eration of a knock-in modification (Flag tag insertion) was 
efficiently achieved (Zhang et  al. 2016). Similar efficien-
cies between SaCas9 and SpCas9 were seen in a side-by-
side comparison at two genomic targets with no difference 
in mosaicism observed, suggesting similar kinetics and 

Table 2   (continued)

Species and effec-
tors

Class and type Size (aa) PAM sequence Target length PBD ID Cell line/organ-
ism targeted

References

Lachnospiraceae 
Cas12a (Cpf1)

Class II type V 1,228 TTTV 23, 24 nt 5ID6 (Dong et al. 
2016)

Human 
HEK293FT 
cells

Zetsche et al. 
(2015a)

N2a mouse neuro-
blastoma cells

Toth et al. (2016)

HEK293T cells Kim et al. (2016a)
HEK293T cells Kim et al. (2017b)
Mice zygotes Kim et al. (2016b)

Leptotrichia 
buccalis Cas13a 
(C2c2)

class II type VI 1,159 N/A N/A Hela cell 
(extracts)

East-Seletsky et al. 
(2016)

Leptotrichia 
shahii Cas13a 
(C2c2)

Class II type VI 1,389 N/A N/A 5WTJ and 5WTK 
(Liu et al. 2017)

E. Coli Abudayyeh et al. 
(2016)

Campylobacter 
jejuni Cas9

Class II type II 984 NNNNACAC 
or NNNN-
RYAC

22 nt HEK293T cells
Mouse muscle 

and retinal pig-
ment epithelium 
cells

Kim et al. (2017a)

N/A—Cas13a enzymes are yet to be applied in mammalian cells and as such, the functional target length and characteristics remains unclear
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activity for both SaCas9 and SpCas9. Mosaicism is a phe-
nomenon described already with SpCas9 (Yen et al. 2014), 
whereby nuclease activity persists following the first round 
of cell division leading to allele complexity.

Streptococcus thermophilus Cas9

Streptococcus thermophilus played a central role in the 
early history of CRISPR-Cas. It was in this bacterium that 
CRISPR-Cas9 was first recognized as a prokaryote immune 
system (Barrangou et  al. 2007). Modified for mamma-
lian expression, Streptococcus thermophilus LMD-9 Cas9 
encoded by the CRISPR1 locus (St1Cas9) was found to 
show cleavage activity in mammalian cells (Cong et  al. 
2013) and was also selected on the basis of showing robust 
rates of homologous recombination, when compared 
against two other orthologues from Neisseria meningitides, 
Treponema denticola and SpCas9 (Esvelt et  al. 2013). A 
direct comparison of St1Cas9 against SpCas9 and SaCas9 
in two human loci, however, concluded a lower level of 
activity (Ran et  al. 2015). Interestingly, St1Cas9 was 
found to require a more complex PAM sequences for activ-
ity (Table  2) and the position of cleavage with respect to 
the PAM was found to be far more heterogeneous than for 
other orthologues (Ran et al. 2015). St1Cas9 has also been 
successfully applied in the mouse zygote by microinjection 
for the generation of genetically modified mice harbouring 
both indel mutations as well as knock-in alleles (Fujii et al. 
2016).

The related Cas9 from the CRISPR3 locus (St3Cas9) 
was also found to be active in human cells (Xu et al. 2015), 
and a side-by-side comparison with St1Cas9, St3Cas9 and 
SpCas9 revealed robust cleavage efficiencies across two 
genomic loci (Muller et al. 2016). This study also examined 
off-target mutagenesis and found the two StCas9s to be 
more accurate than SpCas9. The necessity for more com-
plex PAM sites (NNAGAAW and NGGNG for St1Cas9 
and St3Cas9, respectively) potentially contributes to this 
observation, similar to the observations with SaCas9. 
Direct delivery of St3Cas9 protein plus crRNA-tracrRNA 
complex into HEK293T cells was shown to be a reliable 
strategy for targeting human cells in  vitro without the 
necessity for cloning procedures (Glemzaite et al. 2015).

