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A B S T R A C T   

A semi-mechanistic oil palm growth and yield model called Sawit.jl was developed to account for 
a wide range of planting densities and soil textures under Malaysia’s climate conditions. The 
model comprises components related to meteorology, photosynthesis, energy balance, soil water 
content, and crop growth. The model simulates instantaneous meteorological properties using 
daily weather data, calculates simultaneous evaporation from crop and soil with the 
Shuttleworth-Wallace model, determines soil water content through Darcy’s law, and adapts a 
biochemical C3 model for photosynthesis. The model is also parameterized using updated mea
surements from the newer tenera oil palm, including temperature-dependent Rubisco kinetics, 
specific leaf area, and the partitioning of nutrients and dry matter between various tree parts. 
Sawit.jl was validated using historical field measurement data from seven Malaysian oil palm 
sites, encompassing palm ages spanning 1–23 years. These seven sites differed in soil type 
(Inceptisols and Ultisols), planting density (82–299 palms ha− 1), soil texture (27–59 % clay and 
7–67 % sand), and rainfall (1800–2800 mm yr− 1). The model showed overall good accuracy in 
simulating oil palm parameters (except for trunk weight) across diverse conditions, with model 
agreement metrics ranging from 6 to 27 % for model absolute errors, − 22 to +17 % for model 
bias, and 0.38 to 0.98 for the Kling-Gupta Efficiency index. The model also predicted the response 
of oil palm yield to abrupt rainfall changes, such as those during El Niño and La Niña events, 
while accounting for how soil texture, rainfall, and other meteorological factors influence water 
deficits and crop photosynthesis. However, model accuracy varied by site, planting density, and 
oil palm parameter. Model accuracy can be increased by more accurately representing the oil 
palm microclimate, incorporating fruiting activity, and refining the dry matter partitioning 
mechanism for the trunk.   

1. Introduction 

Oil palm (Elaeis guineensis Jacq.) is the world’s most important vegetable oil crop, surpassing soybean [1]. Malaysia is the second 
largest producer and exporter of palm oil worldwide, with 18 % of the country’s total land area, or 5.87 million ha, covered by this 
single crop alone in 2020 [2,3]. 
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Various factors influence oil palm growth, including the weather, soil, crop, and other environmental elements. Due to the complex 
relationship between these factors and the fact that oil palm is a sizable tree with a commercial lifespan of 20–30 years, interest in oil 
palm models has increased. These models can be used alongside or as alternatives to field trials, particularly when the trials are time- 
consuming, costly, or technically challenging, such as in certain climate change studies. Oil palm models allow for quick assessment of 
multiple factors affecting crop production and aid in developing adaptive crop management strategies, such as modifying planting 
densities, selecting cultivars, applying irrigation, devising fertilization methods, and planning crop rotations [4–6]. Oil palm models 
are useful tools for evaluating crop performance in various environments and management approaches. Rival [7] emphasized that 
developing climate-adaptive oil palm varieties requires a multidisciplinary approach, and that modeling oil palm responses to 
changing climatic conditions is crucial for establishing climate-resilient genotypes and farming practices. 

OPSIM was the first semi-mechanistic model for oil palm growth and yield, and its introduction was significant [8]. It was the first 
to integrate crop physiology, physical processes, and the underlying relationships between the crop and its environment. Subsequent 
modifications were made to OPSIM to include more physical-based equations for photosynthesis [9]. Over the last four decades, 
several other oil palm models have emerged. These include SIMPALM, GPHOT and GPHOT2, OPLFSIM3, OPRODSIM, ECOPALM, 
PALMSIM, APSIM-Oil Palm, CLM-Palm, CLIMEX-Oil Palm, and ORCHIDEE‒MICT‒OP [10–20]. 

The primary goal of this study was to develop and validate a more mechanistic model for oil palm growth and yield, accounting for 
a wide range of planting densities and soil textures in Malaysia’s climate conditions. The first objective was to improve the photo
synthesis simulations by incorporating a more flexible and representative biochemical photosynthesis model for oil palm. Except for 
CLM-Palm and ORCHIDEE‒MICT‒OP, the current oil palm models utilize the radiation use efficiency function to relate intercepted 
radiation to the gross assimilates produced through photosynthesis. These functions are simple to formulate and use, but they are 
empirical and thus less reliable for simulating photosynthesis responses to various environmental factors [21]. In contrast, biochemical 
photosynthesis models, such as those developed by Farquhar et al. [22] and later adapted by Collatz et al. [23], are more physical 
based. As a result, these models are considered more versatile and accurate under diverse conditions [18,20,24,25]. However, they 
require more data, such as information on the temperature dependency of Rubisco kinetics, the maximum Rubisco carboxylation rate 
Vc,max, and the CO2 photocompensation point [26]. Unfortunately, these parameters and their temperature dependencies are largely 
unknown for oil palm, although there have been several attempts to estimate Vc,max for oil palm [18,20,27,28]. 

Second, this research aimed to improve evapotranspiration (ET) simulations by incorporating the microclimate conditions within 
oil palm canopies and the simultaneous evaporative water loss from both soil and tree. ET is a core component of the hydrological cycle 
and is directly related to crop water stress, soil water content, photosynthesis, and energy balance [29]. As such, the development and 
implementation of more precise and dependable ET simulations are of paramount importance. Some oil palm models use either the 
Penman-Monteith model or a simple transpiration efficiency (TE) coefficient to simulate ET [17,30]. These methods are inadequate for 
modeling the complex microclimate environment within the oil palm canopies. For instance, the TE coefficient is an empirical value 
that is likely to vary by season and location, as it depends on weather and management practices [31,32]. And the Penman-Monteith 
model only accounts for evaporative losses from the crop or soil, but not both concurrently. Evaporation from the soil, especially in the 
wide spacing of oil palm rows and beneath partially closed canopies, can be significant [33]. Overlooking this aspect may result in 
large errors when modeling low-density oil palm stands. The Shuttleworth-Wallace model extends the Penman-Monteith model to 
allow concurrent heat fluxes from soil and crop [34]. Since its introduction, this model has been used widely and has performed well 
[35–38]. However, to the best of our knowledge, this model has not yet been applied to oil palm research. However, like the 
Penman-Monteith model, the main limitation of the extended model is its parameterization, which remains largely unknown for oil 
palm. 

The third aim was to update the model with data on higher-yielding tenera oil palms instead of older dura materials, particularly on 
the partitioning of 1) nitrogen and mineral content, and 2) dry matter in individual tree parts. Many oil palm models employ respi
ration coefficients to simulate the maintenance respiration. These coefficients are calculated based on the nitrogen and mineral content 
in different tree parts, thereby making this method more mechanistic or physical-based [39,40]. However, these coefficients were 
derived either from a single tenera × dura (L2T × D10D) oil palm progeny grown on the Ivory Coast (e.g., SIMPALM and PALMSIM) or 
from measurements by Ng et al. [41], who sampled older dura oil palms in good growing conditions in Malaysia (e.g., OPSIM and 
OPRODSIM). However, these maintenance respiration coefficients may not be accurate today, as they originate from outdated planting 
materials instead of the current high-yielding tenera. Oil palm growth can be divided into vegetative growth (leaf, trunk, and root) and 
reproductive growth [42]. The techniques used to simulate vegetative growth are primarily empirical and are based on the vegetative 
dry matter requirement or phytomer phenology of the oil palm [8,10,14,15,18,20,43]. Therefore, using updated measured data from 
the current tenera oil palm would enable a more accurate representation of the growth dynamics of the oil palm. 

The final aim was to develop a model applicable to a wider range of planting densities, acknowledging that planting density 
strongly affects oil palm growth and yields [44–47]. Many commercial oil palm plantations generally have between 128 and 148 palms 
ha− 1, but a wide range of planting densities have been explored in attempts to increase oil palm yield [44,45,48–50]. Changes in 
planting density will affect the interception of solar irradiance, the microclimate within oil palm canopies, and soil water balance. 
Except for OPRODSIM, the present oil palm models are only applicable to a narrow range of planting densities. 

To develop this oil palm model, results from several of our works were used to parameterize the model, including hourly simu
lations of meteorological properties, parameterization of the biochemical model of C3 leaf photosynthesis, and determination of the 
maintenance respiration coefficients and dry matter partitioning between various tree parts [51–53]. Specifically, our work included 
the validation of hourly weather simulations for six major oil palm growing areas in Malaysia from 2015 to 2017 and the parame
terization of the Farquhar-von Caemmerer-Berry C3 photosynthesis model specifically for oil palm, in which six replicates from palm 
ages of 7 months and 1, 2, 7, and 12 years were measured [52,53]. Finally, we quantified the standing biomass, dry matter production, 
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and nutrient demand of oil palm aged 1, 2, 4, 7, 11, 17, and 20 years [51]. All these works represented Malaysian conditions, where the 
current tenera oil palm was planted and grown under current agronomic practices in Malaysia. Model simulations were validated 
against historical field measurement data from different palm ages (1–23 years) in seven oil palm plantations across Peninsular 
Malaysia, growing under various soil textures, weather conditions, and a wide range of planting densities (82–299 palms ha− 1). 

2. Model development 

2.1. General framework 

An oil palm model called Sawit.jl was coded in the Julia programming language [54]. It simulates the growth and yield of individual 
oil palm stands, specifically for crop production level 2, where growth is constrained only by climate and water availability [55]. The 
model assumes an optimal nutrient level for the oil palm and does not consider the effects of pests, diseases, or weeds. It also presumes 
standard management practices, such as pruning and mulching, as is typically observed in Malaysia’s oil palm industry. 

The model comprises six core components: 1) the main loop, 2) meteorology, 3) photosynthesis, 4) energy balance, 5) soil water, 
and 6) crop growth (Fig. 1). A simulation run starts with the main loop. It initializes the model state by reading the input data from a 
file and then transfers the control to the meteorology component. Utilizing daily weather data, this component calculates instanta
neous meteorological properties, including air temperature, wind speed, solar irradiance, air vapor pressure, and relative humidity. 
The global model state is then updated with this new information. 

