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ABSTRACT

Preserved melanin pigments have been discovered in fossilised integumentary appendages of several amniote lineages
(fishes, frogs, snakes, marine reptiles, non-avialan dinosaurs, birds, and mammals) excavated from lagerstätten across the
globe. Melanisation is a leading factor in organic integument preservation in these fossils. Melanin in extant vertebrates is
typically stored in rod- to sphere-shaped, lysosome-derived, membrane-bound vesicles called melanosomes. Black, dark
brown, and grey colours are produced by eumelanin, and reddish-brown colours are produced by phaeomelanin. Specific
morphotypes and nanostructural arrangements of melanosomes and their relation to the keratin matrix in integumentary
appendages create the so-called ’structural colours’. Reconstruction of colour patterns in ancient animals has opened
an exciting new avenue for studying their life, behaviour and ecology. Modern relationships between the shape,
arrangement, and size of avian melanosomes, melanin chemistry, and feather colour have been applied to reconstruct
the hues and colour patterns of isolated feathers and plumages of the dinosaurs Anchiornis, Sinosauropteryx, and Microraptor
in seminal papers that initiated the field of palaeocolour reconstruction. Since then, further research has identified
countershading camouflage patterns, and informed subsequent predictions on the ecology and behaviour of these extinct
animals. However, palaeocolour reconstruction remains a nascent field, and current approaches have considerable
potential for further refinement, standardisation, and expansion. This includes detailed study of non-melanic pigments
that might be preserved in fossilised integuments. A common issue among existing palaeocolour studies is the lack of
contextualisation of different lines of evidence and the wide variety of techniques currently employed. To that end, this
review focused on fossil amniotes: (i) produces an overarching framework that appropriately reconstructs palaeocolour
by accounting for the chemical signatures of various pigments, morphology and local arrangement of pigment-bearing
vesicles, pigment concentration, macroscopic colour patterns, and taphonomy; (ii) provides background context for
the evolution of colour-producing mechanisms; and (iii) encourages future efforts in palaeocolour reconstructions
particularly of less-studied groups such as non-dinosaur archosaurs and non-archosaur amniotes.
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I. INTRODUCTION

Colours and their macroscopic patterns are critical to
understanding the life and behaviour of an animal (Burley,
Krantzberg & Radman, 1982; Butcher & Rohwer, 1989).
Animals routinely employ colouration for aposematism,
crypsis, sociosexual selection, and physiological purposes
(Cuthill et al., 2017). The age, sex, and species of extant
animals are often identified based on colour patterns (Peter-
son, 1999). Integumentary colour-producing mechanisms
contribute towards functions such as thermoregulation,
resistance of the integument to mechanical abrasion, and
protection from stressful environmental conditions such
as ultraviolet (UV) radiation, humidity, pathogens, and
long-term climate change (Roulin, 2014). Given the diverse
range of biological information provided by colouration
it is important that descriptions of fossil taxa include
palaeocolour reconstructions. For the purposes of this
review, we distinguish between colour and colour patterns,
with the former representing a general hue and the latter
being a complex macroscale feature created by localised
concentrations of pigments and structural mechanisms.

The colour palette of extant animals is fashioned from
complex permutations and combinations of pigments (e.g.
carotenoids, porphyrins, psittacofulvins and melanins) and
structural components (e.g. keratin and collagen) (Fig. 1A).
Naturally occurring pigment molecules (i.e. biochromes)
produce colour by preferentially absorbing certain wave-
lengths of light while permitting others to be reflected (Hill
& McGraw, 2006b) (Fig. 1B). It is these wavelengths of
reflected light that impart the observable colour, whereas
’structural colours’ are produced when light is scattered at
the interfaces of layered nanoscale arrangements of reflective
tissue constituents (e.g. arrays of different morphotypes
of melanosomes in keratinous matrices of vertebrate
integumentary structures, chitins in arthropods) that vary
in refractive indices (Prum, 1999; Hill & McGraw, 2006b)
(Fig. 1C, D). Additionally, colour changes through rapid
spatial dispersal of pigment molecules, pigment-containing

vesicles, and reflective structures in ectothermic animals
(e.g. crustaceans, cephalopods, fishes, amphibians, and
non-avialan/non-dinosaurian reptiles) are controlled by
neuroendocrine stimulation of cellular assemblies. These
cellular assemblies termed chromatophores are categorised
into classes according to the hues imparted (xanthophores:
yellow; erythrophores: red; melanophores: black/brown;
leucophores: white; cyanophores: blue; iridophores: reflec-
tive/iridescent) with the process causing these rapid colour
changes termed metachrosis (Boyer & Swierk, 2017).

Melanin is of particular interest in fossilised organisms
due to its resilience to diagenesis (i.e. thermal stability) (Glass
et al., 2012, 2013; Colleary et al., 2015) since it is argued
that long-term thermal stability through diagenesis is the
ultimate factor conferring organic fossilisation potential to
biomolecules (Parry et al., 2018; Saitta, Kaye & Vinther,
2018d ). The earliest known preserved fossil melanin dates
to the late Carboniferous, ∼307 million years ago (Gabbott
et al., 2016). The ability of melanin and melanin-bearing
membrane-bound vesicles called melanosomes to be
preserved within fossilised integumentary structures such
as skin and feathers in non-avialan dinosaurs, early birds,
non-dinosaurian reptiles and mammals has brought forth
a unique opportunity to infer the actual colour patterns of
these extinct animals (Vinther et al., 2008; Lindgren et al.,
2014, 2015, 2018; Colleary et al., 2015; Vinther, 2015;
Manning et al., 2019; Yang et al., 2019), enabling a range of
novel hypotheses to be articulated (e.g. predator–prey inter-
actions, aposematism, crypsis, sexual selection, behaviour,
and habitat choice) (Vinther et al., 2008, 2016; Lindgren
et al., 2010; Zhang et al., 2010; Li et al., 2012; Smithwick
et al., 2017; Saitta et al., 2018c). Thus far, different studies
have used different methods to infer palaeocolour and there
is no overarching framework to maximise the repeatability
and accuracy of reconstructions. Here, we review the
different procedures currently available and propose a
holistic protocol for palaeocolour reconstruction focussed on
amniotes that accounts for taphonomic loss of information,
pigment types and chemistry, morphology and arrangement
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Fig. 1. (A) Different colour-production mechanisms in birds and the ranges of colours produced. (B–D) Optical mechanisms of
colour production in bird feathers: pigmentary (B), iridescent structural (C), and non-iridescent structural (D). (E) Approximate
percentage contribution of different colour-producing mechanisms to the avian plumage gamut based on data in Stoddard & Prum
(2008, 2011). (F) Contribution of different integumentary structures to the production of colours based on data in Hill & McGraw
(2006b). Artwork in A created using reference photographs from Wikipedia licenced under the Creative Commons attribution 4.0.
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Fig. 2. Simplified cladogram showing the distribution of different types of colour-producing pigments in vertebrates: fishes (Courts,
1960; Johnson & Fuller, 2014; Sefc, Brown & Clotfelter, 2014; Kottler, Künstner & Schartl, 2015; Cal et al., 2017), amphibians
(Obika & Negishi, 1972; Czeczuga, 1980; Thorsteinsdottir & Frost, 1986; Ichikawa, Ohtani & Miura, 1998; Thibaudeau & Altig,
2012), mammals (Ito & Wakamatsu, 2003; Galván et al., 2016b), testudines (Gopalakrishnakone, 1986; Roulin, Mafli & Wakamatsu,
2013; Steffen et al., 2015; Brejcha & Kleisner, 2016), lizards (Taylor & Hadley, 1970; Fitze et al., 2009; Cuervo, Belliure & Negro,
2016; Boyer & Swierk, 2017; Megía-Palma, Jorge & Reguera, 2018), snakes (Blair & Graham, 1954; Kikuchi, Seymoure & Pfennig,
2014), crocodilians (Alibardi, 2011), extinct archosaurs (Li et al., 2014) and birds (Stoddard & Prum, 2011; Cuthill et al., 2017).
Dotted lines indicate stem groups; bold lines indicate crown groups. Note that this cladogram shows the distribution of colour systems
confirmed by prior published research but does not comment on ancestral states or the mode of evolution of colour-producing
mechanisms. Iridescence is not included on this cladogram because the mechanisms producing iridescence differ between birds and
non-avian vertebrates. Silhouettes for cyprinid fish (illustration by Ellen Edmonson, vectorised by Timothy J. Bartley), batrachid
(illustration by Nobu Tamura, vectorised by T. Michael Keesey), rodent (vectorised by Michael B.H.), canid (illustration by Sam
Fraser-Smith, vectorised by T. Michael Keesey), elephant (T. Michael Keesey), lizard (illustration by Nobu Tamura, vectorised
by T. Michael Keesey), Psittacosaurus (vectorised by Pete Bucholz), Tyrannosaurus rex (vectorised by Scott Hartman), Velociraptor
(vectorised by Emily Willoughby), and troodontid dinosaur (vectorised by Emily Willoughby) were downloaded from www.phylopic
.org. Remaining silhouettes, free of copyright, were also downloaded from www.phylopic.org. All silhouettes used are subject to CC
Public Domain Dedication 1.0 licence.

of pigment-bearing vesicles, products of pigment diagenesis,
and preserved macroscopic colour patterns.

II. PIGMENTARY MECHANISMS OF COLOUR
PRODUCTION IN AMNIOTES

Much work on fossil colour reconstruction has focused on
filamentous integuments of non-avialan dinosaurs, birds and
closely allied species (Vinther et al., 2008; Lindgren et al.,
2010; Li et al., 2012; Vinther, 2015). Extant birds, the only
living dinosaurs, and mammals can act as a useful extant

phylogenetic bracket (Witmer, 1995) for studying pigmenta-
tion and colours in fossilised filamentous integuments, a key
adaptation in the evolution of bird-line archosaurs parallel
to mammalian hair (Fig. 2). The rationale for this choice is:
(i) the relatively close morphological, developmental, and
molecular similarities of their various epidermal integumen-
tary outgrowths (e.g. scales, filaments, feathers and hairs)
(Dhouailly, 2009; Dhouailly et al., 2019) and (ii) their shared
pigmentary and structural colour-producing mechanisms
(Hofreiter & Schöneberg, 2010; Schartl et al., 2016).

The vast repertoire of colours and patterns in vertebrates
are generated by 378 known genetic loci (Montoliu, Oetting
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& Bennett, 2011). Pigmentation in the pelage of several
mammals including mice (Robbins et al., 1993), rabbits
(Fontanesi et al., 2006), sheep (Våge et al., 1999), dogs
(Newton et al., 2000), big cats (Eizirik et al., 2003), cows
(Klungland et al., 1995), horses (Marklund et al., 1996) and
humans (Ito & Wakamatsu, 2003) have been analysed thus
far, and there is consensus that mammalian integuments are
dominated by two variants of melanin pigments: eumelanin
and phaeomelanin (Ito & Wakamatsu, 2003). Two proteins,
melanocortin 1 receptor (MC1R) and agouti signalling
protein (ASIP), play critical roles in vertebrates in deter-
mining which variant of melanin is expressed within hair
and in regulating the spatial distribution of these pigments,
resulting in complex patterning (Hofreiter & Schöneberg,
2010). Polymorphism in the colouration of mammalian
pelage in the wild and in domesticated species also occurs
due to mutations in the MC1R loci (Switonski, Mankowska
& Salamon, 2013). Loss-of-function mutations usually lead
to phaeomelanic, paler, reddish/yellowish colours (Ha et al.,
2003; Rees, 2003), whereas gain-of-function mutations
lead to eumelanic black/darker-brown colours (Kijas et al.,
1998; Våge et al., 1999). No other form of pigmentation
in mammalian skin or hair is currently known, except
the carotenoid pigmentation in the skin and hairs of bats
(Bolívar-Cimé, Clarke & Racey, 2012; Galván et al., 2016b)
and the porphyrin-mediated UV fluorescence in the pelage
of New World flying squirrels (Glaucomys spp.) (Kohler et al.,
2019). Blue structural colours in mammals have been studied
in the rump and facial skin of mandrills (Mandrillus sphinx),
the scrotum of the vervet monkey (Cercopithecus aethiops),
mouse opossum (Marmosa mexicana) and woolly opossum
(Caluromys derbianus) and are produced by light scattering in
dermal collagen arrays (Prum & Torres, 2004).

