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Abstract

Background: Abnormal metabolic pathways have been considered as one of the hallmarks of cancer. While
numerous metabolic pathways have been studied in various cancers, the direct link between metabolic pathway
gene expression and cancer prognosis has not been established.

Results: Using two recently developed bioinformatics analysis methods, we evaluated the prognosis potential of
metabolic pathway expression and tumor-vs-normal dysregulations for up to 29 metabolic pathways in 33 cancer
types. Results show that increased metabolic gene expression within tumors corresponds to poor cancer prognosis.
Meta differential co-expression analysis identified four metabolic pathways with significant global co-expression
network disturbance between tumor and normal samples. Differential expression analysis of metabolic pathways
also demonstrated strong gene expression disturbance between paired tumor and normal samples.

Conclusion: Taken together, these results strongly suggested that metabolic pathway gene expressions are
disturbed after tumorigenesis. Within tumors, many metabolic pathways are upregulated for tumor cells to activate
corresponding metabolisms to sustain the required energy for cell division.
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Background
Gene expression and metabolism are two essential biological
processes critical to all living organisms. Gene expression is
the fundamental information flow that transforms the herit-
able genetic information of individual genes to cellular func-
tioning entities, including constituent proteins and catalytic
enzymes. Metabolism refers to the system of all chemical
reactions that are synergistically inter-connected to fulfill all
respects of viability necessities. Abnormal metabolism has
been added to the original six hallmarks of cancer in 2011
[1]. Harmonized gene expression and metabolic state are

prerequisites for homeostasis - the maintenance of steady
internal physical and chemical conditions in living systems.
It has been well documented that there are close associa-
tions and regulatory effects between gene expression and
metabolic state. Numerous models were developed to cap-
ture these associations between gene expression and metab-
olism [2, 3]. Most recently, it was shown that lactate-derived
lactylation of histone lysine residues can directly stimulate
gene transcription from chromatin [4]. This finding further
proves that there is a strong metabolic regulation of gene
expression through histone acylation [5]. Metabolic enzymes
can serve as the link between metabolism and gene regula-
tion [6].
A metabolic pathway consists of a cascade of enzyme-

catalyzed chemical reactions occurring in a cell that are
orchestrated to fulfill one relatively independent cellular
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function. In a metabolic pathway, the product of one up-
stream reaction acts as the substrate for the successive
reaction, and all those substrates/products are termed
metabolites in general. Many of the metabolites in these
pathways have significant implications in cancer. For
example, folate exerts its effect on cancer through
nutrient-gene interaction as to genes within the folate
metabolic pathway. Deficiency of folate has been linked
to increased risk of cancers [7], and a clinical trial has
shown the beneficial effect in malignant pleural meso-
thelioma [8]. Another well-studied metabolite is vitamin
D, which has been shown to decrease cancer risks yet
with some variability [9]. A plethora of metabolic path-
ways has been linked to cancer by supporting cell
growth and proliferation through their effects on nutri-
ent acquisition and lipid, protein, nucleic acids synthesis.
For example, colon cancer cells that are deficient in p53,
one of the most important tumor suppressors, activate
the mevalonate pathway to adapt to the lack of oxygen
and nutrients [10]. Many of the metabolic pathways’
functions can be activated by somatic mutations in
oncogenes [11] or germlines variants [12]. It has been
argued that tumor requires reprogrammed, more com-
plex metabolism by loss of tumor suppressor or gain of
oncogene, in order to promote cancer cell survival and
growth [13].
Many metabolic pathways and corresponding metabo-

lites have been thoroughly studied in cancers. These
studies mostly focused on the cancer risk associated with
nutrient supplement intake in the case-control type of
epidemiology studies, or functional mechanism analysis
of the regulatory effects between metabolism and gene
expression. Previous pan-cancer metabolic studies [14–16]
have shown that metabolic pathways have been significantly
disturbed in cancer. In this study, we focus on the two
aspects of cancer metabolism using two recently established
bioinformatics methods. First, we evaluated whether meta-
bolic pathway expressions have any predictability for cancer
survival. Second, we examined the co-expression patterns
within the metabolic pathways and differential expression
of the metabolic pathways between paired tumor and
normal samples.

Methods
Data acquisition
Twenty-nine major metabolic pathways curated by three
sources: PID [17], PANTHER [18], and INOH [19] were
extracted from Pathway Commons [20]. Pathways with
identical names from distinct sources were merged into
a single pathway by adopting the gene set with the
largest size and adding additional gene members from a
secondary pathway if that pathway contributed more
than 70% shared gene members. Furthermore, we exam-
ined gene intersection between every pair of pathway

and ensured each pair of pathways have no more than
70% common genes. The 29 metabolic pathways are
abbreviated as MP1 to MP29 when necessary in this
study. The full name of the metabolic pathways are
listed in Supplementary Table S1.