The photosynthesis and energy balance components next compute the radiation regime in oil palm canopies and resolve the energy 
balance of the system. They calculate the energy partitioning, wind speed profile, and resistances to determine the evaporative water 

Fig. 1. General framework of Sawit.jl model. The numbers in squares represent the primary model routes or paths, where the simulation 
sequentially cycles through paths 1 to 5 and then repeats from 1 until it ends. 
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losses and canopy temperature. These factors are essential for computing oil palm photosynthesis while considering the constraints of 
water, solar radiation, and air vapor pressure deficit. 

After updating the global model state, the soil water component calculates the soil water content by dividing the soil profile into 
several layers and then solving the one-dimensional water fluxes within each layer. The net water flux is the daily change in soil water 
content, which is the difference between incoming and outgoing water fluxes. As before, the global model state is then updated. 

Finally, the crop component calculates the maintenance and vegetative growth respiration rates to determine the assimilate 
allocation from photosynthesis for crop maintenance, growth, bunch production, and yield. It also computes the daily increase in tree 
height and rooting depth. The daily results are saved to an output file, and the main loop advances the simulation date. Simulation ends 
when the current date surpasses the specified end date. 

2.2. Meteorology component 

The site’s local solar hours of sunrise tsr and sunset tss, day length (h), solar inclination (rad), extraterrestrial solar irradiance Iet (W 
m− 2), relative humidity RH (%), and air vapor pressure (mbar) were determined from Ephrath et al. [56], and Goudriaan and van Laar 
[57]. Instantaneous meteorological properties, such as direct and diffuse solar irradiance, wind speed, air temperature, vapor pressure, 
and humidity, were estimated based on the daily measured meteorological parameters of minimum and maximum air temperature (◦C) 
and wind speed (m s− 1). Daily measured rainfall data were also required. 

Total solar irradiance It consists of two components: the direct (beam) component Idr and the diffuse component Idf. The direct 
component arrives from a single source (the position of the sun), whereas the diffuse component arrives from all directions as a result 
of scattering and reflection on various surfaces. The partitioning of It into Idf and Idr was based on calculations by Khatib et al. [58], who 
fitted Eq. (1) to 20-year daily solar radiation data from 28 sites across Malaysia to obtain 

Idf
/

It = 0.9505 + 0.91634KT − 4.851K2
T + 3.2353K3

T (1)  

where KT is the sky clearness index, which is simply the ratio between It and Iet. Following the method by Dimas et al. [59], KT was 
estimated from RH by fitting a linear function between the measured hourly values from five oil palm sites in Malaysia (Fig. 2) [52]. 
The daily solar irradiance components of direct Idr,d and diffuse Idf,d were calculated by integrating the instantaneous solar irradiance 
components of direct Idr and diffuse Idf, respectively, from sunrise tsr to sunset tss. 

The daily trend of air temperature was described by the set of equations given by Wilkerson et al. [60], in which air temperature 
varied sinuously with time between 1.5 h after the time of minimum air temperature and the time of sunset. For periods outside of this 
period, the air temperature declined linearly with time. 

Similarly, instantaneous wind speed was also assumed to vary sinuously between 1.5 h after sunrise and sunset [56]. Outside this 
period, wind speed was assumed to be constant at a minimum value, as described by umin. The daily wind speed trend was estimated 
using Eq. (2a): 

u= umin + (umax − umin) sin[π(th − tsr − 1.5)/DL]; u ≥ umin (2a)  

where u is the wind speed at a given local solar hour (m s− 1); th is the local solar hour; and umax and umin are the maximum and 
minimum wind speeds for the day, respectively (m s− 1). The mean daily minimum and maximum wind speeds were estimated by 
fitting the following empirical equations (Eq. 2 b-c) to the measured 10-year wind speed data from several towns in Malaysia: 

Fig. 2. Linear relationship between mean relative humidity (RH) and mean sky clearness index for five sites in Malaysia (N = 25,548) [52]. Bars 
represent ±1 SD. 
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umin =0.5591u1.25
d (2b)  

umax =1.7976u0.75
d (2c)  

where ud is the mean measured daily wind speed (m s− 1) [61]. 

2.3. Photosynthesis component 

2.3.1. Plant radiation regime 
The plant radiation regime within canopies comprises four solar radiation flux components [62]. These four components include 

the unintercepted direct radiation with and without the addition of scattered beams, the sole scattered component, and the average 
diffuse solar radiation. The ability of canopies to intercept solar radiation was measured using the canopy extinction coefficient for 
direct and diffuse components. Oil palm canopies were assumed to be randomly distributed in the aerial space so that the canopy 
extinction coefficient for direct radiation kdr could be determined from Goudriaan [63]. To account for partially closed canopies, the kdr 
for full canopies was adjusted by multiplying it by a canopy clustering coefficient ω, following Campbell and Norman [62] to give 
kdr • ω, such that ω ranges from 1 for fully closed canopies to 0 for the absence of canopies. Following the approach by Teh [64], the 
canopy extinction coefficient for diffuse radiation kdf was derived by integrating kdr • ω over a uniform overcast sky, as defined by 
Lemeur and Blad [65], and over the whole canopy from 0 to L (leaf area index; m2 leaf m− 2 ground) to obtain Eq. (3) as follows: 

kdf = exp
(

0.25 − 0.52
̅̅̅
L

√ )
(3) 

The interception of solar radiation accounts for the reflection (albedo) from the canopies and the soil surface [57,63]. 
The oil palm canopy was divided into two parts: sunlit and shaded. The sunlit canopy is a part of the canopy that is exposed to the 

direct radiation of Qsl and has a total leaf area of Lsl (sunlit leaf area index). Similarly, the shaded canopy is the part that is exposed to 
the diffuse radiation of Qsh and has a total leaf area of Lsh (shaded leaf area index). This means that the total leaf area index L of the 
whole canopy is the sum of Lsl and Lsh (all in m2 leaf m− 2 ground). Calculations for Qsl, Qsh, Lsl, and Lsh were determined from Goudriaan 
and van Laar [57], and Campbell and Norman [62]. 

2.3.2. CO2 assimilation 
Oil palm canopy CO2 assimilation was determined using Eq. (4), following the method of Collatz et al. [23], which is an adaptation 

of the model by Farquhar et al. [22]. Gross leaf CO2 assimilation rate Λ (μmol CO2 m− 2 leaf s− 1) was taken as the lowest of the three 
assimilation rates limited by Rubisco, light, and sink: 

Λ=MIN
[
vc,

(
vq,sl + vq,sh

)
, vs

]
(4)  

where vc, vq,sl/sh, and vs are the assimilation of CO2 limited by Rubisco, light, and sink, respectively; and the MIN is a function to select 
the minimum of the given values. One important parameter in the calculations of the Rubisco- and light-limited assimilation rates is the 
intercellular CO2 concentration Ci (μmol mol− 1), which is related to the ambient CO2 concentration Ca (μmol mol− 1), following Yin 
et al. [66], as follows: 

Fig. 3. Linear decline in the mean ratio between intercellular (Ci) and ambient (Ca) CO2 concentrations with increasing mean leaf vapor pressure 
deficit (VPDleaf) for oil palm trees aged 1–19 years (N = 654) [53]. Leaf gas exchange was measured based on Long and Bernacchi [67] using the 
TPS-2 Portable Photosynthesis System (PP Systems International, Inc., Amesbury, US). Bars represent ±1 SD. 
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Ci
/

Ca =1 − (1 − Γ* /Ca)
(
a+ b×VPDleaf

)
(5)  

where Γ*, determined from Collatz et al. [23], is the CO2 compensation point (mbar), which is the CO2 concentration at which the rate 
of photosynthesis is equal to the rate of respiration; and VPDleaf is the leaf vapor pressure deficit (mbar), which is the difference be
tween the saturated air vapor pressure at canopy temperature Tf and the ambient air vapor pressure. The coefficients a and b in Eq. (5) 
were determined by Cheah and Teh [53] as 0.0615 and 0.0213, respectively (Fig. 3). 

Calculations for the Rubisco-, light- and sink-limited assimilation rates and their respective parameters were from Collatz et al. 
[23]. However, the values of several of these photosynthetic parameters (Table 1) depended on canopy (foliage) temperature Tf (◦C), so 
each of these parameters was corrected using the Arrhenius equation, given by Eq. (6) as follows: 

ξ= ξ(25) × Q(Tf − 25)/10
10,ξ (6)  

where ξ and ξ(25) are the parameter values after temperature correction and at 25 ◦C, respectively; and Q10,ξ is the relative change in 
the parameter ξ for every 10 ◦C change (their values as listed in Table 1). 

The maximum Rubisco carboxylation rate at 25 ◦C or Vc,max(25) for oil palm was measured by Cheah and Teh [53] for tree ages 7 
months to 12 years, and its relationship with tree age (in days) can be described by 

Vc,max(25) = exp[4.7971 − 0.9095 exp(− age /365)] (7)  

where Vc,max(25) increased rapidly within the first two years, after which it gradually plateaued at a mean (±SD) of 120 ± 32 μmol m− 2 

s− 1 at palm age 5 (Fig. 4). This mean maximum value for Vc,max(25) is 20 % higher than the constant value of 100.7 μmol CO2 m− 2 leaf 
s− 1 given by Fan et al. [18], who derived this value from the leaf nitrogen content and specific leaf area for crops in general, not 
specifically oil palm leaves. The Rubisco enzyme will denaturate at high temperatures, and data from Cheah and Teh [53] projected the 
onset of Rubisco degradation to start at 46 ◦C. Consequently, Vc,max, calculated using Eq. (7), was first corrected for the current foliage 
temperature (Eq. (6)), then for high temperatures using Eq. (8) as follows: 

Vc,max =
{

Vc,max (25) ×2.532(Tf − 25)/10
}/{

1+ exp
[
0.2

(
Tf − 46

)]}
(8) 

The gross leaf CO2 assimilation rates were separately determined for sunlit and shaded leaves, then scaled up to gross canopy CO2 
assimilation (Λcanopy; μmol CO2 m− 2 ground s− 1) by multiplying them with their respective leaf area indices, Lsl and Lsh [62]. Daily gross 
canopy photosynthesis was finally determined by integrating Λcanopy from sunrise tsr to sunset tss. 