In homeotherms, dead keratinous epidermal tissues
undergo melanisation. By contrast, ectotherms like
fishes, lissamphibians, and reptiles (e.g. turtles, tortoises,
crocodilians, lizards and snakes) have pigmentation placed
under neuronal and hormonal control within specialised
chromatophore assemblies of the metabolically active
dermis (Fujii, 1993; Holman, 2003; Mathger et al., 2003;
Kerney, 2011). The integumentary ultrastructure, histology,
distribution of pigments, and mechanisms producing colour
patterns in crocodilians and testudines have only recently
been investigated in detail (Alibardi, 2011; Rowe et al., 2013).
In general, modern crocodilians have adopted dull skin
colours rather than brighter hues, likely given their restricted
ecological range (i.e. semi-aquatic). Dull and pale cryptic
patterns on their scaly skin (e.g. dark stripes, spots, splotches)
have been shown to function in camouflage (Webb,
Manolis & Whitehead, 1987). While the darker colours
in crocodilians are generated by melanosome-bearing
chromatophores (melanophores), the diffuse lighter colours
are generated using pterin- and carotenoid-containing chro-
matophores (xanthophores) and guanine-crystal-bearing
chromatophores (iridophores). Colours of the paler regions
vary from grey or white (in Alligatoridae), through to pale
brown (e.g. Crocodylus niloticus), and orange-yellow (e.g.

Crocodylus porosus). The only detailed histological study of
pigment systems in crocodilians suggests that eumelanin is
the sole type of melanin found in epidermal melanocytes
and dermal melanophores (Alibardi, 2011). The localisation,
concentration, and distribution of melanocytes in different
layers of skin and scales control the intensity of the darker
colours as well as macroscopic colour patterning (Alibardi,
2011). Rapid and reversible changes in colours of reptile
skin are caused by the translocation of pigments under
neuronal or hormonal control within the chromatophores
in the epidermis and dermis, in response to changes in
the environment (Taylor & Hadley, 1970; Sherbrooke &
Frost, 1989; Kuriyama et al., 2006; Merchant et al., 2018).
However, in crocodilians and testudines, the temporal onset
of this colour change is much more gradual (i.e. days to
weeks) compared to that of other reptiles, such as anole
lizards (i.e. minutes to hours) (Rowe et al., 2013; Merchant
et al., 2018; Staniewicz, Youngprapakorn & Jones, 2018).

Scaly integuments have been suggested to be the ancestral
condition in non-avialan dinosaurs since filamentous
integuments are currently unknown in most ornithischians,
all sauropodomorphs and some early theropod lineages such
as ceratosaurids, abelisaurids, and allosauroids, with many
of these groups instead preserving extensive, well-developed
scale impressions (Bonaparte, Novas & Coria, 1990; Coria
& Currie, 2006; Coria & Chiappe, 2007). Feather-like
epidermal structures have been suggested to be the derived
condition in the common ancestor of all coelurosaurian
dinosaurs (Barrett, Evans & Campione, 2015). However,
homoplastic loss of filaments in the scaly integuments of
coelurosaurian tyrannosaurids has also been suggested
(Bell et al., 2017), although others argue that this might
be influenced by taphonomic bias against organic feather
preservation (Saitta et al., 2018b) in North American tyran-
nosaurids. Among ornithischians, scales in Kulindadromeus

have been suggested to be secondarily derived from feathers
based on hypotheses relating to evolutionary development
(Dhouailly, 2009; Godefroit et al., 2014; Dhouailly et al.,
2019). Additionally, the presence of branched filamentous
pycnofibres in pterosaurs, similar to primitive feathers in
dinosaurs, also hints at the possibility that the ancestral state
of all avemetatarsalians was filamentous (Yang et al., 2019).
If this is the case, then the evolution of morphologically dis-
parate integumentary filaments may show complex patterns
of multiple independent filament losses across the archosaur
phylogeny. A key factor that has the potential to bias these
clade-wide studies of integumentary structures is taphonomy,
given that preservation of integumentary structures varies
widely across different fossiliferous sites and deep time (Davis
& Briggs, 1995; Wilson et al., 2016), particularly in Triassic
localities in which we find the earliest representatives of
dinosaurs and their close relatives (Clarke, 2013).

The integumentary structures of dinosaur and pterosaur
fossils share close morphological and, presumably, partial
functional homology with modern bird feathers (Xu, Zhou
& Prum, 2001; Barrett et al., 2015; Mayr et al., 2016;
Yang et al., 2019) and given the avian-like physiology of
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dinosaurs (O’Connor & Claessens, 2005; Schachner, Lyson
& Dodson, 2009; Schachner et al., 2011), the similarity
of fossilised melanosomes in exceptionally preserved fossil
dinosaur feathers to those of modern birds (Li et al., 2010,
2012; Eliason, Shawkey & Clarke, 2016), and the ability of
melanosome morphology and melanin chemistry to elucidate
palaeocolour in dinosaurs, a discussion of colour mechanisms
in modern birds is warranted.

The myriad colours in bird feathers are fashioned by a
complex interplay of pigments and structural mechanisms
(Fig. 1E, F)(Shawkey, Morehouse & Vukusic, 2009). The
major pigments contributing to colour production in the
avian integument include carotenoids, melanins, porphyrins,
and psittacofulvins (Hill & McGraw, 2006a,b; Cuthill et al.,
2017). Other pigments such as pterins and flavins play a
relatively minor role in producing feather colours. Addition-
ally, spheniscins are specialised pigments that are limited to
penguins. Key research by Stoddard & Prum (2008) on avian
visual sensitivities and later work (Stoddard & Prum, 2011)
using 965 feather samples examined from 111 avian species
led to the quantification of the approximate percentage
of colours contributing to avian plumage colour gamut.
While the largest and smallest proportions of the avian
colour gamut are occupied by structural colours (∼69%)
and non-pigmented white (∼0.1%), respectively, simple
pigmentary colour prevalence is as follows: carotenoids
(∼13.6%), psittacofulvins (∼10.6%), melanins (∼5.8%), and
porphyrins (∼0.5%) (Fig. 1E). Avian pigments are briefly
discussed below.

(1) Carotenoids

Carotenoids are linear, conjugated 40-C tetraterpenoid
molecules divided into two major categories based on
different functional groups (Matsuno, 1989). Non-substituted
and non-polar carotenoids with only carbon and hydrogen
atoms are referred to as carotenes (Fig. 3C) whereas
substituted, polar carotenoids with oxygen-containing
functional groups are collectively designated as xanthophylls
(Fig. 3F) (Lu & Li, 2008). These pigments comprise
over 1100 distinct chemical entities (Yabuzaki, 2017).
Carotenoids are synthesised de novo by various organisms
(e.g. bacteria, plants, algae, and fungi) and acquire their
yellow/orange to red colours from the ’chromophore
centre’. Chromophore centres (not to be confused with
dermal chromatophores) are molecules or functional
groups containing alternating single/double/triple bonds
(i.e. conjugation) directly responsible for absorption of light
and imparting colour (McHale, 2017). Greater degrees of
conjugation within the chromophore centre result in greater
absorption of short wavelengths in the violet to green region
of the visible spectrum (400–550 nm) (Hill & McGraw,
2006b). A key difference between carotenoids and other
pigments is that de novo biosynthesis of carotenoids does not
occur in animals due to absence of the enzyme phytoene
synthase. Thus, carotenoid-based colouration in animals is
accomplished through dietary uptake (Brockmann & Völker,
1934; Matsuno, 1989; Goodwin, 1992; Sefc et al., 2014)

or through symbiotic association (e.g. marine filter-feeders)
(Maoka, 2011). Although carotenoids are not synthesised
by animals, the metabolic framework to process them after
uptake does exist, allowing for conversion into non-dietary
forms widely prevalent in avian feathers, beaks, and skin.
After ingestion and metabolic processing, these pigments
enter the bloodstream through both lipid-dependent and
lipid-independent mechanisms and are eventually deposited
in keratinous dead tissue through passive diffusion (Parker,
1996). It has been shown that only yellow carotenoids are
assimilated by animals and can be bio-converted to make
red ones (Goodwin, 1986). Blends of different carotenoid
types can then create intermediate hues. Not all types of
ingested carotenoids become incorporated into keratinised
tissue (Hill & McGraw, 2006b). The process of carotenoid
incorporation is governed by multiple selective factors such
as diet (Rock et al., 1992; Williams, Boileau & Erdman,
1998), intestinal endoparasites (Ruff & Fuller, 1975), toxins
(Osborne et al., 1982), diffusion thresholds (Parker, 1996), and
unequal binding affinity for different lipoprotein types (Hill &
McGraw, 2006b). Hence, the intensity of carotenoid-based
colours can provide honest signals of diet and health for
sexual selection to act upon (Weaver et al., 2018).

(2) Psittacofulvins

Psittacofulvins are a class of highly colourful pigments
restricted to the plumage of parrots (Psittaciformes). Initially
mistaken for carotenoids, this unique class of lipid-soluble,
red-yellow pigments was first named by Krukenberg (1882).
Further research (Völker, 1936, 1937) highlighted that
these pigments were independent of dietary uptake, unlike
carotenoids. The detailed chemistry of psittacofulvins has
only recently been revealed by high-performance liquid
chromatography (HPLC) coupled with ultraviolet–visible
(UV/VIS) spectroscopy and mass spectrometry (MS) (Stradi,
Pini & Celentano, 2001) (Fig. 3G). This new approach
identified at least four different variants of psittacofulvins
and suggested a linear polyenal (i.e. long-chain-conjugated
aldehyde) structure for each, differing only in the number
of C C conjugations. Based on this structure they also
postulated two putative metabolic pathways by which
psittacofulvins could be synthesised: through a polyketide
pathway derived from acetyl-CoA or through enzymatic
desaturation of fatty acids. Further work by McGraw &
Nogare (2004) discovered a fifth psittacofulvin variant in
parrots and demonstrated that these pigments are exclusively
limited in distribution to feathers and do not impart
colouration to any other tissue of the body. Mundy (2018)
confirmed that red colours in parrot feathers are produced
by long-chain-conjugated polyenals whereas yellows are
produced by polyunsaturated 14-, 16-, or 18-C fatty acids.
Additionally, Mundy (2018) identified a point mutation in
the gene MuPKS, a member of the polyketide synthase gene
family implicated in fatty acid biosynthesis, which causes
green budgerigars (a result of structural blue combined
with yellow psittacofulvins) to develop blue colouration.
Therefore, MuPKS is likely responsible for generating
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Fig. 3. Molecular structures of some common examples of pigments in the animal kingdom: melanins (A), porphyrins (B), carotenes
(C), flavins (D), pterins (E), xanthophylls (F), psittacofulvins (generalised molecular structure) (G) and purines (H).

psittacofulvins. Polyketide synthases can cyclically add
2-C moieties to produce yellow psittacofulvins, which can
then generate red psittacofulvins with further downstream
processing that mirrors the synthesis of carotenoid pigments
(Mundy, 2018). The reflectance properties of psittacofulvins
have been investigated by various researchers (Krukenberg,
1882; Hudon & Brush, 1992; McGraw & Nogare, 2005).
Characteristic absorption peaks at wavelengths shorter than
those of carotenoids (Völker, 1936) and small reflectance
peaks in the UV region (Pearn, Bennett & Cuthill, 2001;
McGraw & Nogare, 2005) have been identified. Parrots
can also blend colours by combining psittacofulvins with
structural mechanisms. As in the budgerigar example,
structural blue with yellow psittacofulvins produces green
(for detailed mechanisms, see Section III).

