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Abstract

Summary: Somatic mutations and gene fusions can produce immunogenic neoantigens mediating anticancer im-
mune responses. However, their computational prediction from sequencing data requires complex computational
workflows to identify tumor-specific aberrations, derive the resulting peptides, infer patients’ Human Leukocyte
Antigen types and predict neoepitopes binding to them, together with a set of features underlying their immunogen-
icity. Here, we present nextNEOpi (nextflow NEOantigen prediction pipeline) a comprehensive and fully automated
bioinformatic pipeline to predict tumor neoantigens from raw DNA and RNA sequencing data. In addition,
nextNEOpi quantifies neoepitope- and patient-specific features associated with tumor immunogenicity and re-
sponse to immunotherapy.

Availability and implementation: nextNEOpi source code and documentation are available at https://github.com/
icbi-lab/nextNEOpi

Contact: dietmar.rieder@i-med.ac.at or francesca.finotello@uibk.ac.at

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T-cell mediated recognition of tumor neoantigens is pivotal for the
success of anticancer immunotherapies (Schumacher et al., 2019).
Thus, in silico prediction of patient-specific neoepitopes from
whole-exome (WES), whole-genome (WGS), and RNA sequencing
(RNA-seq) data is a fundamental task in immuno-oncology. To this
end, complex computational pipelines must be assembled to predict
tumor-specific, mutated peptides and their likelihood of binding the
patients’ Human Leukocyte Antigen (HLA) molecules and being rec-
ognized by T cells (Finotello et al., 2019; Wells et al., 2020). In add-
ition to neoantigens derived from single-nucleotide variants (SNVs)
and insertions or deletions (indels), gene fusions can be a source of
noncanonical neoantigens (Yang et al., 2019).

In recent years, several pipelines for the prediction of neoanti-
gens have been developed (see recent review, Finotello et al., 2019),
but most of them require cumbersome software installation and ex-
tensive data preprocessing with third-party tools to predict somatic
mutations and HLA types. Moreover, to the best of our knowledge,
most of the available pipelines are not able to predict class-II and
noncanonical neoantigens, or to extract features associated to anti-
cancer immune responses like mutation clonality and immune-cell

receptor repertoires (Supplementary Table S1). Here, we present
nextNEOpi (nextflow NEOantigen prediction pipeline), a fully
automated and comprehensive computational workflow that over-

comes these shortcomings. nextNEOpi predicts class-I and -II neo-
antigens originating from SNVs, indels and gene fusions through the

analysis of raw sequencing data and derives a set of features associ-
ated with tumor immunogenicity and response to immunotherapy.

2 The nextNEOpi pipeline

nextNEOpi takes as input raw WES or WGS data from matched
tumor-normal samples and, optionally, bulk-tumor RNA-seq data

(Fig. 1 and Supplementary Fig. S1). After data preprocessing,
nextNEOpi derives germline and phased somatic mutations, copy
number variants, tumor purity and ploidy, and selects high-

confidence variants through majority voting (Supplementary
Methods).

nextNEOpi infers class-I and -II HLA types from WES/WGS
(DNA-seq) and RNA-seq data using OptiType (Szolek et al., 2014)
and HLA-HD (Kawaguchi et al., 2017), respectively, and can em-

ploy an RNA-seq-informed strategy to correct DNA-seq calls for
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missing HLA genes or alleles (Supplementary Methods). HLA typing
benchmarking using data from the 1000 Genomes Project confirmed
the high performance of OptiType and HLA-HD, especially on
RNA-seq data (Supplementary Figs S2–S4). DNA-seq calls showed a
lower accuracy, a systematic underestimation of zygosity and a
higher number of missing calls likely due to the low sequencing
depth of WGS data (�4–29 million reads per sample), which were
improved using the RNA-seq-informed approach.

nextNEOpi uses pVACseq (Hundal et al., 2020) to predict class-
I and -II neoepitopes and derive features associated with neoantigen
presentation, including peptide-HLA-binding affinity quantified as
half-maximal inhibitory concentration (IC50) and percentile rank
quantified by NetMHCpan (Jurtz et al., 2017) and MHCflurry
(O’Donnell et al., 2020). Class-I and -II fusion neoepitopes are pre-
dicted with NeoFuse (Fotakis et al., 2020).