2.4. Energy balance component 

Shuttleworth and Wallace [34] extended the Penman-Monteith model by Monteith [30] to enable the simultaneous evaporative 
losses from both crop and soil. They modeled the energy balance of the soil-plant-atmosphere system as a network of aerodynamic and 
surface resistances, in which heat fluxes must traverse within the system. The entire soil-plant-atmosphere system was described by a 
series of eight independent equations, with eight unknown variables. Therefore, through algebraic manipulations, these equations can 
be solved to give the total potential latent λET and sensible H heat fluxes (all in W m− 2), as well as the air vapor pressure deficit at the 
mean canopy flow VPD0 (mbar) [34,64]. In particular, knowing λET and VPD0 would solve the partitioning of potential latent and 
sensible heat fluxes to the soil and crop, and solving for the crop sensible heat would allow the canopy temperature Tf (◦C) to be known 
in subsequent photosynthesis calculations. The instantaneous latent heat fluxes were integrated over the entire day to determine the 
daily potential latent heat fluxes, which were then converted to the daily potential amount of water transpired (by plants) and 
evaporated (by soil), following Goudriaan and van Laar [57]. 

2.4.1. Available energy 
The available energy for the soil-plant-atmosphere system is driven by net radiation Rn (W m− 2), which is the sum of incoming 

shortwave and net long-wave radiation, or 

Rn =(1 − p)It + RnL (9)  

where ρ is the surface albedo (0.15); and RnL is the net long-wave radiation (W m− 2), determined from Brutsaert [72] and Ortega-Farias 

Table 1 
Parameter values for oil palm photosynthesis calculations. Parameters with subscript (25) denote their values at 25 ◦C. The Michaelis-Menten (MM) 
constants were from Bernacchi et al. [68,69] for general C3 plants. Other parameters were based on the oil palm leaf measurements by Cheah and Teh 
[53].  

ξ(25) Description Value Q10,ξ 

Kc(25) MM constant for CO2 (μmol mol− 1) 270 2.786 
Ko(25) MM constant for O2 (μmol mol− 1) 165,000 1.355 
τ(25) CO2/O2 specificity factor (μmol μmol− 1) 2389 0.700 
Vc,max(25) Maximum Rubisco capacity rate (μmol m− 2 s− 1) Varies with palm age 2.532  
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et al. [73]. Net radiation (Eq. (9)), after accounting for soil heat flux G (W m− 2), was then partitioned for crop and soil, following 
Shuttleworth and Wallace [34], and Goudriaan and van Laar [57]. The ratio of soil heat flux to net radiation (G/Rn) was set at 0.30 for 
sparse canopies, 0.07 for dense canopies, and subsequently adjusted based on the current leaf area index [30,74,75]. 

2.4.2. Vertical wind speed profile 
Calculations of wind speed at any height require information on the zero-plane displacement height d (m) and crop roughness 

length z0 (m) [34]. However, the values of these two parameters are uncertain for oil palm, but they can be estimated using Eqs. (10)– 
(13), given by Massman [76], as follows: 

d= hZ (10)  

z0 = h(1 − Z)exp(− k /U)to (11)  

Z=1 − 0.5 exp(− 2αw)[exp(− 2αw) − 1] / αw; 0.30≤Z ≤ 0.95 (12)  

U=0.32 − 0.264 exp
(
− 15.1CdLeff

)
(13)  

where αw is the vertical wind speed extinction coefficient; h is the tree height (m); k is the von Karman constant (0.4); Cd is the foliage 
drag coefficient (0.2); and Leff is the effective leaf area index (m2 leaf m− 2 ground), determined from Szeicz and Long [77] as follows: 

Leff =MIN[L, Lmax.PD /2] (14)  

where Lmax,PD is the maximum leaf area index (m2 leaf m− 2 ground) for a given planting density, PD (palms ha− 1). Lmax,PD (Eq. (14)) for 
oil palm was determined by fitting the best function (Eq. (15)) to the observed data by Cheah et al. [51]: 

Lmax,PD =1.4119 + 0.0267PD (15) 

Vertical wind speed extinction coefficient αw in Eq. (12), assumed equal to that for eddy diffusivity αn, increases with Leff per 
Massman [78] simulations on hypothetical plant stands (Eq. 16a-b): 

αw =αn = 1/y (16a)  

y= − 0.146 + 0.319
/ ̅̅̅̅̅̅̅̅̅̅̅̅

CdLeff
√

; y ≥ 0.2 (16b)  

2.4.3. Flux resistances 
Heat fluxes must traverse various resistances within the soil-plant-atmosphere system, such as the resistances between the soil 

surface and mean canopy flow rs
a and between the mean canopy flow and reference level ra

a, bulk boundary layer resistance rc
a, and 

canopy resistance rc
s (all in s m− 1). The first three resistances were determined using Eqs. (17)–(19), given by Campbell and Norman 

[62], and Kustas and Norman [75] as follows: 

Fig. 4. Mean (±1 SD) changes in the maximum Rubisco capacity rate Vc,max(25) with oil palm tree age [53]. Leaf gas exchanges for 7-month to 12-yr 
palm trees were measured (with 4–6 trees per age group) based on Long and Bernacchi [67] using the LI-6800-01 A portable photosynthesis system 
equipped with a Multiphase Flash fluorometer (Li-Cor Inc., Lincoln, NE, US). Then, based on the gas exchange data, Vc,max(25) was estimated 
following Sharkey [70] and Sharkey et al. [71]. 
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rs
a = exp(αn)

[

exp
(
− αn

zs0

h

)
− exp

(

− αn
z0 + d

h

)]
/
(αnku*) (17)  

ra
a = ln

(
zr − d
h − d

)
/
(ku*) +

{

exp
[

n
(

1 −
z0 + d

h

)]

− 1
}
/
(αnku*) (18)  

rc
a = αw

{
0.01Leff [1 − exp(− 0.5αw)]

̅̅̅̅̅̅̅̅̅̅̅
uh/w

√ }− 1
(19)  

where zs0 is the soil surface roughness length (m), where for flat and tilled land, its value is 0.004 m, following Hansen [79]; and w is 
the mean pinnae width (m), determined using Eq. (20), which was derived by fitting the best function to the measured changes in leaf 
dimensions with oil palm tree age (in days) from Roa et al. [80], as follows: 

w=0.0152 ln(age /365) + 0.0165 (20) 

The methods by Choudhury and Monteith [81], and Farahani and Ahuja [82] were used to determine the soil surface resistance rs
s (s 

m− 1) (Eq. (21a)) as follows: 

rs
s = τt l • exp

(

−
1
λ
×

θ1

θs,1

)
/ (

φpDm,v
)

(21a)  

where Dm,v is the vapor diffusion coefficient in air (24.7 × 10− 6 m2 s− 1); φp is the soil porosity (unitless); l is the dry soil layer thickness 
(taken as the first soil layer thickness) (m); θ1 is the soil water content of the first soil layer (m3 m− 3); θs,1 is the saturated soil water 
content (m3 m− 3) in the first soil layer; and λ is the soil pore-size distribution index (unitless), which can be estimated from the slope of 
the logarithmic suction-soil moisture curve, following Farahani and Ahuja [82]. τt in Eq. (21a) is the soil tortuosity (unitless), 
determined using Eq. (21b) from Shen and Chen [83] as follows: 

τt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

φp + 3.79
(
1 − φp

)√

(21b) 

Canopy resistance rc
s (s m− 1) was determined by Eq. (22a): 

rc
s =1

/ (
gst × Leff

)
(22a)  

where gst is the leaf stomatal conductance (m s− 1), which is the reduction in maximum leaf stomatal conductance gstmax (m s− 1) (Eq. 
(22b)) by low photosynthetically active radiation (PAR) fPAR, plant water stress fwater, and high vapor pressure deficit (VPD) fVPD: 

gst = gstmax × fPAR × fwater × fVPD (22b)  

where gstmax is 500 mmol m− 2 s− 1 or 0.012077 m s− 1 for oil palm [84]. 
Each of these factors, fPAR, fwater, and fVPD, was scaled from 0 to 1; therefore, under optimal conditions, all three are equal to 1, 

resulting in gst being maximum at gstmax. Therefore, these factors quantify the severity or extent of non-optimal conditions. Following 
Kropff [85], fwater evaluates the intensity of water-limited conditions by calculating the disparity between the actual transpiration ETc 
(m day− 1) and potential transpiration PETc (m day− 1) as follows: 

fwater = ETc/PETc (23) 

Fig. 5. Relationship between mean leaf stomatal conductance of oil palm with mean photosynthetically active radiation (PAR) (N = 381) (a) and 
mean air vapor pressure deficit (VPD) (N = 2591) (b) [53]. Leaf measurements were performed on 1- to 20-yr oil palm trees. Bars represent ±1 SD. 
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The factors fPAR and fVPD were determined by curve-fitting the measured data from Cheah and Teh [53] (Fig. 5a and b) to obtain Eq. 
24a-b and 25a-b as follows: 

fPAR = gst⟦PAR⟧
/
gst⟦PARmax⟧ (24a)  

gst⟦PAR⟧=0.014614[1 − exp(0.00874PAR)] (24b)  

fVPD = gst⟦VPD⟧
/
gst⟦VPDmin⟧ (25a)  

gst⟦VPD⟧=0.0044272 − 0.01111 ln(VPD) (25b) 

The functions gst⟦PAR⟧ and gst⟦VPD⟧ return the leaf stomatal conductance (m s− 1) at a specific PAR and VPD value, respectively. 
PARmax is the maximum PAR (W m− 2) at which oil palm leaf stomatal conductance no longer increases with PAR. Its value was set at 
330 W m− 2 (or 1500 μmol m− 2 s− 1) [86]. VPDmin is the minimum vapor pressure deficit (mbar), which was assigned as 10 mbar for oil 
palm [86,87]. VPD is the difference between the saturated vapor pressure and air vapor pressure. At VPDmin, leaf stomatal conductance 
is maximum and will decline with rising VPD. 

2.5. Soil water component 

2.5.1. Water fluxes 
The entire soil profile, extending from the surface to the root zone, was partitioned into a minimum of three consecutive layers. 

Water movement within each soil stratum was modeled using the "tipping bucket" method, where water flows from the topmost layer 
and subsequently flowing into the layers beneath [88]. The water balance calculations presumed the absence of surface runoff or 
groundwater. Furthermore, it was assumed that the soil below the last layer in the profile maintained a constant moisture content 
equivalent to that of the final layer [88]. Consequently, the water flow exiting the last soil layer was attributed solely to gravitational 
forces. 