(3) Melanin

The term melanin, derived from the ancient Greek μελανoς
(‘melanos’) meaning ‘dark’, was first coined by the Swedish
chemist Berzelius (1840) to designate a dark-brown pigment
isolated from retinal membranes. Several classification
schemes have been proposed for melanin pigments during
the last 50 years (Nickerson, 1946; Nicolaus, Piattelli &
Narni, 1959; Nicolaus, 1968; Riley, 1992, 1997; Pezzella
et al., 1997; Ito & Wakamatsu, 1998; Wakamatsu & Ito,

2002; Borovansky & Riley, 2011; Prota, 2012; d’Ischia
et al., 2013), but no clear-cut, all-encompassing definition
has emerged that sufficiently explains all of the properties of
this diverse group of pigments (Prota, 1988, 2012; d’Ischia
et al., 2013). Melanin is frequently found in integumentary
structures like mammalian hair (Goding, 2007) and avian
feathers (Stoddard & Prum, 2011) as well as vertebrate
skin (Morales-Guerrero et al., 2017; Parolini et al., 2018;
Pshennikova & Voronina, 2018). It can also be found
localised in other vertebrate organs, for instance, the retina
of the eye, cochlea of the inner ear, and in certain regions
of the brain and liver (Borovansky & Riley, 2011; Rossi,
McNamara, Webbet et al., 2019). At the chemical level,
current consensus has broadly defined melanins as groups of
highly heterogenous molecules derived from the oxidation of
phenolic compounds and downstream polymerisation of the
resulting intermediates (Solano, 2014). Melanin pigments
produce colours ranging from black, grey or dark-brown,
to reddish-brown by near-uniformly increasing broadband
reflectance of visible wavelengths in the 300–700 nm range
as well as wavelengths of the UV spectrum invisible to the
human eye (Hill & McGraw, 2006b). Variation in the hues
imparted by melanin is due to differences in the chemical
units that make up these polymeric molecules (Riley, 1997).

Animal melanins (Fig. 3A) consist of eumelanin
and phaeomelanin. Eumelanin is formed by the
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oxidative polymerization of 5,6-dihydroxyindole (DHI)
and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) (Ito &
Wakamatsu, 1998). Phaeomelanin is formed by the sponta-
neous combination of dopaquinone (an aromatic derivative
of l-dihydroxyphenylalanine, an intermediate of the tyrosine
catabolic pathway) with the amino acid cysteine to generate
cysteinyl-dopa which undergoes further oxidation to become
phaeomelanin (Greco et al., 2011). Eumelanin principally
produces hues ranging from darker shades of brown to
black, while phaeomelanin produces rufous/reddish-brown
colours. The presence of a higher number of carbonyl
groups (C O) in eumelanin causes strong absorption in
the red region of the visible spectrum which makes it
appear dark brown/black, whereas fewer carbonyl groups in
the benzothiazole-rich (sulphur-containing) phaeomelanin
produces paler brown to buff colours (Nickerson, 1946).
Functionally, melanins can be further categorised in terms of
their source (i.e. animal, plant, fungal, and synthetic) (Bell &
Wheeler, 1986; Riley, 1997; Solano, 2014; Xiao et al., 2015),
but alternative terminology (i.e. eumelanin, phaeomelanin,
neuromelanin, sepiamelanin, allomelanin, and pyomelanin)
also appears frequently in the literature (Pezzella et al., 1997;
Schmaler-Ripcke et al., 2009; Solano, 2014; Varga et al.,
2016). Neuromelanin is thought to be made up of mixtures
of eumelanin and phaeomelanin and is found in the cate-
cholaminergic neurons of substantia nigra (SN) of the brain
(Graham, 1979; Carstam et al., 1991; Zecca et al., 2001;
Solano, 2014), whereas eumelanin in cephalopod ink has
been characterised as sepiomelanin (Pezzella et al., 1997;
Palumbo, 2003). Allomelanin and pyomelanin are plant,
fungal, or bacterial in nature (Varga et al., 2016). The enor-
mous heterogeneity shown by these polymeric molecules
can be attributed to differences in phenolic and quinone
intermediates produced during oxidation steps as well as the
types of intermediates eventually ending up as monomers
that undergo polymerisation into the final product. Thus,
the use of ambiguous terminology has reduced ’melanin’ to
something of a wastebasket term for any black/dark-brown
pigment from any source, irrespective of chemical charac-
terisation, although similarities exist.

Animal melanins are typically stored in microscopic, lipid
membrane-bound, sub-cellular vesicles called melanosomes
(Schraermeyer, 1996; Marks & Seabra, 2001). Melanosomes
vary in morphology and distribution in a tissue- and
taxon-specific way (Hong et al., 2006; Borovansky & Riley,
2011; Eliason et al., 2016). In bird feathers and mammalian
hair, eumelanin has been noted to be stored in rod-shaped
eumelanosomes, whereas phaeomelanin has been reported
to be found in spherical-shaped phaeomelanosomes (Vinther
et al., 2008). In some tissues, such as the vertebrate retinal
pigment epithelia, two distinct melanosome morphologies
can be observed: ovoid and rods arranged basoapically (Kim
& Choi, 1998). In amphibians, integumentary melanosome
morphology is transitional between rod and spherical shapes,
resembling a laterally condensed ellipsoid (Colleary et al.,
2015). For many years, the binary categorisation of animal
melanins into eumelanin and phaeomelanin prompted

authors to classify melanin-based colours discretely in
birds, with eumelanin pigment localising exclusively to
rod-shaped ’eumelanosomes’ and phaeomelanin to spherical
’phaeomelanosomes’ (Trinkaus, 1948; Somes & Smyth,
1965). However, it is now thought that both pigments can
co-occur within melanised feathers (McGraw et al., 2004).
The relative proportion of phaeomelanin and eumelanin is
key to the final shade imparted to the feathers. For example,
the total melanin concentration is roughly the same in the
pale reddish-buff feathers of red-winged blackbirds (Agelaius
phoeniceus) and the black feathers of zebra finches (Taeniopygia
guttata), but due to differences in the relative proportions of
the two pigments (83% phaeomelanin in the former and
92% eumelanin in the latter) they show markedly different
colour shades (McGraw et al., 2004). This raises the question
of co-localisation of eumelanin and phaeomelanin within
a single type of melanosomes in feathers, as suggested by
the ’casing model’ of neuromelanin whereby phaeomelanin
granules form a core and eumelanin molecules aggregate
onto the surface of that core (Ito, 2006). Additionally, the
correlation between melanosome shape and colour does not
hold in retinal pigment epithelium, within which eumelanin
is stored in both shapes of melanosomes (Wang, Dillon &
Gaillard, 2006). Therefore, the melanosome shape–colour
correlation in feathers would be better explained by char-
acterising rod-shaped melanosomes as eumelanin-dominant
and spherical melanosomes as phaeomelanin-dominant.
Liu et al. (2014) tested the hypothesis that different colours
of feathers correspond to relative proportions of eumelanin
and phaeomelanin using laser desorption synchrotron
post-ionisation (synchrotron-LDPI)-MS. Peak probability
contrast from MS data showed that black feather colours
can be attributed to oxidised forms of DHICA/DHI units
of eumelanin and are most clearly distinguishable from
other colours. Brown is dominated by higher proportions
of phaeomelanin composed of oxidised versions of ben-
zothiazine, benzothiazole, and isoquinolines. Grey colour
is derived from phaeomelanin with nominal amounts of
eumelanin and isoquinoline derivatives. Galván & Waka-
matsu (2016) largely corroborated the conclusions of Liu
et al. (2014) using an expanded colour gamut from birds and
mammals but suggested that carboxylated DHICA and ben-
zothiazole unit concentrations could act as correlates of the
intensity of blacks and reddish-brown colours, respectively.
Additionally, they also noted that colour phenotypes are
not produced by DHICA or benzothiazoles in isolation but
are composed of varying proportions of both. The chemical
methods of Liu et al. (2014) and Galván & Wakamatsu (2016)
could potentially be useful in reconstructing palaeocolour
from preserved melanin signatures in fossils.

(4) Porphyrins

Porphyrins are a class of pigments characterised by square-
planar, macrocyclic, and nitrogen-containing tetrapyrrole
rings connected via methine (=CH−) bridges (Finar, 1956).
These molecules, apart from being integumentary
colourants, also play important physiological roles in non-
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integumentary tissues ranging from the oxygen-bearing
haem co-factor in the respiratory metalloprotein
haemoglobin in animals to the key light-absorbing
component of chlorophyll in plants (Rimington, 1957).
In birds, porphyrins (Fig. 3B) can be classified into
three groups: (i) natural porphyrins (e.g. uroporphyrin,
coproporphyrin, and protoporphyrin) limited to brown
eggshells and rusty-hued feathers in owls (Strigiformes),
bustards (Otididae), and nightjars (Caprimulgidae), (ii)
metalloporphyrins in blood (i.e. haem), (iii) red and green
colour-imparting porphyrins (i.e. turacin and turacoverdin)
in turacos (Musophagiformes), and (iv) bilins in blue egg
shells (e.g. biliverdin) (Derrien & Turchini, 1925; Völker,
1938; Ponka, 1999; Weidensaul et al., 2011; Galván et al.,
2016a). Natural porphyrins are derived from succinyl CoA
(an intermediate of the Krebs cycle), and the amino acid
glycine (Needham, 2012). Metalloporphyrins are produced
by enzymatic addition of metal ions such as iron, as in
haem (Ponka, 1999), or copper, as in turacins (Rimington,
1939). Bilins are formed further downstream by oxidative
degradation of haem in the liver but have also been found
transported to more peripheral tissues like oviducts for
deposition in egg shells (Poole, 1965, 1966). The spectral
absorption of porphyrin, like other pigments, owes its origin
to conjugated double-bond chromophore centres within
the molecules, but porphyrins are unique in their ability
to fluoresce red under UV light (Derrien & Turchini,
1925). Relatively large, polymerised porphyrins in brown
egg shells show broad-spectral absorbance of wavelengths
similar to melanins (Hill & McGraw, 2006b), but the
aromatic double-bonded structure that confers wide spectral
absorbance also makes them highly photolabile (Moan,
1988; Arakane et al., 1996; Rotomskis, Bagdonas & Streck-
yte, 1996), causing them to fade over time. Additionally,
the linking of these pigments to proteins and metal ions
impacts not only the final colour produced but quenches the
intense red fluorescence. Notably, although the fluorescent
properties of porphyrin-containing feathers are not con-
spicuous under normal illumination, transient salmon-pink
fluorescence in hidden, basal barbs of belly feathers has
been observed in Otididae, which is proposed to function in
short-duration sexual displays (Galván et al., 2016a).

(5) Spheniscins

Spheniscins are a newly characterised category of endoge-
nously synthesised, yellow-orange pigments exclusively
limited to penguins (Sphenisciformes) and are suggested
to have evolved once in fossil stem penguins (Thomas
et al., 2013). Chromatography and elemental composition
(CHN) analysis highlighted their similarity to yellow and
red pterin pigments (see Section II.6), although their
solubility indicates crucial differences with other yellow-red
pigments (McGraw et al., 2007). Comparison of Raman
and mid-infrared spectra of spheniscins with other avian
pigments reveals 17 unique spectral bands in spheniscins in
the wave number (ν) range 300–1700 cm−1 with the five
most intense bands at 1577 cm−1 (vs, very small), 1285 cm−1

(s, small), 683 cm−1 (m, medium), 1469 cm−1 (m, medium)
and 1351 cm−1 (m, medium). Raman spectra also predict
the putative chemical structure of sphensicins to contain
aromatically bonded heterocyclic rings with the possibility
of tautomeric rearrangement under low pH conditions.
However, further work is required to clarify the chemical
properties of spheniscins (Thomas et al., 2013).

(6) Other uncommon pigments

Pterins and related pigments (e.g. certain purines and flavins)
are by-products derived from catabolism of the purine
nucleotides – adenosine triphosphate and/or guanosine
triphosphate (Fig. 3H) (Hill & McGraw, 2006b; Nelson,
Lehninger & Cox, 2008). Pterins (Fig. 3E) are nitrogenous
heterocyclic compounds with two-pyrimidine-ring skeletons
which differ in their linear or cyclic substituents and
impart characteristic red-orange-yellow colours, although
colourless variants have also been reported (Fox, 1976).
The compounds are frequently encountered in insect wings
and eyes (Pfleiderer, 1994). Among vertebrates, pterins have
been found in the skin and eyes of some fishes (Grether,
Hudon & Endler, 2001), amphibians (Thorsteinsdottir &
Frost, 1986), and reptiles (Steffen & McGraw, 2007). In avian
species, they have been reported only as ocular colourants
and do not occur in integumentary structures (Oliphant &
Hudon, 1993). While both purines and pterins absorb very
short wavelengths of light (guanine, λmax = 246 and 273 nm;
hypoxanthine, λmax = 249 nm), pterins additionally absorb
light >300 nm (Needham, 2012).