Survival analysis
The Cancer Genome Atlas (TCGA) data were downloaded
from Genomic Data Commons for this study. Overall,
processed RNA-seq data of 11,069 samples from 10,274
subjects of 33 cancer types were downloaded. Out of the
11,096 samples, 795 were adjacent normal tissues, and the
rest were tumor tissues. The 33 cancer types alongside
their abbreviations and sample sizes are listed in Supple-
mentary Table S2. Detailed patient survival information
including overall survival and disease specific survival were
obtained from publication by Liu et al. [21]. Survival ana-
lyses were performed using Advanced Expression Survival
Analysis (AESA) [22] from MutEx analysis suite [23].
AESA computed a composite gene expression score
(CGES) for each of the 29 metabolic pathways within each
cancer type. Each CGES was computed using the formula
CGES ¼ 1

½1þ expð − ð
Pk

i¼1
βixi − mÞÞ�

, where xi denotes the stan-

dardized log-transformed expression value of the ith gene
(from all k genes of a particular pathway) and the βi de-
notes the score test coefficient for the same gene from a
univariate Cox-proportional hazards regression. The
normalization factor m captures the median of the linear

combination term (
Pk

i¼1βixi ) across all patients of the
same cancer type, thus effectively normalizing the resultant
CGES scores to the (0, 1) interval. Because CGES incorpo-
rates the coefficients from the expression-dependent Cox
proportional hazards model and CGES is then put back
into the same gene expression dataset, we applied a 1000-
time permutation option offered by AESA to combat the
effect of overfitting. The permutation p-value for each
pathway-cancer scenario was adjusted for multiple tests
using the Benjamini-Hochberg method. Adjusted p-value
< 0.05 was considered statistically significant. ASEA has
been previously used to successfully identify survival pre-
diction values for non-coding RNAs [22].

Meta co-expression analysis
Our second analysis of metabolic pathways focused on
the expression difference between tumor and normal
tissues. Two types of differences were interrogated:
differential co-expression and differential expression.
Differential co-expression analysis was assisted by Gene
Sets Net Correlations Analysis (GSNCA) [24], which is a
multivariate differential co-expression test that accounts
for the complete correlation structure between genes of
a pathway. The output of the original GSNCA method
includes a permutation-derived p-value but is devoid of
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effect size and corresponding standard error. We adapted
the GSNCA method into a meta analysis approach where
multiple independent datasets can be used to determine
the overall significance of co-expression changes between
two conditions. To achieve this, we adapted a bootstrap
approach to estimate the confidence interval. The effect size
of an individual dataset can be estimated using the follow-
ing formula: ES ¼ logeð p

1 − pÞ , where p is the original

GSNCA p-value. The meta analysis and forest plots were
conducted using the generalized linear mixed effect model
from R package Metafor [25]. In parallel to differential co-
expression analysis, we conducted differential expression
analysis between paired tumor and normal samples for the
29 metabolic pathways using paired t-test. Adjusted p-value
< 0.05 is considered significant. The meta co-expression
analysis has been built into a web application and can be
accessed freely at http://www.innovebioinfo.com/Gene_Ex
pression_Analysis/Meta_GSCA/MetaGSCA1.php.

Results
Survival analysis results
Comprehensive survival analyses were conducted to evalu-
ate the overall prognosis conferred by metabolic pathway
expressions in cancers. Two types of survival data were ob-
tained from publication by Liu et al. [21]: overall survival
(OS) and disease specific survival (DSS). OS and DSS ana-
lyses were separately analyzed for each metabolic pathway
within each cancer type. Each pathway was treated as a sin-
gle entity by computing a CGES from AESA. Permutation
of 1000 iteration was used to overcome overfitting. Of the
29 metabolic pathways tested in the 33 cancer types, the
OS analyses affirmed statistical significance for 166 cancer-
pathway combinations post permutation and multiple test
correction (Supplementary Table S3), and the DSS analyses
affirmed 170 similarly (Supplementary Table S4). The exact
numbers of significant cancer types per pathway are
displayed in Fig. 1a. On average, each metabolic pathway
was significantly prognostic for OS of 5.7 cancer types
(range: 3–8) or DSS of 5.9 cancer types (range: 3–9). MP15
(metabotropic glutamate receptor group II pathway) was
significant in eight cancer types in OS analysis, and MP26
(pyruvate metabolism) was significant in nine cancer types
in DSS analysis. Metabotropic glutamate receptors are
widely known for synaptic signaling [26]. Recent evidence
has suggested that glutamine can be used as an alternative
energy source in place of glucose and serve as intermediates
for macromolecule synthesis by tumor cells [27]. Pyruvate
is another important metabolic compound and is a direct
product of glucose metabolism. Pyruvate can directly
induce the Warburg effect and it has been suggested to be
a cancer therapeutic target [28].
Cluster analysis was conducted on the adjusted p-value