Darcy’s law was used to describe the one-dimensional water flow from one soil layer to another (Eq. 26a-b). Water flux into soil 
layer no. I is qi (m day− 1), which was determined by 

qi =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MIN
[
Ks,1,Pnet

]
− ETs − ETc,i i = 1

Kθ,i

(
HT,i − HT,i− 1

)

(zi − zi− 1)
− ETc,i 1 < i ≤ N

Kθ,N i = N + 1

(26a)  

Kθ,i =
[
Kθ,i− 1 − Kθ,i

] / [
ln
(
Kθ,i− 1

)
− ln

(
Kθ,i

)]
(26b)  

where the subscript i represents soil layer i (i = 1 to N, with N being the total number of layers) and i-1 as the layer above I; Pnet is the net 
daily rainfall (m day− 1); HT is the total head (m); ETs and ETc are the actual evaporation and actual transpiration, respectively (m 
day− 1); and K is the logarithmic mean of hydraulic conductivities for layers i and i-1 (m day− 1), as per Bittelli et al. [89]. In the first 
layer, water entry was limited by Pnet or Ks,1. The water flux exiting the last layer (i = N), qN+1 equaled Kθ,N due to the assumption that 
the underlying soil was uniformly wet with the same water content as the previous layer. 

The saturated Ks and unsaturated Kθ soil hydraulic conductivity (all in m day− 1) were determined from Bittelli et al. [89], and soil 
matric suction Hm (m) from Saxton and Rawls [90], so that the total hydraulic gradient HT (m) is the sum of matric suction and gravity 
heads, where the latter is equal to the depth of a given soil layer from the soil surface. 

The water extracted by the roots in each soil layer i for ETc,i was derived from the plant water uptake algorithm by Miyazaki [91], 
following a 4:3:2:1 soil water extraction ratio. Based on field measurements by Nelson et al. [92], oil palm roots generally followed this 
extraction ratio: starting at the soil surface, they extracted about 40 %, 30 %, 20 %, and 10 % of water from each successive quarter 
segment of the root zone depth. 

The net rainfall Pnet (m) is the amount of rain reaching the ground below the canopies as throughfall and stemflow. The ratio 
between net rainfall Pnet and gross rainfall Pgross (Eq. (27)) under oil palm canopies for various tree ages was determined by Farmanta 
[93] as follows: 

Pnet
/

Pgross = MAX(0.7295, 1 − 0.0541L) (27)  

where the MAX function ensures that the net rainfall under full canopies never exceeds the mean of 72.95 % of the gross rainfall, as per 
observations. 

Finally, the net daily change in soil water content in soil layer i is equal to the net flux of the layer, which is determined as the 
difference between the influx and outflux. 

2.5.2. Actual evapotranspiration 
Actual evaporation ETs (m day− 1) occurs only from the first soil layer, and was determined by reducing the potential soil evap

oration PETs (m day− 1) by a reduction factor RD,e (0–1), following van Keulen and Seligman [94], described by Eq. 28a-b as follows: 
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ETs =PETs ·RD,e (28a)  

RD,e =
[
1 +

(
3.6073θ1

/
θs,1

)− 9.3172
]− 1

(28b) 

Similarly, actual transpiration ETc (m day− 1) was determined by reducing the potential transpiration PETc (m day− 1) by a reduction 
factor RD,c (equivalent to fwater in Eq. (23)), following Kropff [85], or 

ETc =PETc ·RD,c (29a)  

RD,c = fwater =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 θroot ≥ θcr,root

θroot − θ1500,root

θcr,root − θ1500,root
θ1500,root < θroot < θcr,root

0 θroot ≤ θ1500,root

(29b)  

θcr,root = θ1500,root + p
(
θ33,root − θ1500,root

)
(29c)  

where θroot is the volumetric water content in the root zone (m3 m− 3); subscripts 33 and 1500 denote the field capacity and permanent 
wilting point, respectively (m3 m− 3); and θcr,root is the critical volumetric water content in the root zone, below which water stress 
occurs (m3 m− 3). Soil water measurements by Foong [95] in irrigated and non-irrigated oil palm trials suggested that the critical soil 
water content below which oil palm suffers from water stress was approximately 50 % of the available water content (AWC). Similarly, 
Rey et al. [96] also observed that oil palm stomatal conductance declined when the soil water content fell below a level between 40 and 
50 % of AWC. Hence, p in Eq. (29c) was taken as 0.5. The amount of water in the root zone θroot is simply the summation of the water 
content from the first soil layer (i = 1) until the rooting depth. 

The volumetric soil water content at saturation, field capacity, and permanent wilting point were estimated based on the soil’s clay 
and sand contents, following Saxton et al. [97], as their estimates were found to be slightly more accurate by Teh and Iba [98] for 
Malaysian mineral soils than the more recent work by Saxton and Rawls [90]. 

2.6. Crop growth component 

2.6.1. Maintenance respiration 
Gross assimilates produced via photosynthesis are first channeled for plant maintenance (supporting processes for continual plant 

survival) and then for growth (synthesis of new cells). The method by van Kraalingen et al. [43] for oil palm was adapted. The 
maintenance respiration of the leaves, trunk, roots, inflorescences, and bunches in this study was estimated based on their biomass dry 
weights and their protein and mineral content. For inflorescences and bunches, where their protein and mineral content measurements 
were unavailable, their estimates could be derived using the protein and mineral content of the rachis [8,43]. As stated earlier, 

Fig. 6. Changes in the distribution of nitrogen (N) (a–d) and other mineral nutrients (e–h) across different parts of the oil palm tenera tree with 
increasing age [51]. Mean (±1 SD) values (N = 4 per age group) are shown for the pinnae (a, e), rachis (b, f), trunk (c, g), and roots (d, h). 
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maintenance calculations require information about protein content. As we did not measure protein content, the N content was 
measured and converted into protein using a conversion factor of 6.25, since every 6.25 g of protein comprised 1 g of N [99]. The 
mineral content was taken as the sum of the major nutrients P, K, Mg, and Ca. Micronutrients were not included as they were not 
measured in the various tree parts, and compared with macronutrients, their total content in plants is smaller by at least one order of 
magnitude [100]. 

Based on the dry matter and nutrient partitioning data obtained by Ng et al. [41], van Kraalingen et al. [43] estimated the 
maintenance respiration of each tree part. However, Ng et al. [41] sampled trees from older dura planting material, which has long 
been replaced by thin-shelled tenera as the main commercial planting material because of its greater oil yield potential (9.5 t oil ha− 1) 
[42,101]. Recognizing this, Cheah et al. [51] updated the work by Ng et al. [41] by not only measuring the newer tenera oil palm 
planting material but also measuring them in greater numbers (Fig. 6). Sawit.jl utilized the data from Cheah et al. [51], which includes 
the N distribution in the pinnae, rachis, trunk, and roots (Fig. 6a–d) and the distribution of other mineral nutrients in the same tree 
parts (Fig. 6e–h), to calculate the maintenance respiration of various tree parts following the methodology of van Kraalingen et al. 
[43]. 

2.6.2. Growth respiration 
Assimilates in excess after maintenance respiration would then be channeled for growth respiration Ggro (kg DM palm− 1 day− 1). 

Following van Kraalingen et al. [43], the growth respiration rate for a specific tree part G(part) was calculated by multiplying the 
proportion of that part relative to all the vegetative tree parts by Ggro; thus, the dry weight of the tree part at time t1 could be 
incremented for the subsequent time t2 using Euler’s integration method (Eq. (30)): 

W(part),t2 =W(part),t1 + G(part) − Gdeath,(part) (30)  

where W(part) is the dry weight of a tree part (pinnae, rachis, trunk, or roots) (kg DM palm− 1); and G(part) and Gdeath,(part) are the growth 
and death rates of a tree part, respectively. Leaf (pinnae and rachis) deaths are caused by aging, and they were determined by Eq. 31a-b 
as follows: 

Gdeath,(pinnae and rachis) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 age ≤ 600

f
(

age − 600
2400 − 600

)

600 < age ≤ 2400

f age > 2400

(31a)  

where age is the tree age (days); and f is the leaf death rate, and its value can be amplified by water stress RD,c (Eq. (29a)) as 

f =0.0013
[
1+(0.6 − 0.01S)

(
1 − RD,c

)]
; 0≤ f ≤ 0.0013 (31b)  

where S is the sand content in the root zone (%). The death rate of roots Gdeath,(roots) (kg DM palm− 1 day− 1) was determined by: 

Gdeath,(roots) =

{
0 age ≤ 1200
0.2/365 age > 1200 (32) 

The values for these death rates (Eqs. (31) and (32)) were obtained from Dr. Ian E. Henson, then at the Malaysian Palm Oil Board 
(personal communication). It was assumed that the trunk experienced no death; thus, Gdeath,(trunk) equaled zero [43]. 

Fig. 7. Mean (±1 SD) changes in specific leaf area (SLA) of oil palm with tree age [51].  
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The increase in leaf area index L (m2 leaf m− 2 ground) was determined by multiplying the pinnae dry weight by the specific leaf 
area SLA (m2 leaf kg− 1 DM). For oil palm, the change in SLA with increasing tree age from 1 to 19 years was measured by Cheah et al. 
[51] (Fig. 7). 

We observed that the growth rate of trunk height increased linearly from year 1 until year 11, after which the growth rate of the 
trunk was constant at Δhmax. Using measured trunk height data of oil palm grown in various soil textures from Refs. [102–107], Δhmax 
(m yr− 1) was related to the planting density and sand content in the root zone according to Eq. (33): 

Δhmax = a + bPD + cS (33)  

where the parameters a, b, and c are 0.274425, 0.000307, and 0.002212, respectively. The growth rate of the trunk Δh (m yr− 1) was 
determined using Eq. (34) as follows: 

Δh=
{

Δhmax(age/365 − 1)/10 age/365 < 11
Δhmax age/365 ≥ 11 (34)  

so that the trunk height htrunk (m) was determined using Eq. (35) as follows: 

htrunk =Δh × age/365 (35) 

Change in oil palm canopy height hcanopy (m) was determined by Cheah et al. [51] as follows: 

hcanopy =1.5091 + 0.001382age (36)  

Consequently, the full tree height h (m) is simply the sum of htrunk (Eq. (35)) and hcanopy (Eq. (36)). 
The increase in the rooting depth droot (m) between two successive days t1 and t2 was determined using Eq. (37) as follows: 

droot,t2 = droot,t1 +
(
dg,root ×RD,c

)
(37)  

where dg,root is the daily increase in the rooting depth, taken as 0.002 m day− 1, the mean value of root growth for oil palm [108,109]. 
Note that the increase in rooting depth would be adversely affected by water stress RD,c [85]. 