Flavins (Fig. 3D) are heterocyclic compounds with the
basic structure of 7,8-dimethyl-10-alkylisoalloxazine (Rivlin,
2012; Edwards, 2014). The key dietary source of these
pigments is vitamin B2 (riboflavin) and its derivatives, flavin
mononucleotide (FMN) and flavin adenine dinucleotide
(FAD) (Rivlin, 2012). Riboflavin has been described to impart
yellow colouration to skin patches in fishes (Courts, 1960)
and amphibians (Obika & Negishi, 1972). Riboflavin is
sometimes co-deposited with melanin to produce olive or
dark-green hues in snakes (Blair & Graham, 1954; Villela
& Thein, 1967). Pure riboflavin in aqueous solution shows
four distinct absorbance peaks (λmax) at 220, 266, 375, and
475 nm but is highly photolabile even under white-light
illumination. This photolability is a result of its fluorescence
at longer wavelengths (∼530 nm), which causes the colour
to bleach due to breakdown of the chromophore centre
even under low energy/long wavelength illumination (Hill
& McGraw, 2006b). Riboflavin has also been postulated to
influence the colour of bird egg yolks (Gliszczyńska-Świgło
& Koziołowa, 2000), but additional studies are needed.

III. COMBINED STRUCTURAL AND
PIGMENTARY MECHANISMS

Structural colour-producing mechanisms greatly expand the
range of vertebrate integumentary colours in isolation as

Biological Reviews 95 (2020) 22–50 © 2019 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Colour reconstruction in fossil amniotes 31

well as in combination with pigmentary colours. In relation
to the use of an extant phylogenetic bracket approach to
uncovering possible structural colours in dinosaurs, there is
ample evidence of structural colour mechanisms in modern
birds (Fox, 1976; Prum, 1999; Vinther et al., 2010; McCoy
et al., 2018) but little is known in crocodilian scales except for a
minor role played by guanine-crystal-containing iridophores,
which act as reflective platelets to produce extremely weak
iridescence. This is due to the fact that reflective platelets
occur at low spatial frequencies in the epidermis and dermis
and are not arranged in highly ordered vertical arrays, a
prerequisite for strong iridescence (Alibardi, 2011). Blue,
white, and iridescent shimmering effects in bird feathers
are produced by two types of light scattering (coherent and
incoherent) caused by nanoscale architecture of the material
making up the feathers. Incoherent scattering occurs when
light is scattered in different directions by materials lacking
an ordered assembly, with wavelengths of different scattered
light waves out of phase with each other (Hulst & van de
Hulst, 1981; Bohren & Huffman, 2008). Coherent scattering
occurs when light waves are scattered by materials with a
highly ordered internal structure, and emerge in phase and
reinforce each other (Prum et al., 1999; Prum, Andersson &
Torres, 2003; Prum & Torres, 2003b). The most common
classes of colour-producing structures in feathers are (i)
non-pigmented keratin with randomly oriented vacuoles,
which produce a white colour through incoherent light
scattering, (ii) feather barbules with nanostructural arrays of
pigment and β-keratin, which typically produce iridescence
through coherent scattering with colour depending on the
viewing angle, and (iii) the spongy medullary layer of the barb
rami or main feather rachis, which produces non-iridescent
blues, violet, green, and UV colours (Hill & McGraw, 2006b).
Recently, a fourth mechanism was discovered whereby
’super-black’ feathers in birds-of-paradise (Paradisaeidae)
achieve their colour from highly flattened bottlebrush-like
barbules that are devoid of pigments and are extremely
effective at trapping light through multiple instances of
internal scattering, resulting in directionally mediated
structural absorption (McCoy et al., 2018).

Iridescence-producing melanosome–keratin arrays recog-
nised in 14 out of 32 bird orders can be assembled into
either flat laminar nanostructures, crystal-like lattices with a
square or hexagonal unit cell, or irregular to quasi-ordered
arrays (Hill & McGraw, 2006b). The morphology of the
melanosomes is closely related to the type of ordering in
these repeating arrays. Peafowls possess solid square unit
cells of rod-shaped melanosomes (Zi et al., 2003), whereas
trogons possess closely packed hollow melanosomes with
hexagonal unit cells (Durrer, 1986). In some species like
the scrub euphonia (Euphonia affinis), hollow melanosomes
are arranged into uneven quasi-ordered structures (Hill &
McGraw, 2006b). Rod-shaped melanosomes (solid or hollow)
can be organised into structures ranging from exclusively
laminar to three-dimensional lattices to produce irides-
cent structural colour. However, platelet-like melanosomes
found in hummingbirds can only be packed into laminar

sheets to produce iridescence (Greenewalt, Brandt & Friel,
1960). Likewise, the structure of air spaces within these
arrangements can range from single cavities to multiple
small compartments interspersed between the melanosomes.
Thus, laminar and crystal-like lattices produce strong iri-
descence, whereas quasi-ordered structures impart weak or
non-iridescent colours (Hill & McGraw, 2006b).

Non-iridescent structural colours are usually created in
two ways: through modification of the internal structure
of feather barbules (Dyck, 1987) or by three-dimensional
quasi-ordered arrays of box-shaped medullary cells in feather
barbs and rami, filled with a spongy matrix of β-keratin and
air (Dyck, 1971; Prum et al., 1999). In the first category,
iridescence is offset through equivalent backscattering at all
viewing angles by arranging keratin–melanosome layers
along curvatures in specialised rounded ridges on the
barbule surface. The architecture of the second category
is like Swiss cheese, with larger volumes of air compared
to keratin that permit coherent light scattering (Hill &
McGraw, 2006a,b). Melanosomes in the basal pigmentary
layer of non-iridescent feathers although ellipsoidal, are
morphologically distinct from those producing black,
brown and iridescent colours but overlap significantly with
grey-colour-producing melanosomes (Babarović et al., 2019).

Structural colour can also occur in avian integumentary
tissues other than feathers. Non-iridescent structurally
coloured skin, bill sheaths, caruncles and scales are present
in at least 250 bird species. This was first investigated in 19
avian families from 11 orders by Auber (1974) under the
assumption that all blue or green colours are structural as
opposed to being pigmentary due to the rarity of blue or green
pigments in avian integument (Fox, 1976). The anatomy and
mechanism of colour production in structurally coloured
skin, beaks, and scales was later explored in 31 species of birds
(from 17 families and 10 orders ranging from passerines to
palaeognaths) (Prum & Torres, 2003a). This study illustrated
coherent scattering of light from arrays of parallel collagen
fibres in the dermis and that variations in colour can
be produced by altering the size and spacing of these
fibres. The arrangement of these collagen fibres functionally
resembles the rounded quasi-ordered nanostructures in
feather barbules and scatters light waves equivalently in
all directions perpendicular to the collagen fibres.

Pigmentary and structural mechanisms imparting
integumentary colours in animals have traditionally been
studied as separate components. However, mounting
evidence indicates that many colours are rendered through
combined mechanisms and are difficult to produce by either
mechanism in isolation (Dyck, 1971; Shawkey et al., 2009;
Stoddard & Prum, 2011; Shawkey & D’Alba, 2017). The
complex interplay of pigmentary systems and optical and/or
material properties of the integumentary structures are
discussed in the following sections.

(1) Pigments and ordered nanostructures

Colour production through the combination of pigments and
ordered nanostructures is frequently observed in birds (Noh
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et al., 2010). Pigmentary green colours are comparatively
rare except for turacoverdin, which is limited exclusively to
Musophagidae. Since turacoverdin-based green colours are
dependent on large quantities of Cu2+ ions, a trace dietary
mineral (Dyck, 1976), shades of green colours in most birds
are produced by an interaction of structural and pigmentary
mechanisms in one of three ways: (a) coherent scattering
in the feather barbules at the interface of highly ordered
melanosome–keratin arrays yielding iridescent green (Hill
& McGraw, 2006b), (b) interaction between carotenoid
pigments in the barbs and melanin-bearing melanosome
layers in the barbules yielding olive-green (Dyck, 1976), and
(c) quasi-ordered spongy keratin layers containing carotenoid
or psittacofulvin yielding non-iridescent green (Dyck, 1976;
Stavenga et al., 2011; Stoddard & Prum, 2011; D’Alba,
Kieffer & Shawkey, 2012). Previous hypotheses suggested
that blue-colour-producing spongy keratin nanostructures
combine with yellow pigments to generate the green colours
(Hill & McGraw, 2006b). However, new evidence suggests
that the keratin layer is also predisposed to producing peak
reflectance in the green spectral region by itself, but that
the spectral reflectance curve is wide enough to include blue
wavelengths (D’Alba et al., 2012; Shawkey & D’Alba, 2017).
The pigment molecules absorb these blue wavelengths and
significantly augment the saturation of the green colours
(Shawkey & D’Alba, 2017). New research also posits that the
production of non-iridescent blue colours has a substantial
contribution from the ordered melanosome arrays lying basal
to the spongy keratin layer (Parnell et al., 2015). The basal
melanosome layer plays a critical role of siphoning away
the incoherently scattered white wavelengths (owing to the
broad-based spectral absorption of melanin) which would
otherwise greatly diminish the blue hue to impart a more
whitish colour (Shawkey & Hill, 2006; Zhang et al., 2015).

(2) Pigments and disordered nanostructures

Pigment molecules, by definition, produce colours by
absorbing only certain wavelengths of light and reflecting
all others. However, optical/material properties of sheathing
biopolymers (e.g. feather keratin, arthropod chitin, or plant
cellulose) also impact the wavelengths absorbed/reflected
and influence the final colour imparted. Texture and
thickness of the encasing material can regulate brightness – a
thicker array of keratin with randomly oriented vacuoles will
promote greater incoherent scattering, and when combined
with deposited pigments (carotenoid/psittacofulvin), can
produce a bright yellow/green colour. By contrast, thin
arrays of disordered keratinous material combined with
pigments produce duller colours. Whether pigments or
structural biopolymers have the greatest effect in imparting
the final colour is a matter of considerable debate (Shawkey
et al., 2006; Jacot et al., 2010; Evans & Sheldon, 2011;
Shawkey & D’Alba, 2017).

(3) Dermal chromatophore assemblies

Colour changes also occur through rapid spatial
dispersal of pigment molecules, pigment-containing vesicles,

and reflective structures in ectothermic animals (e.g.
crustaceans, cephalopods, fishes, amphibians and reptiles).
These are controlled by neuroendocrine stimulation of
cellular assemblies (Bagnara & Hadley, 1973). Diverse
colours and dynamic colour changes result from the
interaction between three-dimensionally organised layers
of dermal cells including various types of pigments and
reflective nanostructures which are organised into ’dermal
chromatophore units’ (Bagnara, Taylor & Hadley, 1968).
The chromatophore units are composed of three layers of
cells. These layers have been recognised in ectothermic
vertebrates such as fishes (Fujii, 1993), amphibians (Hadley
& Bagnara, 1969; Ichikawa et al., 1998), and reptiles
(Taylor & Hadley, 1970; Sherbrooke & Frost, 1989).
The most superficial pigmented layer, lying immediately
below the epidermis and basal lamella, consists of pterin-
and/or carotenoid-bearing xanthophores (yellow-orange)
and erythrophores (red). Lying below the xanthophores
and erythrophores is a layer made up of nanoscale
reflective platelets (guanine/purine crystals) embedded
within iridophores and leucophores (Kuriyama et al., 2006;
Boyer & Swierk, 2017). The shape, orientation, and
three-dimensional organisation of the platelets influence
the production of structural colours ranging from white to
violet via incoherent scattering, coherent scattering, thin-film
interference, and/or diffraction. The innermost layer, called
the melanophore layer, contains melanin pigments and
produces black/brown colours. The fine-scale and rapid
colour change (i.e. metachrosis), which can yield wide
variation in macroscale integumentary patterns, is facilitated
by the fine-tuned co-localisation and dynamic regulation
of the ratios of different pigment-bearing chromatophore
types (Boyer & Swierk, 2017; Shawkey & D’Alba, 2017).
Metachrosis is a key mechanism behind predator-evasion
behaviours like camouflage (Cacciali et al., 2018).