Neisseria meningitidis Cas9 (NmCas9)

The Cas9 of Neisseria meningitidis (NmCas9) has been 
explored as a potential alternative to StCas9, being smaller 
in length than SpCas9 and with a stringent PAM sequence 
recognition (5′-NNNNGATT-3′) (Table  2) (Zhang et  al. 
2013; Fonfara et  al. 2014). NmCas9 became part of the 
Cas9 toolbox after studies demonstrated the ability of 
NmCas9 to induce homologous recombination in human 

cells (Esvelt et  al. 2013; Hou et  al. 2013). NmCas9 was 
found to recognize a 24 nt protospacer, which, together 
with its more complex PAM, might imply a high level of 
specificity. Indeed side-by-side comparisons with SpCas9 
in human cells revealed lower off-target mutagenesis lev-
els, but also levels of on-target activity were reduced (Lee 
et  al. 2016). Recently an ‘‘off-switch’’ system was found 
for NmCas9, which provides a means for invading bacterio-
phages to escape their bacterial host’s defence machinery 
(Pawluk et al. 2016). Three different proteins bind directly 
to the nuclease, preventing recognition of its target site and 
thus inhibiting DNA cleavage. These proteins were found 
to be active against NmCas9 in human cells, thus providing 
a method of tempering the activity of the enzyme.

Francisella novicida Cas9 (FnCas9)

The Cas9 nuclease from Francisella novicida (FnCas9) 
is one of the largest Cas9 orthologues (1629 amino acids) 
and demonstrates an interesting feature; In addition to its 
conventional function as a nuclease in combination with 
crRNA:tracrRNA, FnCas9 can regulate target mRNA by 
association with a small CRISPR/Cas-associated RNA 
(scaRNA):tracrRNA complex (Sampson et al. 2013). This 
scaRNA, encoded within the Cas cluster, mediates its abro-
gation of target transcript by a mechanism which is inde-
pendent of the RuvC and NHN endonuclease domains. The 
presence of scaRNA-like sequences in Cas gene clusters 
of several species suggests this non-canonical pathway 
for Cas9 could be more widespread. Investigations of the 
FnCas9’s nuclease function with substrates in vitro revealed 
specificity for an NGG PAM sequence (Hirano et  al. 
2016a). Interestingly, when applied in mammalian cells, 
no evidence of indel formation could be found. However, 
microinjection of mouse zygotes with FnCas9 as a ribo-
nucleoprotein complex, led to highly efficient site-specific 
indel formation (Hirano et  al. 2016a). Similar to previous 
work with SpCas9, structural information has facilitated its 
mutagenesis to generate a functional variant FnCas9 that 
recognizes an alternative 5′-YG-3′ PAM (E1369R/E1449H/
R1556A substitutions, RHA FnCas9 variant), thus expand-
ing the target space for this nuclease (Hirano et al. 2016a).

Campylobacter jejuni Cas9 (CjCas9)

A new Cas9 orthologue derived from Campylobacter jejuni 
(CjCas9) was used successfully for genome editing in 
mammalian cells in  vitro and in  vivo (Kim et  al. 2017a). 
Being one of the smallest Cas9 orthologues (984 amino 
acids, Fig. 2), a GFP-tagged CjCas9 was able to be pack-
aged together with a expression cassette for its sgRNA in 
a single AAV vector and administrated to mice. Efficient 
indel mutagenesis was observed at the target loci in both 
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muscle and the retina, suggesting potential therapeutic 
application of this Cas9 orthologue could be feasible. Kim 
et  al. (2017a) also determined that CjCas9 recognizes a 
22-nucleotide target sequence upstream of the PAM motifs 
5′-NNNNACAC-3′ or 5′-NNNNRYAC-3′. A direct com-
parison of cutting efficiencies and off-target mutagenesis 
revealed that CjCas9 showed similar cutting efficiencies 
to SpCas9 and SaCas9, but CjCas9 was found to be more 
specific than SpCas9 and SaCas9 at a number of different 
target sites.

The study of the CjCas9 crystal structure in complex 
with an sgRNA and its target DNA complex reveals new 
insights into the function of this Cas9 orthologue. CjCas9, 
unlike other cas9 orthologues, bound both the target and 
non-target DNA strand (Yamada et al. 2017). Furthermore, 
the structure of the crRNA:tracrRNA was found to be 
substantially different to other Cas9 orthologues with the 
tracrRNA containing a triple-helix structure. These obser-
vations reveal once again the mechanistic diversity of the 
CRISPR-Cas9 systems.