2.6.3. Generative growth 
The amount of assimilates in excess after growth respiration is available for generative growth Ggen (kg CH2O palm− 1 day− 1). These 

available assimilates would be used for the growth of generative organs, such as male flowers, immature bunches, and mature bunches. 
The “boxcar train” method by van Kraalingen et al. [43] was adapted to monitor the growth progression of these generative organs 
[110]. 

In this method, three trains symbolize the growth of each generative organ (Supplementary Fig. S1a-b). Each train also comprises 
multiple boxcars; therefore, each boxcar represents an age class. The life expectancy for male flowers and immature bunches was set at 
210 days, and for mature bunches at 150 days, with a one-day model time step [111]. In every daily time step, the following algorithm 
would be applied for each boxcar in each train: 1) the weight in each age class (including zero weight) would be transferred to 
progressively older age classes, then 2) only the nonzero weight in each age class would be incremented based on the calculated growth 
rate. The lifespan of the male flowers was 210 days. For immature bunches, the day after 210 days signified the pollination point, 
followed by the growth of the pollinated bunch (i.e., mature bunches) until the end of the next 150 days, when yield would finally be 
produced. Calculations to determine the growth rates of the generative organs followed van Kraalingen et al. [43] to ultimately give 
the total weight for a given generative organ, which is simply the summation of the weights in all boxcars for that generative organ. 

van Kraalingen et al. [43] assumed both male and female flowers always occurred in equal proportions and without risk of flower 
abortion. Here, an algorithm was introduced for flower sex determination (Eq. (38)), whereby the probability of producing female 
flowers was governed by the current water stress level RD,c (Eq. (29b)) and the genetic predisposition or probability ρfemale to produce 
female flowers, or 

sex of new flower=

⎧
⎨

⎩

female r ≤
(

RD,c • pfemale

)

male r >
(

RD,c • pfemale

) (38)  

where pfemale has the extrema of 0 and 1 for never and always female, respectively; and r is a random variable uniformly distributed on 
[0 to 1). Chances of female flowers would decrease the lower the female flower predisposition and the higher the water stress level. In 
addition, flower abortion may occur 9 months before harvest, according to Corley et al. [111], and abortion occurs if the generated 
random value is larger than RD,c. In this study, because the genetic predisposition to form female flowers is unknown, pfemale was set at 
0.5, as used by van Kraalingen et al. [43], to mean a 50-50 chance of producing female flowers. 

2.7. Required model parameters 

Sawit.jl requires the following parameters: 1) site latitude; 2) site daily weather for the entire simulation period (i.e., minimum and 
maximum air temperature, wind speed, and rainfall); 3) date of field planting; 4) planting density; 5) soil layer properties (soil texture, 
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Table 2 
Independent datasets from seven sites used to validate the Sawit.jl model. The planting material for all seven sites was Deli dura × AVROS pisifera (tenera).  

Sites 

Properties Kerayong Merlimau Rengam Sabrang Seri Intan Sg. Buloh Kalumponga 

Latitude (◦ N) 3.17 2.25 1.88 3.79 3.97 3.35 4.96 
Longitude (◦ E) 101.34 102.45 103.39 100.97 100.98 101.32 100.57 
Planting density (palms ha− 1) 136, 160, 185 120, 135, 148, 164, 181,  

199, 220, 243, 268, 296 
82, 90, 100, 111,  
123, 136, 166, 184 

136, 170 180 77, 85, 94, 103, 114, 125,  
136, 138, 152, 167, 184,  
203, 223, 246, 271, 299 

124, 126, 138, 146, 150,  
150, 150, 154, 158, 159 

Field planting date Dec. 1992 Apr. 1987 Oct. 1982 Mar. 1990 Jan. 2007 Dec. 1988 Feb. 1997 
End trial Dec. 2014 Dec. 2006 Dec. 2001 Dec. 2008 Dec. 2019 Dec. 2007 Feb. 2020 
No. of years 22 19 20 19 7 19 23 
Soil series Jawa (Sulfic Endoaquepts) Rengam (Typic Kandiudult) Briah (Typic Endoaquepts) Bernam (Typic 

Endoaquepts) 
Briah and Jawa 

Annual weather data (mean ± SD) 
Min. and max. Air temperature (◦C) 24.1 ± 0.5 

32.8 ± 0.4 
23.7 ± 0.4 
32.2 ± 0.3 

23.4 ± 0.2 
33.7 ± 0.6 

23.4 ± 0.3 
32.3 ± 0.3 

23.8 ± 0.4 
32.2 ± 0.4 

24.2 ± 0.6 
32.9 ± 0.4 

23.2 ± 0.3 
32.8 ± 0.5 

Wind speed (m s− 1) 1.5 ± 0.2 1.6 ± 0.2 1.7 ± 0.1 1.2 ± 0.2 1.2 ± 0.1 1.5 ± 0.2 1.3 ± 0.1 
Rain (mm) 2761 ± 322 1952 ± 261 2121 ± 307 1824 ± 259 1833 ± 309 2807 ± 348 2003 ± 408 
Soil properties (mean ± SE) 
Sand (%) 6.6 ± 0.9 67.3 ± 0.8 61.1 ± 1.0 19.8 ± 0.1 21.0 ± 0.2 16.7 ± 0.4 47.8 ± 1.4 
Clay (%) 51.4 ± 0.4 27.4 ± 0.7 32.7 ± 0.9 53.3 ± 0.4 50.6 ± 0.3 58.5 ± 0.6 13.7 ± 1.8 
Organic C (%) 3.9 ± 0.6 1.7 ± 0.1 1.6 ± 0.1 1.3 ± 0.1 8.1 ± 0.2 1.9 ± 0.1 nd 
Total N (%) 0.34 ± 0.21 0.14 ± 0.01 0.17 ± 0.01 0.19 ± 0.02 0.36 ± 0.01 0.21 ± 0.01 nd  

a Kalumpong has three blocks with the same planting density of 150 palms ha− 1; nd – not determined. 
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initial volumetric soil water content, and layer thickness); 6) initial weights of the individual tree parts at the time of field planting; 6) 
initial and maximum possible rooting depth; 8) change in specific leaf area with tree age; 9) change in nitrogen and mineral content 
and partitioning in the individual tree parts with tree age; and 10) genetic predisposition to produce female flowers. The individual 
tree parts considered are the pinnae, rachis, trunk, roots, inflorescence (male and female), and bunches. Values for the first five pa
rameters must be provided by the user. However, for the last five model parameters, the model will use their respective default values if 
they are not explicitly provided. 

2.8. Model validation 

Simulations from Sawit.jl were validated against historical data of measured oil palm parameters of growth and yield from seven 
commercial oil palm plantations owned by Sime Darby Plantation Berhad, around Peninsular Malaysia (Table 2). These sites had 

Fig. 8. Kerayong: Agreement between observed (obs.) and simulated (sim.) values across all planting densities for fresh fruit bunches (FFB) yield 
(a), vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index 
(LAI) (h), and trunk height (i). The inset box and violin plots show the distribution of model errors. NMAE, NMBE, and KGE are goodness-of- 
fit indices. 
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diverse planting densities, tree ages, soil textures, and rainfall levels. At all sites, oil palm seedlings were transferred from the nursery 
to be planted in the field at the age of 1 year, following conventional practices. Note that the datasets from seven of these sites were 
independent and not part of the other datasets used for parameterizing the Sawit.jl model. 

Merlimau and Rengam represent a typical Malaysian inland environment, where the Ultisol was developed from granite dominants. 
Sg. Buloh, Kerayong, Sabrang, and Seri Intan represent a typical Malaysian coastal environment, where Inceptisol was developed from 
marine alluvium dominants. Kalumpong comprises diverse soil types, with the Briah and Jawa series being predominant. 

For all sites, except Seri Intan and Kalumpong, the following oil palm parameters were measured: fresh fruit bunch (FFB) yield, 
vegetative growth matter production (VDM), total dry matter production (TDM), pinnae dry weight, rachis dry weight, fronds dry 
weight, trunk dry weight, trunk height, and leaf area index. The following were measured at Seri Intan: FFB yield, leaf area index, and 
trunk height. At Kalumpong, only the FFB yield was measured. 

Fig. 9. Kerayong: NMAE, NMBE, and KGE scores for each planting density (numeric labels on markers) for fresh fruit bunches (FFB) yield (a), 
vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index (LAI) 
(h), and trunk height (i). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE 
= 0. 
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Vegetative growth parameters such as VDM, dry weights of tree parts, trunk height, and leaf area index were calculated annually 
using nondestructive methods [42,112–114]. FFB yields were measured at 10–12 days interval and summed to give the annual totals. 
The annual VDM and fruit bunch yields were then summed to obtain the annual TDM. 

Sawit.jl requires inputs such as site latitude, daily weather (minimum and maximum air temperatures, wind speed, and rainfall), 
partitioning of N and mineral contents, SLA, initial soil water content, soil texture, and the initial dry weights of the pinnae, rachis, 
trunk, and roots. Cheah et al. [51] measured the mean (±SE) initial dry weights in kg DM palm− 1 for the pinnae, rachis, trunk, and 
roots as 0.40 ± 0.07, 0.70 ± 0.11, 0.10 ± 0.01, and 0.20 ± 0.03, respectively. 