IV. DIAGENETIC TRANSFORMATIONS OF
PIGMENTS AND STRUCTURAL COLOURS IN
FOSSILS

The taphonomy of pigments other than melanin, carotenoids
and porphyrin have not yet been studied in detail within
fossils. The known diagenetic pathways of pigments and
structural colour are discussed below.

(1) Melanins

Most of what is known about the chemistry of eu- and
phaeomelanin is through alkaline peroxide degrada-
tion and hydrolysis (Ito et al., 2011). HPLC and MS
have been used to characterise the resulting melanin
degradation products from this treatment (Ito & Waka-
matsu, 1998). These products have since been used as
diagnostic markers for eumelanin and phaeomelanin in
modern samples treated with alkaline peroxide degra-
dation and hydrolysis. Pyrrole-2,3,5-tricarboxylic acid
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(PTCA), pyrrole-2,3,4-tricarboxylic acid (iso-PTCA),
pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA), and
pyrrole-2,3-dicarboxylic acid (PDCA) are markers for eume-
lanin. Thiazole-4,5-dicarboxylic acid (TDCA), 4-amino-3-
hydroxyphenylalanine (4-AHP), and thiazole-2,4,
5-tricarboxylic acid (TTCA) have been suggested as
markers for phaeomelanin (Pezzella et al., 1997; Ito &
Wakamatsu, 1998; Ward et al., 2008; Ito et al., 2011). These
markers have also been recovered as products of pyrolytic
gas chromatography of fossil samples (Glass et al., 2012).
Glass et al. (2013) further suggested that diagenesis and
prolonged thermal maturation cause eumelanin subunits to
crosslink together, granting exceptional stability through
deep time (Fig. 4A). Although the precise diagenetic
pathway for phaeomelanin currently remains unknown,
Glass et al. (2012) noted that the pyrolysis gas chromatog-
raphy mass spectra for fossil tissues known to contain
eumelanin sometimes additionally indicated the presence of
sulphur-containing molecular fragments (e.g. thiophenes,
alkylthiophenes, etc.). These sulphur-bearing molecular
fragments were attributed to the incorporation of sulphur
into eumelanin by early diagenetic processes occurring
chiefly in euxinic marine palaeoenvironments, resulting in
organic preservation through a vulcanisation-like process
of this biopolymer whose natural thermal stability already
allows for organic fossilization (McNamara et al., 2016b).
McNamara et al. (2016b) showed that pyrite-rich freshwater
palaeoenvironments (e.g. oil shales from Messel, Germany
and Libros, Spain) can yield similar sulphur signals in mass
spectra of fossil eumelanin. One example of this type of
euxinic depositional environment is in the preservation
of the nodosaur Borealopelta markmitchelli, which has been
suggested to preserve fossil phaeomelanin (Brown et al.,
2017). This raises an important question of whether the
inference of fossil phaeomelanin chemical markers from
euxinic environments could potentially be erroneous (i.e.
derived from taphonomic incorporation of environmental
sulphur rather than from endogenous phaeomelanin).
Colleary et al. (2015), McNamara et al. (2016a) and Brown
et al. (2017) however, agree that there is a low chance of
conflation of eumelanin and phaeomelanin in fossils from
mass spectra data. The potentially environmental thiophene
and its derivatives differ chemically from the endogenous
nitrogen-containing markers in phaeomelanin (e.g. 4-AHP
for benzothiazine moieties). Furthermore, melanosome
morphology, tissue type, and phylogenetic placement of
the specimen could potentially provide independent lines
of evidence to distinguish fossil phaeomelanin from fossil
eumelanin.

Differentiating integumentary melanosomes from those of
visceral organs in two-dimensionally flattened fossils has been
suggested to be complicated. Recent work posits that weak
post-burial hydrodynamic disturbances in quiet or stagnated
lakebeds can cause visceral organ melanosomes to be
redistributed to the integumentary surface (McNamara et al.,
2018a). However, two-dimensional flattening of carcasses has
been suggested to have minimal effect on at least the lateral

expansion or distortion of non-biomineralised fossil tissues
(Briggs & Williams, 1981), and preliminary experimental
taphonomy has suggested this to hold true in the case
of avian plumage/carcasses (Saitta, Clapham & Vinther,
2018a) as well as lizard carcasses and beetle exoskeletons
(Saitta et al., 2018d ). Furthermore, organic preservation of
melanin-containing organs such as the retina and liver can
show discrete localisation patterns in fossils without evidence
of lateral distortion (Sallan & Coates, 2014; Smithwick
et al., 2017). The fact that three-dimensional ultrastructural
melanosome alignment in feathers (Vinther et al., 2010;
Li et al., 2012; Vitek et al., 2013) and macroscopic colour
patterns (Vinther et al., 2008; Smithwick et al., 2017) can
be preserved unaltered in fossils suggests that taphonomic
disturbance of melanosome distribution does not occur to
any significant degree during carbonaceous fossilisation and
compression. Therefore, it is unclear whether melanosome
redistribution within a carcass would be a taphonomic factor
of great concern. Regardless, sampling from regions of the
fossil clearly attributable to integument or integumentary
structures would be a simple solution.

(2) Carotenoids

Bacteria, halophilic archaea, photosynthetic eukaryotes,
and a host of non-photosynthetic organisms have been
reported to produce carotenoid pigments (Britton, 1995).
Fossil carotenoids have been detected in sediments as far
back as the Precambrian using gas chromatography-tandem
mass spectrometry (GC–MS–MS) (Marshall & Marshall,
2010; French et al., 2015). Most carotenoids, however, do
not survive long-term diagenesis in forms that are readily
linkable to their biological precursors and exact taxonomic
origin. During early sedimentary diagenesis, different types
of carotenoids vary in stability. Those containing 5,6-epoxide
linkages (i.e. three-carbon ring with an oxygen atom) rapidly
degrade in early diagenesis within anoxic and stagnant
lakebed sediments and are converted to loliolide, isololiolide,
and other derivatives in aqueous phase (Fig. 4B) (Repeta,
1989). However, there is evidence that some aromatic
carotenoids (e.g. β-carotenes, lutein, zeaxanthin) retain their
chemical backbone structures in the form of saturated
perhydro derivatives (e.g. carotanes, lycopane) (Fig. 4C).
These carotenoids are degraded primarily though microbial
oxidation in a much more gradual manner compared to
those containing 5,6-epoxide linkages, as noted from recent
anoxic environments (Repeta, 1989). Such carotenoids can
potentially become molecular fossils. β-carotenes can also
undergo internal aromatisation reactions to generate several
novel products that have also been noted as potential fossil
biomarkers (Fig. 4D) (Koopmans, De Leeuw & Damsté,
1997). Recently some advances have been made detecting
the molecular remnants of perhydro derivatives using
Raman spectroscopy (Marshall & Marshall, 2010). Raman
spectroscopy combined with a near-infrared laser is capable
of detecting distinctive absorption bands for unaltered
carotenoids in modern feathers placed behind an amber
matrix but failed to do so in a fossil feather sample preserved
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Fig. 4. Diagenetic pathways for biological pigments and structural colour-producing mechanisms along with their potential
biomarkers. 4-AHP, 4-amino-3-hydroxyphenylalanine; ESI-MS, electrospray ionisation mass spectrometry; FT-ICR-MS,
Fourier-transform ion cyclotron resonance mass spectrometry; HPLC-MS, high performance liquid chromatography;
iso-PTCA, pyrrole-2,3,4-tricarboxylic acid; NMR, nuclear magnetic resonance; PDCA, pyrrole-2,3-dicarboxylic acid; PPC,
peak-probability contrast; PTCA, pyrrole-2,3,5-tricarboxylic acid; PTeCA, pyrrole-2,3,4,5-tetracarboxylic acid; Py-GC-MS,
pyrolysis-gas chromatography-mass spectroscopy; synchotron-LDPI, laser desorption-ionisation; TDCA, thiazole-4,5-dicarboxylic
acid; TOF-SIMS, time of flight secondary-ion mass spectroscopy; TTCA, thiazole-2,4,5-tricarboxylic acid.
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as a carbonaceous compression as well as fossil feather amber
inclusions (Thomas et al., 2014). A further test of the efficacy
of this technique would be to repeat the analysis with a larger
sample size of fossil feathers since the fossils examined could
have lacked carotenoids in vivo.

It should be noted that carotenoids are generally
acquired through microbial/plant-based diet in birds
and detection of carotenoids in fossils whose matrices
contain large amounts of organic microbial/plant matter
could potentially lead to erroneous colour prediction,
a serious issue when organic melanin preservation
often coincides with lagerstätten representing lake or
lagoonal palaeoenvironments. Therefore, comparison of
the fossil with the surrounding matrix is vital to
exclude false positive carotenoid detections. Irrespective
of the challenges of detecting fossil carotenoids that
are demonstrably endogenous to a fossil rather than
environmental, predicting their original hue (i.e. red,
orange, or yellow) could be challenging due to changes in
conjugation through diagenesis which alter the produced
hue. Morphological interpretation of xanthophores (i.e.
chromatophores containing carotenoid and/or pterins) has
been suggested in a 11.2–8.7-million-year-old fossil snake
(McNamara et al., 2016a) but the inorganic, phosphatic
preservation of these structures in this specimen is unusual
given that such pigments might be expected to preserve
organically, warranting further investigation. Experimental
demonstration of xanthophore morphology preserved via
authigenic mineralization as phosphate would provide strong
evidence for such a claim.

(3) Porphyrins

Geoporphyrins (i.e. diagenetically altered porphyrins from
various sources) are abundant in sediments, coal, and oil
both across the globe and in deep time (Van Berkel,
Quirke & Filby, 1989; Huseby & Ocampo, 1997; Junium,
Freeman & Arthur, 2015). Two categories of about a
hundred geoporphyrins have been described with the
first sourced from the diagenesis of haems, cytochromes,
and natural tetrapyrroles and the second from the
diagenesis of the chlorophylls of phototrophs (Montforts
& Glasenapp-Breiling, 2002). The typical first step in
haem/cytochrome diagenesis is the hydrolytic detachment of
the porphyrin ring from the protein components followed by
a series of reactions leading to the formation of a wide
variety of porphyrin derivatives that are either free or
complexed with metal ions, including mesoporphyrin IX
and etioporphyrin III (Killops & Killops, 2013) (Fig. 4E).

Biological pigments produced in vivo by catabolism of
haems, biliverdin, and protoporphyrin, all of which impart
colouration to modern bird eggs, have also been detected
in fossil eggs ranging from the Miocene-Holocene subfossil
blue-green eggshells of the upland Moa (Megalapteryx didinus)
and pale brown eggs of North Island Moa (Euryapteryx
curtus) (Igic et al., 2010) to the blue-green Late Cretaceous
macrooolithiid eggshells attributed to the oviraptorid
Heyuannia huangi (Wiemann et al., 2017). Wiemann, Yang

& Norell (2018) examined a larger sample of fossilised
non-avialan dinosaur and early bird eggshells and suggested
that the evolution of coloured eggshells with macroscale
patterns (speckles and spots) can potentially be traced to a
single origin at the base of paravians. While protoporphyrin
is relatively unreactive due to resonance stabilisation of
conjugated double bonds, biliverdin is much more labile
due to its linear, oxidised nature (Gorchein, Lim & Cassey,
2009). It has been suggested that formation of calcium
salts and entrapment in the eggshell matrix facilitates the
preservation of biliverdin (Fig. 4F) and protoporphyrin in
these fossils (Wiemann et al., 2017, 2018).