nextNEOpi exploits tumor purity information to derive the can-
cer cell fraction (CCF) and clonality of mutations and resulting neo-
antigens. Tumor mutational burden (TMB) is computed as the
number of somatic mutations over the entire read-covered genome
or exome. In addition, clonal TMB is computed by considering only
clonal somatic mutations (Litchfield et al., 2021). MiXCR is used to
predict B-cell receptor and T-cell receptor (BCR and TCR) reper-
toires (Bolotin et al., 2015). An overview of nextNEOpi results is
provided in Supplementary Tables S2–S4.

We implemented nextNEOpi in the Nextflow workflow language
(Di Tommaso et al., 2017) to assure portability, scalability, and re-
producibility. Parallelization is implicitly defined by inputs and out-
puts of the individual pipeline tasks, enabling transparent scale-up
without requiring adaptation to a specific platform architecture. By
leveraging conda environment and singularity container capabilities,
the installation demands for nextNEOpi are kept on a minimal level
facilitating its usage by users with limited bioinformatics expertise.

3 Analysis of TESLA data with nextNEOpi

To benchmark nextNEOpi, we considered WES and RNA-seq data
from two cohorts of melanoma and non-small cell lung cancer
patients (n¼8) generated by the Tumor Neoantigen Selection
Alliance (TESLA) initiative (Wells et al., 2020). nextNEOpi pre-
dicted 30 912–364 532 putative HLA-binding peptides (pMHC) per
patient, spanning 5152–90 819 unique peptides (Supplementary
Table S5). The identified pMHC represented 76.40–92.59% of
those assessed by TESLA and covered 75.00–100% of the total im-
munogenic pMHC. In total, 36 over 38 immunogenic pMHC were
identified. Prioritization of candidate neoepitopes based on relaxed
filtering (Supplementary Methods) resulted in the identification of
32 over 38 immunogenic pMHC (Supplementary Table S6).

We considered all pMHC experimentally assessed by TESLA to
investigate the features associated with immunogenicity. All scores
related to HLA-binding affinity of the mutated peptides were strongly
associated with immunogenicity (Supplementary Fig. S5): immuno-
genic peptides showed a lower IC50 (P¼5.8e�11) and percentile
rank (P¼1.6e�10). The IC50 fold-change was not discriminative
(P¼0.45), whereas the expression of the mutated gene was higher for

immunogenic peptides (P¼9.9e�5). Clonality features showed dif-
ferent distributions for immunogenic and non-immunogenic peptides,
with the former having higher CCF 5% confidence interval
(P¼0.017) and probability of being clonal (P¼0.024). Clonal neo-
antigens were enriched in patients responding to immune checkpoint
blockers, whereas subclonal mutations were associated with a single
patient (Pat_8) with progressive disease (PD).

The investigation of TMB and diversity of immune receptor rep-
ertoires can provide further insights into the antigenicity of the
tumors and immune-cell infiltration and expansion in the single
patients (Supplementary Fig. S6).

4 Conclusions

nextNEOpi is a comprehensive and fully automated pipeline that
predicts tumor neoepitopes from raw sequencing data. It is imple-
mented in Nextflow to ensure easy installation and usage, as well as
high portability, scalability (see example computational times in
Supplementary Table S7), and reproducibility. nextNEOpi quanti-
fies neoepitope- and patient-specific features associated with tumor
immunogenicity and response to immunotherapy, and uses multi-
method consensus approaches to guarantee robust results in case of
suboptimal data. In the near future, we plan to extend nextNEOpi
to other classes of noncanonical neoantigens and to introduce DSL 2
Nextflow syntax to facilitate the integration of additional features
relevant for neoantigen prioritization.
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Fig. 1. Schematization of nextNEOpi pipeline with main input data (white boxes),

data flow (lines), intermediate (grey boxes) and final (grey boxes with borders)

outputs.
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