The agreement between the model simulations and observations (measurements) was evaluated by visually examining the 
agreement plots of the simulated versus observed values and by using goodness-of-fit indices. Three such indices were selected, two of 
which were normalized mean absolute error (NMAE) and normalized mean bias error (NMBE). NMAE was selected because it denotes 
the average absolute difference between simulations and observations. It ranges between 0 and +∞, where NMAE = 0 indicates a 

Fig. 10. Merlimau: Agreement between observed (obs.) and simulated (sim.) values across all planting densities for fresh fruit bunches (FFB) yield 
(a), vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index 
(LAI) (h), and trunk height (i). The inset box and violin plots show the distribution of model errors. NMAE, NMBE, and KGE are goodness-of- 
fit indices. 
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perfect model. NMBE was also selected because this index indicates the average model bias, that is, the overall tendency of the model to 
under- (negative bias with negative NMBE values) or overestimate (positive bias with positive NMBE values). It ranges between -∞ and 
+∞, where NMBE = 0 indicates no overall model bias. NMAE and NME were calculated using Eqs. (39) and (40), respectively, as 
follows: 

NMAE=
∑

|Pi − Oi|
/ ∑

Oi (39)  

NMBE=
∑

(Pi − Oi)
/ ∑

Oi (40)  

where Pi and Oi are the predicted (simulated) and observed (measured) values, respectively. NMAE and NMBE are normalized to 

Fig. 11. Merlimau: NMAE, NMBE, and KGE scores for each planting density (numeric labels on markers) for fresh fruit bunches (FFB) yield (a), 
vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index (LAI) 
(h), and trunk height (i). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE 
= 0. 
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remove dependence on the scale of the datasets being compared. These indices can be converted to percentages by multiplying them by 
100 %. For example, an NMAE of 0.05 is equivalent to an average absolute error of 5 % of the observations, and an NMBE of +0.1 is an 
average overestimation of 10 % of the observations. 

The third selected index was the Kling-Gupta Efficiency (KGE) [115]. The KGE creates a single score out of three model agreement 
properties (Eq. (41)): linear correlation coefficient r, mean μ, and coefficient of variation cv between simulations and observations as 

KGE= 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+
(

μp

/
μo − 1

)2
+
(
cvp

/
cvo − 1

)2
√

(41)  

where subscripts p and o denote the predicted and observed values, respectively. KGE is a useful metric because it is less sensitive to 
outliers [116], and it simultaneously evaluates three conditions, such that a perfect model has a perfect linear correlation, equal mean, 

Fig. 12. Rengam: Agreement between observed (obs.) and simulated (sim.) values across all planting densities for fresh fruit bunches (FFB) yield 
(a), vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index 
(LAI) (h), and trunk height (i). The inset box and violin plots show the distribution of model errors. NMAE, NMBE, and KGE are goodness-of- 
fit indices. 

C.B.S. Teh et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e32561

19

and equal coefficient of variation with observations (i.e., r = 1, μp = μo, and cvp = cvo). Deviations from these criteria will reduce the 
KGE score. KGE ranges between -∞ and +1, with +1 denoting a perfect model. According to Knoben et al. [116], model accuracy 
increasingly improves the higher the KGE score is above − 0.41, because at this threshold, the model produces only constant estimates 
with values equal to mean observations, but they have no correlation with observations and have zero variance due to their constancy. 
This means r = 0, μp = μo, and cvp = 0 in Eq. (41) to give KGE = 1 −

̅̅̅
2

√
= − 0.41. 

Fig. 13. Rengam: NMAE, NMBE, and KGE scores for each planting density (numeric labels on markers) for fresh fruit bunches (FFB) yield (a), 
vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index (LAI) 
(h), and trunk height (i). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE 
= 0. 
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3. Results 

3.1. Model agreement 

Individual agreement plots between the observations and simulations for each oil palm parameter, planting density, and site are 
shown in Supplementary Fig. S2a-r to S4a-r (Kerayong site), S5a-r to S13a-r (Merlimau), S14a-r to S19a-r (Rengam), S20a-r to S22a-r 
(Sabrang), and S23a-r to S33a-r (Sg. Buloh). For Kalumpong, only yield was measured, and the corresponding agreement plots by 
planting density are presented in Supplementary Fig. S34a-t. This section presents: 1) the agreement plots that compare observations 
and simulations for each site across all planting densities, and 2) the goodness-of-fit index scores for every planting density at each site 
(Figs. 8a-i to 17a-i, 18a-f, and 19a-b). 

The agreement between observations and model simulations was generally good, although the model accuracy depended on the oil 

Fig. 14. Sabrang: Agreement between observed (obs.) and simulated (sim.) values across all planting densities for fresh fruit bunches (FFB) yield 
(a), vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index 
(LAI) (h), and trunk height (i). The inset box and violin plots show the distribution of model errors. NMAE, NMBE, and KGE are goodness-of- 
fit indices. 

C.B.S. Teh et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e32561

21

palm parameter being simulated, site, and planting density. Fresh fruit bunch (FFB) yield is often the most important oil palm 
parameter. Yield simulations were generally accurate for Kerayong (Figs. 8a and 9a), Seri Intan (Fig. 18a and d), and Kalumpong 
(Fig. 19a and b), with a small Normalized Mean Bias Error (NMBE) between − 2 and 6 %, relatively low Normalized Mean Absolute 
Error (NMAE) below 16 %, and moderate to strong positive Kling-Gupta Efficiency (KGE) scores between 0.6 and 0.9. For Merlimau, 
model simulations clustered along the 1:1 line of agreement (Fig. 10a), but upon closer inspection, model errors increased with higher 
planting density (Fig. 11a), whereas the reverse was true for Rengam (Fig. 12a and 13a). Yield simulations for Sabrang were mostly 
accurate, with a strong KGE of 0.74, but the model underestimated the yield (NMBE = − 13 %) for only two planting densities at this 
site (Fig. 14a and 15a). For Sg. Buloh, FFB yield simulations matched observations well (Fig. 16a), although the accuracy was relatively 
low for the two highest planting densities (271 and 299 palms ha− 1) (Fig. 17a). 

Because total dry matter (TDM) production includes vegetative dry matter (VDM) production, the model agreement for TDM 

Fig. 15. Sabrang: NMAE, NMBE, and KGE scores for each planting density (numeric labels on markers) for fresh fruit bunches (FFB) yield (a), 
vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index (LAI) 
(h), and trunk height (i). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE 
= 0. 
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generally followed a trend similar to that of VDM. Both VDM and TDM simulations for Kerayong (Fig. 8b and c and 9b-c), Sabrang 
(Figs. 14b and c and 15b-c), and Sg. Buloh (Figs. 16b and c and 17b-c) had small biases (NMBE between − 6 and 3 %), low absolute 
errors (NMAE <20 %), and strong positive KGE scores ≥0.74. For Merlimau, model errors increased with planting density (Figs. 10b 
and c and 11b-c), whereas for Rengam, the absolute errors were rather high at 18 and 30 % for VDM and TDM, respectively, for all 
planting densities (Figs. 12b and c and 13b-c). VDM and TDM were not measured at other sites. 

The model accuracy for the leaf dry weights of the pinnae, rachis, and fronds varied depending on the site. The simulations for 
Kerayong generally showed good agreement with the observations, with an overestimation of ≤15 % (Figs. 8d-f and 9d-f). Simulations 
for Rengam were accurate overall, with a small NMBE between − 1% and 4 %, relatively low NMAE at 15 %, and strong positive KGE 
scores ≥0.85 (Figs. 12d-f and 13d-f). However, the model overestimated leaf dry weights at mid-range values (Fig. 12d). For Sabrang, 
the model exhibited a small bias (Figs. 14d-f and 15d-f), whereas for Sg. Buloh, simulations of rachis and frond dry weights agreed 
closer to observations than pinnae dry weights, with a high KGE ≥0.86 and low NMAE ≤19 % (Fig. 16d-f and 17d-f). However, the two 

Fig. 16. Sg. Buloh: Agreement between observed (obs.) and simulated (sim.) values across all planting densities for fresh fruit bunches (FFB) yield 
(a), vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index 
(LAI) (h), and trunk height (i). The inset box and violin plots show the distribution of model errors. NMAE, NMBE, and KGE are goodness-of- 
fit indices. 
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highest planting densities (271 and 299 palms ha− 1) resulted in the largest errors (Fig. 17d–f). For Merlimau, simulations of leaf dry 
weight components (Figs. 10d-f and 11d-f) were more accurate with increasing planting density, particularly for mid-range planting 
densities (164–199 palms ha− 1) (Fig. 11d–f). The pinnae simulations were overestimated at lower planting densities (Fig. 11d). 

Simulating trunk dry weight for all sites was challenging, with the model overestimating the weights for Kerayong and Sg. Buloh 
(Figs. 8g, 9g, 16g, and 17g) and underestimating that for Rengam and Sabrang (Fig. 12g-15g). For Merlimau, simulations 
(Figs. 10g–11g) were accurate for mid-range planting densities (181–220 palms ha− 1), but there was a tendency to underestimate and 
overestimate at smaller and higher planting densities, respectively (Fig. 11g). In contrast, trunk height simulations were accurate for 
all sites (Figs. 8i–15i), except for Rengam (Figs. 12i and 13i), and, to a smaller degree, Sg. Buloh (Figs. 16i–17i), where for these two 
sites, their trunk heights were overestimated. 

The LAI was generally underestimated by a small bias of no more than − 6% (Fig. 10h–17h and 18b and e), except for Kerayong, 

Fig. 17. Sg. Buloh: NMAE, NMBE, and KGE scores for each planting density (numeric labels on markers) for fresh fruit bunches (FFB) yield (a), 
vegetative dry matter (VDM) (b), total DM (TDM) (c), pinnae weight (d), rachis weight (e), frond weight (f), trunk weight (g), leaf area index (LAI) 
(h), and trunk height (i). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE 
= 0. 
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which was overestimated by 9 %, particularly for high LAI values (Figs. 8h and 9h). KGE scores for LAI, however, were strong positives 
between 0.78 and 0.92. Simulations for Sg. Buloh underestimated LAI for younger palms (<10 years) at low planting densities (≤125 
palms ha− 1) (Supplementary Fig. S22-S25, panels o and p), whereas it was overestimated for mature trees (>10 years) at high planting 
densities (≥184 palms ha− 1) (Supplementary Fig. S29-S33, panels o and p). 