Although not produced in vertebrates, it is of
interest to discuss chlorophyll diagenesis as it relates to
challenges in studying fossil vertebrate porphyrins due to
complications from environmental sources of geoporphyrins.
In plants, chlorophyll a (C55H72MgN4O5) quickly undergoes
post-mortem chemical transformation in aquatic sediments
and loses its green colour (Fig. 4G). Of the three functional
groups of the porphyrin ring that characterise chlorophyll
molecules and influence colour production, carboxylic acid
and a centrally coordinated metal ion are lost, while
the phytol chain can be preserved (albeit hydrolytically
cleaved from the porphyrin ring). Post-separation from
the molecule, the phytol chain undergoes reactions of
various types in the sediment and forms unsaturated
carbon skeletons of the diastereomers phytane and pristane
(Killops & Killops, 2013). The porphyrin ring can be
preserved through one of two different diagenetic pathways
(Fig. 4E–G): (i) a product of one early diagenetic pathway
of chlorophyll a is pyrophaeophaeophorhbid a, which
ultimately leads to metallodeoxyphylloerythrethioporphyrin
(metallo-DPEP) (Killops & Killops, 2013). The type of
metal ion in metallo-DPEP (e.g., VO2+, Ni2+, Cu2+, Fe2+,
Zn2+) inserted into the coordination centre is dependent
on the pH, redox potential (Eh), metal availability, and
thermal maturity of the sediments (Junium et al., 2015). (ii)
Alternatively, phaeophytin (i.e. chlorophyll lacking the Mg2+
ion) undergoes a ring cleavage followed by cyclisation to form
bicycloalkanoporphyrines (BiCAPs) with or without metal
ions (e.g. VO2+, Ni2+, Cu2+, Fe2+, Zn2+). A major challenge
in studying geoporphyrins is the occurrence of highly altered
fossil porphyrins in matured kerogen pools that do not
always unambiguously indicate their original biological
source (Killops & Killops, 2013), thus contamination from
surrounding sediments could be difficult to rule out in some
fossils suspected to contain integumentary porphyrins.

(4) Structural colour

While the structural colour-producing mechanisms in
feathers have been studied in detail in modern birds (Hill
& McGraw, 2006b) and in a limited manner in the feathers
of fossil paravians (Vinther et al., 2010; Li et al., 2012; Vitek
et al., 2013; Hu et al., 2018), reports on such mechanisms
in the skin of non-avialan dinosaurs or early birds do
not exist, leaving crucial gaps in our reconstruction of
palaeocolour. This is due to the fact that proteins like
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keratin and dermal collagen are prone to denaturation,
hydrolysis, deamidation, racemisation, thermal degradation
and dissolution of certain constituent amino acids through
diagenesis (Ortiz et al., 2018) and do not appear readily
to fossilise organically (Briggs & Summons, 2014; Saitta
et al., 2017; Smithwick et al., 2017) (Fig. 4H). Therefore,
inferences regarding structural colouration derived from
keratin frameworks and dermal collagen in the fossil record
are likely to be difficult. Since keratin does not appear to
fossilise organically (Armstrong et al., 1983; Saitta et al., 2017,
2018b), only the pigment components/layers of structural
colour-imparting tissue arrays will be available to identify
structural colouration in fossils, as is the case for the
few known examples of iridescence in fossils of originally
keratinous structures (Vinther et al., 2010; Li et al., 2012;
Vitek et al., 2013; Hu et al., 2018).

It has been suggested that keratin protein can preserve
phosphatically (McNamara et al., 2018b). However, Saitta
et al. (2018b) note that most fossil keratinous structures are
easily explained via preservation of endogenous calcium
phosphate without needing to invoke taphonomically
induced phosphatization. For example, most phosphat-
ically preserved keratinous structures include feather
rachises and claw, beak, and osteoderm sheaths (Murphy,
Trexler & Thompson, 2006; Christiansen & Tschopp,
2010) – structures known to be calcified in vivo in order to
increase the hardness of the keratinous structure (Blakey,
Earland & Stell, 1963; Blakey & Lockwood, 1968). Exper-
imental decay experiments capable of inducing microbially
mediated phosphatisation of keratin would provide strong
support for the idea that keratin protein can be authigenically
mineralised and would thereby provide the opportunity
to investigate fossil structural colour that involves keratin
nanostructural components. However, such support is
currently lacking, and it appears that keratin protein loss
during fossilisation is the most conservative explanation.

V. EXISTING PALAEOCOLOUR RESEARCH

Colour patterns and organic staining from fossil pigments
across broad geographical and temporal ranges have
long been recognised in the fossil record by the naked
eye (Williams, 1930; Carpenter, 1970; Kříž & Lukeš,
1974; Pan et al., 2013). Pigments have been discovered
in phylogenetically diverse fossils preserved as dark
carbonaceous remnants, including fossil algae (Wolkenstein,
Gross & Falk, 2010), leaves (Rieseberg & Soltis, 1987),
cephalopods (Glass et al., 2012; Williams, 2017), trilobites
(McRoberts et al., 2013), crinoids, eurypterids, graptolites
(Vinther, 2015), insects (McNamara et al., 2013b), stem
lampreys like Tullimonstrum (Clements et al., 2016; McCoy
et al., 2016), fishes (Gabbott et al., 2016), frogs (Colleary
et al., 2015), snakes (McNamara et al., 2016a), marine reptiles
(Whitear, 1956; Lindgren et al., 2014), non-avialan dinosaurs
(Li et al., 2010, 2012; Field et al., 2013; Vinther et al., 2016;
Peteya et al., 2017; Hu et al., 2018), birds (Vinther et al.,

2008, 2010; Gren et al., 2017; Peteya et al., 2017) and
mammals (Colleary et al., 2015; Manning et al. 2019). The
earliest chemical study on palaeocolour noted the similarity
between infrared (IR) spectra of melanin in fossilised and
modern cephalopod ink (Beyermann & Hasenmaier, 1973).
However, it was the application of electron microscopy
to fossils that provided the catalyst for the development
of palaeocolour reconstruction by allowing nanometre-
to micron-scale objects to be imaged for the first time.
Electron micrographs of fossil feathers and hairs from the
middle Eocene Messel lagerstätten (Wuttke, 1983) showed
large fabrics of micron-sized rod-shaped and spherical to
sub-spherical structures, which were originally interpreted
as preserved microbial biofilms associated with decay of the
original tissue. This microbial interpretation was supported in
later work (Davis & Briggs, 1995; Martill & Frey, 1995) until
these microbodies were alternatively identified decades later
as melanin-bearing organelles called melanosomes (Vinther
et al., 2008; Zhang et al., 2010).

Subsequent research linked colour patterns in isolated
fossil feathers to melanosome localisation whereby
melanosomes were present in the darker, carbonaceous
regions of the fossil but were lacking in intervening
non-stained areas (Vinther et al., 2010; Vitek et al., 2013),
paving the way for reconstructions of palaeocolour in
non-avialan dinosaur and early bird integument (Clarke et al.,
2010; Li et al., 2010, 2012; Field et al., 2013; Vinther et al.,
2016; Peteya et al., 2017; Hu et al., 2018). Despite mounting
evidence from their structure, chemistry, and localisation
patterns in favour of a melanosome identity for these fossil
microbodies, many studies continued to argue in favour of a
microbial identification (McNamara et al., 2009; Iniesto et al.,
2013; Moyer et al., 2014; Schweitzer, Lindgren & Moyer,
2015), while others suggested the identities of these structures
should be determined on a case-by-case basis (Lindgren et al.,
2012, 2015).

Fossil colour reconstruction has progressed significantly
since the early work on isolated feathers (Vinther et al., 2008,
2010; Zhang et al., 2010; Vitek et al., 2013) with palaeocolour
reconstructions produced for iconic fossils. A comparative
dataset of melanosome morphology (i.e. aspect ratio and size)
in 167 modern bird species and use of their shape–colour
relationships to predict colour in fossil samples through
quadratic discriminant analysis (QDA) has been used on the
paravians Anchiornis huxleyi and Microraptor gui (Li et al., 2010,
2012).

Melanosomes sampled from various regions of Anchiornis

led to its reconstruction with reddish-brown head feathers,
a grey feathered body, and black-tipped white feathers
along the wings and tail (Li et al., 2010). Saitta et al.

(2018c) provided additional details on its feathering and
a refined reconstruction sporting fluffy, likely open-vaned,
bifurcated contour feathers. Microraptor, on the other hand
was reconstructed to possess iridescent black feathers all
over its body (Li et al., 2012). The initial dataset (Li et al.,
2010, 2012) has been augmented by the addition of a
further 129 modern taxa bearing iridescence-producing
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melanosomes (Nordén et al., 2018). However, QDA has its
own caveats. Since the distributions of the melanosome
morphology variables (aspect ratio, long axis, short axis,
etc.) are not Gaussian, parametric predictive modelling
like QDA yields limited statistical accuracy (63–73%) and
cannot support nominal multistate variables in combination
(e.g. melanosome shape and hollow/flat/solid). Multinomial
logistic regression (MLR) proposed by Nordén et al. (2018) is
much more accurate (yielding a statistical modelling accuracy
of 83%) and does not possess the shortcomings of QDA.
However, they also acknowledge that the expanded dataset
may not be entirely representative of the morphological
diversities of melanosomes in 10000+ modern avian species.
Improvements to statistical methodology have the potential
to revolutionise palaeocolour reconstruction.

Despite robust statistical analysis, a whole-body
reconstruction might still require extensive destructive
sampling of the fossil because colour can vary across the
body of an organism and specimens are often too large
to be viewed whole in an electron microscope. To reduce
permanent damage to fossil specimens, palaeontologists are
often limited in the extent of their sampling, which may be
insufficient to ascribe patterns of melanin-based hues across
the entire body.

Ideally, methods to determine fossil pigmentation should
be non-destructive and quantitative. Through combined
use of synchrotron rapid-scanning X-ray fluorescence
(SRS-XRF), X-ray absorption near-edge structure (XANES)
and X-ray absorption spectroscopy, the preservation of trace
metal cations chelated by melanin within fossils has been
studied (Wogelius et al., 2011; Manning et al., 2013, 2019).
Cu2+/Zn2+ ions can be chelated to melanin during its
synthesis and were suggested to be biomarkers mapping
the colouration of fossils. However, there is no strong
support for (i) trace metal chelation happening uniquely
during the synthesis of eumelanin/phaeomelanin versus the
synthesis of other biomolecules, and (ii) the ability of these
techniques to distinguish ions incorporated during eumelanin
synthesis from those taken up secondarily during post-mortem

taphonomic processes. Additionally, in cases where oxidative
weathering has removed the carbonaceous fossil melanin
from certain regions in the fossil, a lack of Cu2+/Zn2+
associated with the mouldic impressions of melanosomes in
sediment could lead to the erroneous conclusion that these
regions were unmelanised in vivo. Therefore, Cu2+/Zn2+
does not meet the definition of a biomarker for melanin in that
it is not specific to melanin and is not expected to persist when
the melanin it is chelated to is lost (Vinther, 2015). Indeed,
many organic compounds other than melanin chelate copper
ions, including other pigments (e.g. porphyrins) and humic
acids from decomposed organic substances (Premović et al.,
2000). A widespread presence of Cu2+ has also been found
in a 48-million-year-old Dawn Redwood (Metasequoia) leaf
(Edwards et al., 2014), which would not have possessed
melanin. In a more recent work on a 3-million-year-old
fossil mammal (Manning et al., 2019), if the Cu2+/Zn2+ ions
were bound to phaeomelanin benzothiazole moieties and

organosulphur residues from the diagenesis of keratin, the
signal is likely to be of limited use on account of variability
and significant peak overlap of the phaeomelanin signal
with background remnants of keratin breakdown products,
beyond the issue of potential taphonomic incorporation of
Cu2+/Zn2+ ions.

Incomplete preservation remains a major hurdle for
palaeocolour reconstruction. For example, the single
supposedly matte black feather (Carney et al., 2012), whose
ascription to Archaeopteryx has been questioned (Kaye et al.,
2019b), is clearly not enough confidently to reconstruct
the colour pattern of the entire animal. Among the
various theropod specimens for which palaeocolour has
been reconstructed, many have large patches of missing
soft tissue preservation such as the tail feathers of the
Anchiornis specimen studied by Li et al. (2010), the leg region
of Caudipteryx (Zhang et al., 2010; Li et al., 2014), the neck
region of Beipiaosaurus (Zhang et al., 2010), tail portions
of Caihong (Hu et al., 2018), and parts of the abdominal
region of Sinosauropteryx (Zhang et al., 2010; Smithwick et al.,
2017). In some instances, such gaps in carbonaceous staining
might not simply have represented white colouration due
to absence of melanin considering that other pigments
and/or structural mechanisms could have been present but
either not preserved (e.g. protein-based structural colour)
or yet to be detected reliably in fossil feathers and scales
(e.g. carotenoids or porphyrins) (Table 1). However, certain
patterns of carbonaceous soft-tissue preservation might
be very consistent with a truly non-pigmented, white
reconstruction (e.g. countershading or complex repeating
patterns such as spots or stripes). Furthermore, much as the
osteological completeness of fossil specimens is often less than
100%, incomplete soft tissue preservation could be due to
scavenging, physical perturbation, or microbial/autolytic
decay of even relatively thermally stable biomolecules.
Another consideration is that in non-avialan dinosaurs with
simple feathers (e.g. non-pennaceous or barbule-lacking) and
presumably higher predation risk due to terrestrial lifestyles,
colouration might have been more limited to drab or cryptic
melanin-based colours compared to the diversity of plumage
colours seen in modern birds.