Cas12a (Cpf1)

The discovery of an additional class 2 CRISPR effec-
tor, originally described as Cpf1 and now reclassified as 
Cas12a (Shmakov et  al. 2017), was received with great 
interest, mainly because the protein is structurally distinct 
from Cas9 effectors and possesses new interesting traits. 
Firstly, Cas12a binds to its target sequence by its associa-
tion with a single RNA species, without the requirement 
of an additional tracrRNA (Zetsche et  al. 2015a). Sec-
ondly, the Cas12a-crRNA complex recognizes a T-rich 
PAM sequence, lying 5′ of its target sequence (Fonfara 
et  al. 2016; Yamano et  al. 2016; Zetsche et  al. 2015a), in 
contrast to the G-rich PAM sequence of the Cas9 systems 
that lies 3′ of its target. The T-rich PAM is of note as it 
might facilitate genome engineering in organisms with par-
ticularly AT-rich genomes. The PAM motif was initially 
reported as being TTTN; however, recent more in depth 
investigations in mammalian cells have revealed that tar-
get sequences with a TTTT PAM motif are inefficiently 
cleaved and this study redefined the Cas12a PAM as being 
TTTV (Kim et  al. 2017b). Thirdly, Cas12a cleaves DNA 
via a staggered DSB, leaving a 4 or 5-nt 5′ overhang (Fon-
fara et  al. 2016; Zetsche et  al. 2015a), an attribute which 
might facilitate the introduction of specific sequences 
into the genome. Moreover, the staggered cleavage site 
of Cas12a from Francisella novicida U112 occurs after 
the 18th base on the non-targeted (+) strand and after the 
23rd base on the targeted (–) strand, which is quite distant 
from the PAM sequence (Zetsche et al. 2015a). This distal 
cleavage, far away from both the seed region and the PAM, 

might preserve the target sequence for subsequent rounds 
of cleavage. This might be useful for encouraging repair via 
HDR for the targeted integration of exogenous DNA, since 
indel mutations caused by the dominant NHEJ repair path-
way would be less likely to destroy the target site. Cas12a, 
orthologues of which have been identified in several bacte-
rial and archeal genomes (Makarova et al. 2015), contains 
only a RuvC-like endonuclease domain and lacks the HNH 
domain present in Cas9 proteins. A putative novel nuclease 
domain, Nuc domain, has been ascertained from the crystal 
structure, which provides the 2nd nuclease activity respon-
sible for cleaving the target strand (Yamano et  al. 2016). 
Furthermore, a ribonuclease activity has been ascribed to 
this enzyme and has a role in processing of the precursor 
CRISPR RNA (Fonfara et al. 2016).

Screening of Cas12a-family enzymes from diverse 
bacteria identified two candidates from Acidaminococcus 
sp. BV3L6 (AsCas12a) and Lachnospiraceae bacterium 
ND2006 (LbCas12a) that are capable of mediating genome 
editing in human cells (Kim et  al. 2016a; Zetsche et  al. 
2015a). Side-by-side comparisons of activity by measur-
ing indel formation (Kim et  al. 2016a) or assessing rates 
of homology directed repair efficiencies (Toth et al. 2016) 
revealed, in general, a lower activity for Cas12a ortho-
logues when compared to SpCas9. However, the genome-
wide analysis of cleavage sites in  vitro for LbCas12a 
and AsCas12a showed that fewer off-target events were 
reported in comparison with Cas9 nucleases. Indeed, crys-
tal structures of Cas12a-crRNA complexed with its DNA 
target reveal a unique mechanism for target recognition that 
is quite distinct from that reported for Cas9, which perhaps 
contributes to the increased specificity (Gao et  al. 2016). 
However, it should be determined whether this increased 
specificity simply results from the smaller number of 
TTTV sites, the preferred PAM motif, in the mammalian 
genome or from the Cas12a system per se.