Fig. 20 displays the distribution of scores for each of the three goodness-of-fit indices across all planting densities and sites. For 
yield, three-quarters of its scores (i.e., below quartile 3) were below 25 % for absolute errors (NMAE) (Fig. 20a), between − 7 and +12 

Fig. 18. Seri Intan: Upper panels show the agreement between observed (obs.) and simulated (sim.) values at 180 palms ha− 1 for fresh fruit bunches 
(FFB) yield (a), leaf area index (LAI) (b), and trunk height (c). The inset box and violin plots show the distribution of model errors. The lower panels 
show the NMAE, NMBE, and KGE scores for FFB yield (d), LAI (e), and trunk height (f) (planting density of 180 palms ha− 1 indicated on the 
markers). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE = 0. 

Fig. 19. Kalumpong: Agreement between observed (obs.) and simulated (sim.) values for fresh fruit bunches (FFB) yield for all planting densities 
(inset box and violin plots show the distribution of model errors) (a), and NMAE, NMBE, and KGE scores for every planting density (numeric labels 
on markers) (b). Perfect simulations would have markers in the darkest blue (KGE = 1) and located at ⊗ position for NMAE = 0 and NMBE = 0. 
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% for model biases (NMBE) (Fig. 20b), and between 0.39 and 0.88 for KGE scores (Fig. 20c) but with heavy skew to the left, caused by 
the four large errors at Merlimau’s higher planting densities (≥220 palms ha− 1) (Fig. 11a). 

As revealed earlier, trunk dry weight simulations were the most challenging. Its scores exhibited the largest variability, with three- 
quarters of the absolute errors between 10 and 45 % and model biases between − 18 and + 52 % (Fig. 20a–c). Nonetheless, the KGE 
scores were largely not penalized, with three-quarters of the scores between 0.52 and 0.83. As previously mentioned, the KGE assesses 
a model by examining the linear correlation and similarity in both the mean and variability of two datasets (e.g., between simulations 
and observations). Although there were large absolute errors and biases in the simulations of trunk dry weight, the moderate to high 
positive KGE scores indicated that the simulations and observations had a moderately strong correlation and comparable variability. 

In contrast to trunk weight, trunk height simulations were accurate for most sites, displaying high positive KGE scores and very 
small model biases and absolute errors (Figs. 8i–11i, 14i, 15i, and 18c and f). The exceptions were Rengam (Fig. 12i and 13i), and to a 
lesser degree, Sg. Buloh (Figs. 16i and 17i), which explained the right- and left-skewed distributions of the NMAE and KGE scores, 
respectively. 

Leaf dry weight components (pinnae, rachis, and fronds), LAI, and TDM showed similar distributions of model errors and KGE 

Fig. 20. Distribution of NMAE (a), NMBE (b), and KGE (c) scores for each simulated oil palm parameter across all planting densities and sites. Note: 
FFB is fresh fruit bunches yield, VDM and TDM are vegetative and total dry matter production, respectively, and LAI is leaf area index. 

Fig. 21. Agreement between oil palm yield simulations (sim.) and observations (obs.) for all sites during El Niño (a) and La Niña (b) periods. NMAE, 
NMBE, and KGE are goodness-of-fit indices. 
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scores. They had KGE scores above 0.7 and three-quarters of the absolute errors were below 21 %, and model biases were between − 12 
and + 17 %. The KGE scores for LAI were strong positives, with three-quarters of their scores between 0.65 and 0.95, but there was a 
pronounced right skew due to a few outliers from Sg. Buloh’s very low planting densities (≤94 palms ha− 1) (Fig. 17d). The VDM 
simulations presented slightly higher errors and weaker KGE scores than did the TDM simulations. 

Overall, three-quarters of the metric scores ranged from 6 to 27 % for the model absolute errors, − 22 to +17 % for the model bias, 
and 0.39 to 0.98 for the KGE (note: these ranges excluded metrics for the trunk weight simulations and the few outliers). 

3.2. Water deficit 

Yield simulations by Sawit.jl were responsive to El Niño and La Niña events, with yield simulations for El Niño periods (Fig. 21a) 
being more accurate than those for La Niña events (Fig. 21b). The study sites (Table 2) experienced strong El Niño events at least once 
in 1982–83, 1987–88, 1991–92, 1997–98, and 2015–16 and La Niña events in 1988–89, 1998–99, 2007–08, and 2010–11 [117]. 
During El Niño, the annual rainfall decreased by 5–24 %, with an average of 11 %. In contrast, La Niña caused an average rainfall 
increase of 16 %, ranging from 6 to 39 %. As a result of the lower rainfall, FFB yields declined by an average of 7 % during El Niño. Sites 
like Merlimau and Sg. Buloh experienced much larger drops of 29 % and 48 %, respectively. In contrast, higher rainfall due to La Niña 
saw yields increase by as much as 55 %, averaging 17 % for all sites. However, the impact of these events on oil palm yields varied 
across sites and planting densities, with some sites experiencing yield increases during El Niño events and decreases during La Niña 
events. Apart from the differences in rainfall, the impact of other weather variables, such as minimum and maximum air temperatures, 
solar radiation, and wind speed, on oil palm yields was not apparent because these meteorological factors did not exhibit noticeable 
changes during El Niño or La Niña years. 

Yield simulations were more accurate for El Niño than for La Niña events. The tighter clustering of points along the 1:1 line in 
Fig. 21a compared to Fig. 21b, and the resulting higher KGE score (by 1.5 times) for El Niño, indicate a stronger correlation and greater 
similarity in variability between simulations and observations than that for La Niña. 

Daily water deficit showed an inverse linear relationship with daily photosynthetic assimilate production (Fig. 22), with a roughly 
200 g CH2O palm− 1 day− 1 decrease per 1 mm increase in daily water deficit. However, this relationship exhibited considerable 
variability. But this high variability is expected, as water deficit is just one of the numerous factors influencing photosynthesis. Three of 
these additional factors include maximum air temperature, total solar radiation, and the fraction of diffuse solar radiation (Fig. 23). 
The highest assimilate production occurred when the daily total solar radiation was between 11 and 19 MJ m− 2 day− 1, diffuse ra
diation 60 and 80 %, and maximum air temperatures 27 and 33 ◦C. 

Furthermore, the annual water deficit was linearly related to the FFB yield gap (percentage ratio of the measured yield to the 
simulated potential yield) (Fig. 24). Depending on the location, an increase of 100-mm in the annual water deficit resulted in a 1–9 % 
increase in the yield gap. Sites with coarse-textured soils, such as Merlimau and Rengam (Table 2), were more susceptible to higher 
water stress than sites with fine-textured soils, which was also evident from the nonlinear relationship between soil texture and annual 
water deficit (Fig. 25a). Interestingly, this chart shows that, as the soil texture becomes coarser, the water deficit initially increases 
rapidly for fine-textured soils (dg below 3 μm), and then the rate of increase gradually diminishes as the texture becomes even coarser. 

Fig. 22. Relationship between mean (solid line) daily water deficit and daily photosynthetic assimilate production. The shaded bands represent 
±1 SD. 
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Finally, the annual water deficit had an inverse linear relationship with the annual rainfall, with sites with lower rainfall expe
riencing higher annual water deficits (Fig. 25b). Roughly, every 100-mm decline in annual rainfall would result in a 14 mm yr− 1 

increase in the annual water deficit. 

4. Discussion 

Sawit.jl was specifically developed for Malaysia’s climate characteristics. It considers a wide range of planting densities and soil 
textures, unlike other oil palm models, e.g., Refs. [10,16,43]. Furthermore, Sawit.jl does not use any radiation use efficiency functions 
but instead relies on local weather and environmental conditions to determine photosynthesis and ultimately yield. Sawit.jl also does 
not require pre-existing vegetative information, such as annual dry matter production, leaf area index, or standing vegetative biomass 
[10,43]. 

However, this model requires site-specific data on instantaneous weather properties (e.g., air temperature, wind speed, and air 
vapor pressure) and soil water characteristics (e.g., saturation, field capacity, and permanent wilting point). Unfortunately, most of 
these data are often not readily available for many oil palm growing areas in Malaysia. To address this, Sawit.jl uses equations that 
have been validated for local Malaysian weather and soil conditions to simulate the necessary information [52,98,110]. Sawit.jl 
additionally considers the influence of soil texture on soil water availability to oil palm, a feature not present in most other oil palm 
models. As a result, compared to models such as OPSIM, SIMPALM, and PALMSIM, Sawit.jl better accounts for the effects of weather 
factors such as air temperature, solar radiation, vapor pressure deficit, wind speed, and rainfall, as well as soil texture and water 

Fig. 23. Relationship between mean (solid line) daily production of assimilates (via photosynthesis) with daily values of total solar radiation (It), its 
proportion of diffuse solar component (Idf/It), and maximum air temperature (Tmax). The shaded bands represent ±1 SD. 
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retention characteristics, on oil palm growth simulations. 
Sawit.jl was also specifically developed to simulate the growth and yield of oil palm across a wide range of densities, allowing it, for 

instance, to determine the ideal planting density for a particular environment. Planting density is a crucial management approach for 
optimizing palm oil production [44,45]. Consequently, Sawit.jl can potentially map oil palm yields in Peninsular Malaysia. Although 
Hoffman et al. [16] reported PALMSIM’s ability to simulate yield for expansive areas in Malaysia and Indonesia, PALMSIM simulations 
are restricted to high-rainfall environments, as they cannot simulate water-limited yields. In contrast, Sawit.jl has been parameterized 
to simulate yield under existing weather conditions, which is vital for the accurate yield gap analysis of oil palm. However, as shown in 
Fig. 21, Sawit.jl produced more accurate results for drier than wetter weather conditions. 

Sawit.jl’s accuracy varied depending on the site, planting density, and oil palm parameter being simulated. Overall, the simulations 
were accurate for aspects such as vegetative and total dry matter production, standing rachis and frond biomass, and trunk height, as 
evidenced by their low NMAE values, large positive KGE values, and near-zero NMBE values (Fig. 20a–c). 