Fossil feather morphologies are critical factors in relation
to colour and must be considered in an evolutionary
perspective. The organisation of barbs and barbules into the
planar vanes of feathers might have permitted the evolution
of structural iridescence through nanoscale alignment
of reflective keratin–melanosome arrays (Koschowitz,
Fischer & Sander, 2014). Coinciding with the evolution
of pennaceous feathers in maniraptorans, a pleiotropic
increase in melanosome morphological diversity linked to
physiological factors such as elevated metabolic rates has
been suggested to have greatly expanded the integumentary
colour gamut (Li et al., 2014). Prior to this, melanosome
morphological diversity was reported to be limited in
filamentous integumentary structures of pterosaurs and
non-maniraptoran dinosaurs, which were then hypothesised
to have plesiomorphically used spherical to sub-spherical
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Table 1. Current lines of evidence for palaeocolour reconstruction

Observational evidence Examples Considerations

Macroscopic carbonaceous stains
(Vinther et al., 2008; Zhang et al.,
2010; Smithwick et al., 2017)

Colour patterns (e.g., stripes, mottling,
bars, ’bandit masks’, countershading).

Absence of stains may be due to: (i) early
taphonomic processes (e.g. scavenging, decay,
physical perturbation); (ii) non-pigmented
integument; (iii) structurally coloured
integument that lacks fossilisation potential
through diagenesis; (iv) non-melanin-based
pigmentation; (v) late taphonomic processes
(e.g. oxidative weathering of organics).

Melanosome morphology and
organisation (Vinther et al., 2008, Li
et al., 2010, 2012, Zhang et al., 2010)

Aspect ratio, shape, and size from organic
preservation or mouldic impression in
sediment (e.g. oblong, oblate, platelet).
Internal structure (e.g. solid/hollow).

Arrangement of melanosomes relative to
each other can reveal structural
colouration (e.g. melanosome lattices).

Melanosome organic structure can be lost
through oxidative weathering or through
aqueous conditions during thermal
maturation/diagenesis.Thermal
maturation/diagenesis results in some minor
(<10%) shrinkage of melanosomes.

Many structural colour arrays involve
proteinaceous components that likely do not
fossilise.

Organic chemistry (Colleary et al., 2015) Chemical signatures consistent with fossil
pigment – precise signature dependent
on the pigment and analytical technique
used (e.g. secondary ions, pyrolysates,
infrared absorption spectra, etc.).

Some sulphur moieties can be derived from
phaeomelanin or from taphonomic
incorporation of sulphur into eumelanin.
Chemical makeup of biomolecules can alter
during diagenesis.

melanosomes to confer black, brown, or grey colours (Li
et al., 2014). Li et al. (2014) also suggest that the lack
of diversity in melanosome shapes of non-maniraptoran
archosaurs actually calls into question the attribution of
brown colour to filamentous integuments by QDA (Li et al.,
2010, 2012) simply on the basis of spherical/sub-spherical
melanosomes. This limited melanosome diversity might
be viewed as analogous to the limited diversity seen
in modern day ratites (Eliason et al., 2016), although
characterising ratites as having low metabolic rates as
per the metabolic hypothesis is likely inappropriate when
viewed within the broader archosaur phylogeny, and because
their flightlessness may have limited colour/melanosome
diversity due to predation pressures. However, this metabolic
hypothesis of low melanosome morphology (Eliason et al.,
2016; Eliason & Clarke, 2018) is difficult to test in extinct
animals, and it would be surprising if pterosaurs capable
of powered flight had low metabolic rates. Additionally,
non-maniraptoran archosaurs, particularly those with a
filamentous integument, are under-represented compared
to maniraptorans in palaeocolour studies, and so their
limited melanosome diversity may be influenced by small
sample size or terrestrial lifestyles with high predation risk.
If melanosome diversity is instead increased to compensate
for a lack of alternative colour-producing mechanisms in
dead filamentous tissue as compared to metabolically active
skin, then the fact that melanosome diversity is high in more
endothermic animals might represent correlation rather than
causation since animals with filamentous integument tend
towards elevated metabolisms, at least in extant species.
Therefore, the shift of colour production from skin to
filaments remains the main alternative hypothesis (Vinther,

2015) to the pleiotropic metabolic hypothesis (Li et al.,
2014) for the evolutionary drivers of increased melanosome
diversity.

Methods predicting palaeocolour using melanosome
characteristics might need to account for diagenetic effects
on melanosome morphology and chemistry. McNamara
et al. (2013a) conducted thermal maturation experiments on
feathers, however their study erroneously reported their
methodology. Colleary et al. (2015) subjected feathers of
different colours to a pressure of 250 bars and temperature
regimes of 200◦C and 250◦C and yielded comparable and
quantifiable results. With increasing maturation conditions,
melanosomes shrank by no more than 10% in the
experiments of Colleary et al. (2015) due to volatile loss and
dehydration with potentially minimal effects on aspect ratio.
McNamara et al. (2013a) reported as much as 20% shrinkage,
but their experimental duration was only 1 h and not 24 h as
originally reported (McNamara et al., 2017). Additionally,
the chemical signature of the samples of Colleary et al.

(2015) as determined by time of flight–secondary ion mass
spectrometry (TOF-SIMS) approached that of fossil melanin
samples with increasing maturation conditions and remained
distinct from non-melanin controls. Aqueous maturation
conditions, however, can completely obliterate melanosome
morphology (possibly those with high phaeomelanin
concentration in particular), even though the amorphous
pigments might still remain, similar to that seen in some fossils
(Colleary et al., 2015). Although fossil melanin is chemically
altered from the original molecule (Glass et al., 2013; Colleary
et al., 2015) and can also diagenetically incorporate sulphur
(McNamara et al., 2016a), melanin is still considered to be
relatively stable through diagenesis (Briggs & Summons,
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2014), and is therefore capable of being fossilised due to its
innate thermal stability. A novel method of sediment-encased
maturation of feathers and lizards (Saitta et al., 2018a) has
supported the hypothesis that melanosomes remain exposed
on the sediment while surrounding keratin protein is lost
during diagenesis (Saitta et al., 2017, 2018d ). The method
promises a means to test the efficacy of palaeocolour
reconstruction. Predictions about the original colour of the
feather based on methods used to study fossil feathers could
be validated against the known colour of the experimental
feather prior to its maturation. It might also be used to
determine what chemical signatures would be expected from
non-melanin pigments in fossils and if these pigments can
leave behind any macro- or microscopic staining or textures.
One weakness of the current method, however, is that due to
a lack of concurrent compaction during thermal maturation,
melanosome organisation is lost, hindering comparisons to
fossil feathers with reported structural colouration based on
preserved melanosome arrangement (Saitta et al., 2018d ).

Palaeocolour reconstructions (see Table 2 for a list of
fossil specimens for which colours have been reconstructed,
and Fig. 5 for illustrations of key taxa) have been used to
infer aspects of extinct organisms’ ecology or behaviour,
such as sexual displays and camouflage. Iridescent plumage
in Microraptor (Li et al., 2012) and Caihong (Hu et al., 2018),
rufous head feathers and spangled remiges and coverts of

Anchiornis (Li et al., 2010), striped retrices in Caudipteryx (Qiang
et al., 1998), melanised rectrices in Jeholornis (O’Connor et al.,
2013), elongate ribbon-like rectrices in Epidexipteryx (Zhang
et al., 2008), and possibly sexually dimorphic streamer-like
retrices, spotted wings, and head feathers in Confuciusornis

(Zhang et al., 2010; Li et al., 2018), among others, might be
consistent with the presence of sexual selection and visual
displays, at least among non-avialan maniraptoran dinosaurs
and early birds (Clarke, 2013).

Countershading is a form of camouflage in which an
animal’s body is lighter in the ventral regions and darker in
the dorsal regions (Stevens & Merilaita, 2009; Penacchio
et al., 2015). This pigmentation pattern counteracts the
shadow the body casts when it is illuminated from above
to reduce three-dimensional appearance to a relatively
two-dimensional flattened appearance. This makes the
animal more difficult to recognise against its background.
Countershading is widespread among animals and is
consistent with the ventrally non-pigmented abdomen
in Psittacosaurus (Vinther et al., 2016), Borealopelta (Brown
et al., 2017), and Sinosauropteryx (Smithwick et al., 2017).
Additionally, a bandit mask, common in modern diurnal
birds and mammals possibly to reduce glare in open
environments and mask the presence of eyes, has been
reported in Sinosauropteryx (Smithwick et al., 2017). One type
of analysis of countershading in fossils involves the creation
of a uniformly grey three-dimensional volume-rendering
model, considering soft tissues such as musculature, that
is photographed in different natural and laboratory light
conditions. The negative images of the illuminated model are
then matched against the carbonaceous stains of macroscale

pigmentation patterns in the fossil to determine which
lighting conditions most closely estimate the countershading
pattern of the animal. Animals in open, well-illuminated
habitats normally show sharp and more dorsally situated
boundaries between dark and light colours, whereas
smoother and ventrally situated boundaries are common
among animals in diffusely lit habitats. Such analysis of
countershading patterns enables ecological hypotheses for
extinct taxa to be proposed: closed, shaded environments for
Psittacosaurus (Vinther et al., 2016) versus open, illuminated
environments for Sinosauropteryx (Smithwick et al., 2017).
Predator–prey interactions have also been predicted by
comparing the relationships between body size and extent
of countershading in modern animals with those of fossils
in order to predict predation pressure (Brown et al., 2017).
Once predation pressure is reduced due to the evolution
and development of large body size, countershading can
be lost, allowing for comparisons of predation pressure on
large-bodied animals across time. However, it must be kept in
mind that fully articulated fossils with well-preserved pigment
preservation capable of being reasonably modelled in three
dimensions are the exception rather than the norm.

VI. DISCUSSION

Under the framework presented herein (Fig. 6), the fossil
specimen is first identified and placed within a phylogenetic
framework, followed by macroscopic examination of
carbonaceous stains and visible colour patterns in the
integument (e.g. stripes, spots, splotches, spangles, etc.)
in both the part and counterpart, if present. Since, the
macrostructure of feathers (pennaceous versus plumulaceous
vane, branching patterns, shapes of barbs and barbules)
can be critical to colour production, particularly structural
colour, a range of imaging is recommended to visualise their
preserved morphology as far as possible. For example, UV
imaging can clarify integumentary details and sometimes
reveal hidden information (Frey et al., 2003; Tischlinger,
2005; Chiappe & Göhlich, 2010; Hone et al., 2010; Kellner
et al., 2010; Rauhut et al., 2012; Tischlinger & Arratia,
2013; Foth, Tischlinger & Rauhut, 2014). Laser stimulated
fluorescence (LSF) is a next-generation fluorescent imaging
method that offers substantial benefits in these areas
(Mayr et al., 2002; Kaye et al., 2015, 2019a,b; Falk et al.,
2016; Vinther et al., 2016; Wang et al., 2017; Yang et al.,
2019). The utility of these fluorescent imaging methods
appears to stem from the preservation of soft tissues like
patagial membranes, skin, scales, or keratinous sheaths via
endogenous phosphates (Murphy et al., 2006; Christiansen &
Tschopp, 2010). Although fossil melanin does not fluoresce,
fluorescing compounds in the sediment matrix can often
backlight the fossil to reveal the morphology of organically
preserved integument (Kaye et al., 2015; Wang et al., 2017).
For feathers, unless the rachis/calamus is calcified, then
it is likely that it will not fluoresce and will have to be
visualised through backlighting. LSF can also help identify
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Fig. 5. Key fossil taxa used for palaeocolour reconstruction: (A) Caihong juji (Hu et al., 2018), (B) a pristine specimen of Anchiornis
huxleyi showing macroscale colour patterns (image credit: Xiaoli Wang), (C) specimen of Anchiornis used for prediction of plumage
colour (Li et al., 2010), (D) Eoconfuciusornis zhengi (O’Connor & Claessens, 2005; Pan et al., 2016), (E) Psittacosaurus (Vinther et al., 2016),
(F) Eocypselus rowei (Ksepka et al., 2013), (G) Sinosauropteryx prima (Zhang et al., 2010; Smithwick et al., 2017), (H) Microraptor gui (Li et al.,
2012), and (I) Borealopelta markmitchelli (Brown et al., 2017). Scale bars: A, 10 cm; B, 10 cm; C, 10 cm; D, 20 mm; E, 20 mm; F, 10 cm;
G, 50 cm; H, 10 cm; I, 0.5 m.
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Fig. 6. (A) Proposed holistic schematic framework for the reconstruction of fossil colour. Solid lines indicate confirmed steps;
dashed lines indicate potentially useful, but yet untested, steps in palaeocolour reconstruction. (B) Sediment-encased maturation
can be used to experimentally validate taphonomic changes in fossils. ESI-MS, electrospray ionisation mass spectrometry;
FIB-TEM, focused ion beam-transmission electron microscopy; FT-ICR-MS, Fourier-transform ion cyclotron resonance mass
spectrometry; HPLC-MS, high performance liquid chromatography; LSF, laser stimulated fluorescence; MLR, multinomial logistic
regression; NMR, nuclear magnetic resonance; PCA, principal components analysis; PPC, peak probability contrast; Py-GC-MS,
pyrolysis-gas chromatography-mass spectroscopy; synchotron-LDPI, laser desorption-ionisation; TDCA, thiazole-4,5-dicarboxylic
acid; TOF-SIMS, time of flight secondary-ion mass spectroscopy; UV, ultra-violet.