The potential of Cas12a for targeted mutagenesis in 
whole organisms was demonstrated by successful produc-
tion of mutant mice by delivering AsCas12a and LbCas12a 
to the zygote by electroporation (Hur et  al. 2016) and 
microinjection (Kim et  al. 2016b; Watkins-Chow et  al. 
2017). Investigations of off-target mutagenesis by deep 
sequencing in the resulting mutant mice confirmed the high 
fidelity of Cas12a, with no mutations found at homologous 
sites (Hur et al. 2016; Kim et al. 2016b). On the other hand, 
a high level of mosaicism was observed in live pups after 
AsCas12a microinjection (Watkins-Chow et al. 2017).

Cas13a (C2C2)

Further class 2 type CRISPR effectors have been mined 
from bacterial sequence databases using sophisticated 
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computational pipelines, using the Cas1 sequence as an 
anchor to identify candidate loci (Shmakov et  al. 2015). 
Using this strategy, two RuvC containing proteins distantly 
related to Cas12a (Cpf1), C2c1, now known as Cas12b, 
and C2c3, now known as Cas12c, were identified and 
were found to be present in diverse bacterial genomes. An 
additional protein family, originally named C2c2 and now 
classified as Cas13a (Shmakov et  al. 2017), was identi-
fied (Shmakov et al. 2015) which, as confirmed by recent 
structural studies (Liu et  al. 2017), contains 2 HEPN 
RNase domains, suggesting its target molecule could be an 
RNA. Expression of both Cas13a from Leptotrichia shahii 
(LsCas13a) and a crRNA against a target within the MS2 
ssRNA bacteriophage in E. coli protected the bacteria from 
infection (Abudayyeh et al. 2016), confirming the minimal 
requirements for an operational RNA-guided site-specific 
RNAse.

Cas13a is directed to its target RNA by a single crRNA, 
similar to Cas12a and has preference for sequence with C, 
A and U immediately flanking the 3′ end of the protospacer. 
For activity in vitro, the crRNA requires target homology 
and is also dependent upon the secondary structure of the 
crRNA direct repeat stem. Surprisingly, in addition to the 
cleavage of the target RNA, it was found that LsCas13a, 
once activated, gains a non-specific RNAse activity and 
thus cleaves collateral RNA, ultimately leading to pro-
grammed cell death or senescence.

Although not yet applied in mammalian cells, func-
tionality of the system was demonstrated for Leptotri-
chia buccalis Cas13a (LbCas13a) in Hela cell extracts 
(East-Seletsky et  al. 2016). In this study, the non-specific 
RNAse activity of the activated enzyme was used to sig-
nal the presence of a specific target RNA in a population 
that activated the enzyme. Thus, although the promiscuous 
cleavage of RNAs might limit its use as a specific tool for 
ablating specific RNAs, this effector looks set to become a 
useful biotechnological tool for detecting specific RNAs, as 
has recently been demonstrated (Gootenberg et al. 2017). A 
greater understanding of how these RNAse activities work 
in consort to achieve site-specific cleavage of target RNAs 
may facilitate the application of this enzyme class as an 
experimental tool to ablate specific RNA transcripts in the 
absence of genomic cleavage. In addition, a catalytically 
inert Cas13a could be a useful device for the localization 
and imaging of RNA populations within the cell.

Summary

In the few years since the discovery of SpCas9 and its first 
application in mammalian cells, we now have a wealth of 
enzymes with a range of activities and specificities. Mining 
the bacterial sequence databases has been lucrative and has 

provided a variety of novel enzymes. Where nature cannot 
provide the diversity of function needed, structural stud-
ies driving mutagenesis of the enzymes provides a means 
of tailoring specific characteristics to increase fidelity or 
broaden target range. It is hoped that the diversity of func-
tions, which all these orthologues and variants provide, 
will facilitate therapeutic applications of these site-specific 
nucleases. As well as nucleases, these molecules can serve 
as effective DNA-binding domains, tethering machinery 
for visualizing specific loci or modulating gene expression 
(Dominguez et  al. 2016). Indeed, engineered orthologues 
have already been used for both gene activation (Nishi-
masu et al. 2015) and for fluorescent labelling of genomic 
loci (Chen et al. 2016; Ma et al. 2015). The use of different 
deactivated CRISPR effectors recognizing varied sequences 
on DNA and even RNA will open up new possibilities for 
interrogating the genome and for future therapeutics.
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