However, yield simulations can be improved by more accurately accounting for the sensitivity of fruit bunch production to changes 
in growth conditions [106,118–121]. Sawit.jl attempted to account for this by including a parameter that represents the genetic 
predisposition to produce female flowers and the probability of deciding whether female flowers would be aborted by water stress (Eq. 
(38)). However, the limited understanding and research on the interaction between the oil palm genotype and environment is likely to 
have contributed to the occasional inaccuracies of Sawit.jl, as this interaction is not thoroughly or adequately represented in the model. 
Consequently, Sawit.jl has not been parameterized to account for yield fluctuations due to the flowering cycle and fruiting activity 
[118,122]. Increased fruiting activity can affect future yield components, amplify the yield cycle, and perpetuate a cycle that deviates 
from the simulated cycle. Fruiting activity was not sufficiently incorporated into Sawit.jl because there is no known simple physio
logical response of the oil palm to it. 

Fig. 24. Increase in mean yield gap with annual water deficit for mature oil palms (≥10 yrs) at 130–150 palms ha− 1 across all sites (Seri Intan was 
excluded because this site had only one planting density of 180 palms ha− 1). Values in brackets in the legend indicate the slopes of the fitted linear 
regression lines. 

Fig. 25. Relationship between annual water deficit with soil texture (a) and annual rainfall (b). Soil texture is represented by dg, which is the 
geometric mean diameter of the soil’s three primary particle sizes, such that increasing dg values indicate that soils have increasingly more sand and 
less clay [89]. 
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Sawit.jl was initially designed for level 2 crop production, focusing solely on the limitations imposed by climate and water 
availability [55]. Enhancing the model to encompass level 3 crop production by integrating the factors of nutrient availability and 
uptake would significantly enhance its accuracy. 

Overestimated trunk weights in Kerayong, Sg. Buloh, and Sabrang possibly resulted from higher dry matter allocation to the trunk. 
The mean dry matter partitioning ratio of 0.17 reported by Cheah et al. [51] and used by Sawit.jl for all sites was higher than that 0.12 
used by the OPSIM and PALMSIM models. Another possibility is that Sawit.jl’s method of distributing assimilates within the trunk, 
which was based on van Kraalingen et al. [43], may not accurately reflect real field conditions. van Kraalingen et al. [43] observed that 
the upper trunk section (between the lowest leaf and trunk apex) had much higher tissue activity than the area below the lowest leaf 
(lower trunk section). Therefore, they hypothesized that the actively growing portion of the trunk was the upper section and that this 
section would be prioritized for receiving new assimilates. They further estimated the dry weight of the upper trunk section to be no 
more than 45 kg of the total trunk weight. It is unclear whether this holds true for all the study sites and whether Sawit.jl’s higher trunk 
partitioning ratio contributed to the discrepancies observed in Sg. Buloh, Kerayong, and Sabrang. This suggests that a more robust 
method for partitioning trunk dry matter is required. 

Both observations and simulations showed that oil palm yield was significantly influenced by planting density. As planting density 
increases, yield per palm decreases because of increased interpalm competition [44,45]. Sawit.jl can simulate this competition effect 
by predicting lower yields as planting density increases. However, considerable knowledge gaps remain regarding the impact of 
planting density on oil palm growth and yield, such as microclimate conditions within and beneath oil palm canopies. For example, 
little is known about the vertical wind speed profile above and below canopies or how soil water content and plant water uptake would 
vary with planting density. Additionally, a precise method for scaling up the leaf-to-canopy conductance requires further investigation. 
For some sites, Sawit.jl’s prediction errors varied with planting density, suggesting that the model’s characterization of microclimate 
conditions, particularly beneath very low and dense canopies, is not yet adequately representative. Quantifying the increase in 
interpalm competition for solar radiation and nutrients is likely to improve the model simulations for high planting densities. Further 
research is needed to determine the effects of planting density on dry matter and nutrient content partitioning among the individual oil 
palm tree components. A better understanding of these properties would allow oil palm models to more accurately represent the daily 
variability of microclimate conditions under oil palm canopies and generate yield predictions that closely match the observed yield 
fluctuations. 

Yield simulations specifically for periods during El Niño and La Niña were also examined, as they would indicate whether the model 
was sensitive to the impact of water deficits (such as El Niño) and water gains (such as La Niña) on oil palm yield. Overall, yield 
simulations matched observations for both El Niño and La Niña, although simulations were more accurate for El Niño than for La Niña. 
Although El Niño brings lower precipitation and therefore decreases crop yields, certain El Niño events actually saw yields at some 
sites, such as Kerayong and Seri Intan, increasing by 11–12 %. Moreover, Merlimau experienced a lower decline in oil palm yield than 
Sg. Buloh during El Niño (29 % at Merlimau vs. 48 % at Sg. Buloh). This is despite Merlimau having a coarser textured soil than Sg. 
Buloh, and according to Figs. 24 and 25a, Merlimau should be more susceptible to higher water deficits than Sg. Buloh. This dem
onstrates that other environmental factors (such as rainfall distributions or patterns and atmospheric evaporative demand) or crop 
physiological factors can mitigate or conceal the negative effects of El Niño on oil palm yield. There is also a time lag of several months 
between the initiation of stress and its impact on yield [123]. This means that the impact of stress on oil palm may only emerge months 
after the stress has occurred. This physiology of oil palm adds complexity, making it difficult to isolate and quantify the effects of 
individual stress factors on oil palm. La Niña’s impact, like El Niño’s, also varied across different locations and planting densities. 
Although most sites experienced increased yields, some sites, such as Seri Intan and a few field blocks at Kalumpong, had yields 
declining by 9–10 %. 

Water deficit is one factor among many influencing photosynthesis. Rising air temperatures, for example, increase vapor pressure 
deficits, which would reduce stomatal openings and photosynthesis, while also being associated with increased soil water loss and 
plant water stress [86,124,125]. However, apart from water deficit, this study observed that daily photosynthesis across the sites was 
more directly related to the daily values of maximum air temperature, total solar radiation, and the fraction of the diffuse component in 
the solar radiation (Fig. 23). 

Photosynthesis is enhanced more by diffuse than direct solar radiation [126–128]. Direct radiation is incident on only one part of 
the canopy because this solar component arrives from a single direction, thus reaching only a fraction of the leaves in the canopy and 
leaving the rest in deep shade. This localized concentration of direct radiation easily saturates canopy photosynthesis and, in turn, 
reduces radiation use efficiency [126]. In contrast, the diffuse solar component, as it arrives from multiple directions, can penetrate 
deeper into the canopy and illuminate the canopy more evenly. Several studies, as reviewed by Kanniah et al. [129], have reported that 
plant productivity increased even when the total solar radiation decreased, provided that this decrease was accompanied by an in
crease in the proportion of diffuse solar component. 

There is, however, a balance between total solar radiation and the ratio of diffuse to direct component for photosynthesis (Fig. 23). 
High total solar radiation (above 20 MJ m− 2 day− 1) offered more energy, but photosynthesis remained limited by the smaller pro
portion of diffuse radiation. But at low total solar radiation (below 9 MJ m− 2 day− 1), photosynthesis was instead limited by the low 
energy, despite having a higher proportion of diffuse radiation. The optimal balance for ideal oil palm growth was found to be 11–17 
MJ m− 1 day− 1 of total solar radiation and a 60–80 % diffuse component, corresponding to maximum air temperatures of 27–33 ◦C, 
which is consistent with Corley and Tinker [42], who reported the ideal range to be 29–33 ◦C. They also reported that the ideal 
minimum air temperature range was 22–24 ◦C, which this study also observed (results not shown); however, compared with the 
maximum air temperature, relationships involving minimum air temperature across the seven sites were less distinct and weaker. 

Attempts to relate the annual rainfall and FFB yields across the seven sites revealed no clear trend, unlike Tohiruddin et al. [130], 
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who observed a clear positive linear relationship between them across several oil palm plantations spanning North and South Sumatra, 
Indonesia. This discrepancy might be due to Sumatra’s broader rainfall range (1500–4000 mm) compared with our study (1800–2800 
mm). Aldrian and Susanto [131] further classified Indonesia as having three distinct climate rainfall variability regions, with North 
and South Sumatra belonging to separate regions because they have unique climate patterns and responses to the environment. 

A clearer trend was instead found when the simulated annual water deficits were correlated with the FFB yield gaps (Fig. 24). 
Depending on the location, every increase by 100-mm in the annual water deficit would result in a 1–9 % rise in the yield gap. This 
range is not too different from that estimated by Carr [132], and Caliman and Southworth [133]: an 8–10 % increase in the FFB yield 
gap during the first year and a 3–4% increase in the second year, resulting from a 100-mm annual water deficit. 

Sites with higher sand contents experienced greater water deficits than those with higher clay contents, which is consistent with 
observations by other researchers [134–136]. Water depletion in sandy soils occurs primarily through drainage or percolation, 
whereas clayey soils predominantly lose water through evaporation from the soil surface [90,137,138]. And as the soil surface pro
gressively dries out because of evaporation, its surface resistance increases, making it increasingly difficult for further water to 
evaporate [89,139,140]. This means that the drying topsoil develops an increasingly resistant barrier against additional evaporative 
loss. As a result, fine-textured soils lose less water than coarse-textured soils. Additionally, coarse-textured soils have a lower water 
retention capacity than fine-textured soils, owing to their larger pores. 

5. Conclusions 

The Sawit.jl model showed overall good accuracy in simulating all oil palm parameters (except for trunk weight) across the seven 
study sites with diverse planting densities, soil textures, and local climates. Goodness-of-fit metrics mostly ranged from 6 to 27 % for 
model absolute errors, − 22 to +17 % for model bias, and 0.38 to 0.98 for KGE. The model predicted oil palm yield response to sudden 
annual rainfall changes, such as those occurring during strong El Niño and La Niña events. It also accounts for the effects of soil texture, 
rainfall, and several meteorological factors on water deficits and crop photosynthesis. However, model accuracy varied by site, 
planting density, and the oil palm parameters being simulated. The model was also more accurate for drier weather conditions than for 
wetter weather conditions. The model could be improved by refining the dry matter partitioning mechanism for the trunk, introducing 
fruiting activity to better account for yield fluctuations, and characterizing the microclimate conditions beneath canopies more 
accurately, especially for very low- and high-density stands. Overall, Sawit.jl can effectively predict the effects of various weather 
conditions, soils, and planting densities on oil palm growth and yield, supporting more efficient plantation management and better 
decision-making in the local industry. 
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