preservational gaps within the fossil, to provide an estimate
for the loss of information due to partial decay and
disarticulation (e.g. Anchiornis: BMNHC PH828 and Yi: STM
31-2), as well as any artificial reconstructions added to the
fossil (Mateus, Overbeeke & Rita, 2008; Kaye et al., 2015).
While several types of pigment biomolecules (e.g. porphyrins)
can fluoresce, their preservation potential is either uncertain
or their biomarkers cannot be reliably linked to their original
sources and distinguished from environmental sources.

Once both white-light visible and white-light invisible
tissues have been identified, the next step would ideally be
to create a detailed map that encompasses all identified
integumentary tissue types and macroscopic colour patterns
for destructive sampling. While destructive sampling is
carried out by flaking off small regions of organic
stains, care must be taken to acquire the least material
that is necessary. Following this, samples can be coated
with gold/silver for ultrastructural analysis using scanning
electron microscopy (SEM) to determine melanosome
morphology and organisation. Additionally, if the fossil
specimen is small enough to be placed into the SEM
chamber, it can imaged uncoated under variable pressure
conditions (VP-SEM) (Vinther et al., 2008; Zhang et al.,
2010). If melanosome morphology is preserved (i.e. not
taphonomically altered into amorphous fossil melanin) and
appears minimally undistorted by diagenesis as evidenced,
for example, by organic melanosomes residing inside mouldic

impressions with minimal shrinkage, then the melanosome
shape data can be compared to that of modern species using
QDA or MLR (Nordén et al., 2018). If melanosomes seem to
be arranged in ordered nanostructural arrays, then sections
perpendicular to barb/barbule long axes made using focused
ion beam-transmission electron microscopy (FIB-TEM) can
at least partially reveal the nature of the repeating units in
three-dimensional space (Hu et al., 2018).

Even if the melanosome morphology is obliterated or
rendered unusable by diagenesis, melanin chemistry can
still be exploited to identify the diagenetically altered
melanin and ascertain the type of melanin pigment.
Different variants of mass spectroscopy techniques such as
synchotron-LDPI (Liu et al., 2014), TOF-SIMS (Colleary
et al., 2015), or peroxidation followed by pyrolysis-gas
chromatography-mass spectroscopy (Py-GC-MS) (Glass
et al., 2012, 2013) can be used to detect chemical biomarkers
of melanin. Melanin-based colours can be estimated through
comparison with modern bird feathers through statistical
methods such as peak probability contrast (PPC) (Liu et al.,
2014), which identifies the most important melanin peaks
for identifying colour in a training database of modern
birds and predicts the colour in fossil samples based on the
presence/absence of those peaks. One point to note is that the
morphology of melanosomes which produce non-iridescent
structural colours is not readily distinguishable from those of
grey-colour-imparting ones and this has important bearings
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on palaeocolour reconstruction (Babarović et al., 2019). In
these cases, simple statistical classifications or chemical
analysis may not be sufficient to pin-point exact colours
in fossils. Phylogenetic ancestral state reconstruction has
shown much promise in adequately distinguishing between
grey and non-iridescent-colour-producing melanosomes in
fossil birds (Babarović et al., 2019).

Although pigments other than melanin have yet to be
fully utilised in vertebrate palaeocolour reconstructions, we
present some possible analytical techniques here. Carotenoid
biomarkers (e.g. loliolide, isololiolide and carotanes) can be
probed for by Raman spectroscopy. Porphyrin biomarkers
(e.g. metallo-DPEP and metallo-BiCAP) can be detected
with nuclear magnetic resonance (NMR) spectroscopy,
HPLC-MS, electrospray ionisation mass spectrometry
(ESI-MS), Fourier-transform ion cyclotron resonance mass
spectrometry (FT-ICR-MS), or synchotron-LDPI (Mironov
et al., 2017; Zheng et al., 2018). However, caution is urged
in linking these biomarkers with carotenoids or porphyrins
in carbonaceous fossils since they might be derived from
exogenous, environmental sources.

A systematic understanding of the molecular changes
that occur through pigment diagenesis will help to guide a
search for chemical signatures in fossils, and so researchers
attempting to reconstruct palaeocolour may wish to
validate their conclusions under experimental frameworks.
Experimental taphonomy, particularly thermal maturation,
should help to identify chemical and morphological
signatures of fossil melanin and other pigments and might
lead to the possibility of using pigments other than melanin
for palaeocolour reconstruction (Colleary et al., 2015; Saitta
et al., 2017, 2018d ).

VII. CONCLUSIONS

(1) There is currently no single formalised methodological
framework that can be referenced for all cases of fossil
colour reconstruction. Additionally, limitations on the
preservation of biological tissues, sampling, and diagenesis
should be accounted for. For example, information loss
in fossilised feathers due to incomplete preservation
of structural colour-imparting keratin protein arrays or
uncertainties in the preservation/identification of other
fossil pigments should be borne in mind as combined
pigmentary and structural mechanisms may have produced
colour blends in extinct taxa that are undetectable
in fossils.

(2) The correlation between melanosome morphology
and the chemistry of the melanin pigment within, and
therefore the hue produced, does not persist in tissues other
than feathers and hair (i.e. non-filamentous integument)
(Vinther, 2015). Other workers have gone further by
suggesting that the relationship does not persist in some
non-maniraptoran dinosaurs based on the hypothesis that
melanosome morphology is dependent on pleiotropic gene
relationships with other metabolic processes (Kellner et al.,

2010; Li et al., 2014), but this hypothesis is currently
untestable in extinct organisms.

(3) Given that colour patterns, such as camouflage and
countershading, are now being used to inform ecological
aspects such as habitat preference and predator–prey inter-
actions (Vinther et al., 2016; Brown et al., 2017; Smithwick
et al., 2017), it has become especially important to discuss
thoroughly the nuances of palaeocolour reconstruction.
Herein, we synthesised different methodologies to provide
a thorough framework to recognise melanin and fossilisable
structural colour-based patterns in fossils, especially among
amniotes.

(4) Only once colour patterns have been reconstructed
can predictions be made regarding the visual ecology and
behaviour of ancient animals, such as signalling, camouflage,
habitat preference, or predator–prey interactions. Strong
caution has been advised by Negro, Finlayson & Galván
(2018) in inferring colour patterns and predicting life-history
traits in fossils. While some of their criticisms are
quite valid, it should be kept in mind that there are
numerous limitations commonly faced by palaeontologists,
such as an incomplete fossil record, poor preservation,
destructive sampling techniques, and the inability to conduct
observational or experimental behavioural or ecological
studies on extinct organisms, all of which will hinder
palaeocolour reconstruction efforts. Although biases should
be recognised and accounted for, these difficulties should
not preclude attempts by researchers to conduct objective
palaeobiological investigations to the best of their abilities,
thus making the field of palaeocolour reconstruction an
exciting and stimulating endeavour.

(5) This review provides a framework incorporating a
comprehensive battery of tests informed by taphonomy that
can serve to guide palaeocolour reconstruction, especially
among amniotes.
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Babarović, F., Puttick, M. N., Zaher, M., Learmonth, E., Gallimore,
E. J., Smithwick, F. M., Mayr, G. & Vinther, J. (2019). Characterization
of melanosomes involved in the production of non-iridescent structural feather
colours and their detection in the fossil record. Journal of the Royal Society Interface 16,
20180921.

Bagnara, J. T. & Hadley, M. E. (1973). Chromatophores and Color Change. Prentice
Hall, New Jersey.

Bagnara, J. T., Taylor, J. D. & Hadley, M. E. (1968). The dermal chromatophore
unit. The Journal of Cell Biology 38, 67–79.

Barrett, P. M., Evans, D. C. & Campione, N. E. (2015). Evolution of dinosaur
epidermal structures. Biology Letters 11, 20150229.

Bell, A. A. & Wheeler, M. H. (1986). Biosynthesis and functions of fungal melanins.
Annual Review of Phytopathology 24, 411–451.

Bell, P. R., Campione, N. E., Persons, W. S. T., Currie, P. J., Larson,
P. L., Tanke, D. H. & Bakker, R. T. (2017). Tyrannosauroid integument reveals
conflicting patterns of gigantism and feather evolution. Biology Letters 13, 20170092.

Berzelius, J. J. (1840). Lehrbuch der Chemie, Fourth Edition. Arnoldische Buchhandlung,
Dresden und Leipzig.

Beyermann, K. & Hasenmaier, D. (1973). Identifizierung 180 Millionen Jahre alten,
wahrscheinlich unverändert erhaltenen Melanins. Fresenius’ Zeitschrift für Analytische

Chemie 266, 202–205.
Blair, J. & Graham, J. (1954). The pigments of snake skins. 1. The isolation of

riboflavin as a pigment of the skins of the green snakes Philothamnus semivariegatus and
Dispholidus typus. Biochemical Journal 56, 286–287.

Blakey, P. & Lockwood, P. (1968). The environment of calcified components in
keratins. Calcified Tissue Research 2, 361–369.

Blakey, P., Earland, C. & Stell, J. (1963). Calcification of keratin. Nature 198, 481.
Bohren, C. F. & Huffman, D. R. (2008). Absorption and Scattering of Light by Small

Particles. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
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characterization of allomelanin from black oat. Phytochemistry 130, 313–320.

Villela, G. & Thein, M. (1967). Riboflavin in the blood serum, the skin and the
venom of some snakes of Burma. Cellular and Molecular Life Sciences 23, 722.

Vinther, J. (2015). A guide to the field of palaeo colour: melanin and other pigments
can fossilise: reconstructing colour patterns from ancient organisms can give new
insights to ecology and behaviour. BioEssays 37, 643–656.

Vinther, J., Briggs, D. E., Prum, R. O. & Saranathan, V. (2008). The colour of
fossil feathers. Biology Letters 4, 522–525.

Vinther, J., Briggs, D. E., Clarke, J., Mayr, G. & Prum, R. O. (2010). Structural
coloration in a fossil feather. Biology Letters 6, 128–131.

Vinther, J., Nicholls, R., Lautenschlager, S., Pittman, M., Kaye, T. G.,
Rayfield, E., Mayr, G. & Cuthill, I. C. (2016). 3D camouflage in an ornithischian
dinosaur. Current Biology 26, 2456–2462.

Vitek, N. S., Vinther, J., Schiffbauer, J. D., Briggs, D. E. & Prum, R. O.
(2013). Exceptional three-dimensional preservation and coloration of an originally
iridescent fossil feather from the Middle Eocene Messel Oil Shale. Paläontologische
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