with R package heatmap3 [29] using Euclidean distance

(Fig. 1b). Explicit patterns can be seen from the cluster
results. Metabolic pathway’s survival predictability is
preferential to cancer types. Kidney renal papillary cell
carcinoma (KIRC) and brain low grade glioma (LGG)
have significant survival results for all 29 metabolic path-
ways, in both OS and DSS analyses. Uveal melanoma
(UVM) affirmed statistical significance for 28 pathways
in OS analysis and 27 in DSS analysis. Cancer types such
as uterine corpus endometrial carcinoma (UCEC) and
adrenocarotical carcinoma (ACC) had significant survival
results for moderate numbers of metabolic pathways.
Most other types of cancers had significant survival results
for few or no metabolic pathways. For example, ovarian
serous cystadenocarcinoma (OV) had significant survival
result for one metabolic pathway in OS analysis and zero
in DSS analysis.
Further exploring OS and DSS analysis results reveal

that all significant survival results have the same direc-
tion. That is, increased overall gene expression level of a
metabolic pathway always corresponds to worse survival
outcome. Using MP5 (folate metabolism), an important
cancer related metabolic pathway as an example, we
plotted the Kaplan-Meier curves for cancer types KIRC,
LGG and UVM (Fig. 1c) in both OS and DSS analyses.
The universality of negative association between metabolic
pathway gene expression and cancer survival clearly sug-
gests that proliferation of cancer cells can be enhanced by
the activation of metabolic pathways. However, these re-
sults also hint that there is metabolic preference depend-
ing on cancer types, which underlies the heterogeneity of
cancer.

Meta co-expression analysis results
From a different angle, we dissected metabolic pathway
gene expression by contrasting tumor samples and nor-
mal samples. Of all 33 TCGA cancer types, only 17 have
gene expression data on sufficient normal tissues (n > 9).
Meta differential co-expression analysis was conducted
for each metabolic pathway, with 17 cancer types
regarded as multiple datasets. Of the 29 metabolic path-
ways tested, four showed significant co-expression differ-
ence. They are folate metabolism, glutamic acid and
glutamine metabolism, glycine and serine metabolism,
and purine nucleotide metabolism. Folate is an import-
ant member of vitamin B complex and it is essential for
cell division and homeostasis. Folate metabolism showed
significant co-expression disturbance in 11 of the 17
cancer types, thus resulting in a meta p-value of 0.045
(Fig. 2a). Glutamate is a key compound in cellular me-
tabolism, responsible for the biosynthesis of nucleic acid
and proteins. Glutamic acid and glutamine metabolism
pathway showed significant co-expression disturbance in
12 cancer types, resulting in a meta p-value of 0.036
(Fig. 2b). Glycine and serine metabolism is also a vital
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Fig. 1 Overall and disease specific survival analysis results. a. Number of cancers with significant permutation p-value after multiple test correction for each
metabolic pathways for overall survival and disease specific survival. b. Cluster analysis results based on overall survival and disease specific survival. Red color
indicates more survival significance. c. Kaplan-Meier curves of folate metabolic pathway in three different cancers for both overall and disease specific survival. P-
values labeled are the permutation p-values. Please see Supplementary Table S1 for metabolic pathway list (MP IDs) and Table S2 for cancer type list, respectively
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passage for the biosynthesis of nucleic acids, proteins
and lipids. Its pathway showed significant co-expression
disturbance in 12 cancer types, producing a meta p-value
of 0.039 (Fig. 2c). Purine nucleotides metabolism is
responsible for synthesizing purine nucleotides and is in-
volved in a plethora of cellular functions. Its pathway
showed significant co-expression disturbance in nine
cancer types, translating to a meta p-value of 0.049
(Fig. 2d). Collectively, the significant results of these four
pathways show that the co-expression network of
important DNA synthesizing metabolic pathways have
been disturbed during tumorigenesis.

Differential expression analysis
In a comparison setting between tumor tissues and
matched normal tissues, we examined the difference in
overall expression magnitude of metabolic pathways.
Again, the same 17 cancer types with sufficient normal
RNA-seq data were enrolled in this analysis. However,
we only used paired tumor and normal sample for this
analysis. Of all possible 493 (49×17) cancer-pathway
combinations, 328 (66%) showed significantly different
expression post multiple test adjustment, signaling sig-
nificant expression alteration between tumor and normal

samples for the metabolic pathways tested. Of these 328
dysregulated cancer-pathway combinations, 126 had
higher expression in tumor samples and 202 had higher
expression in normal samples (Fig. 3a, Supplementary
Table S5). Some metabolic pathways showed strong
directional preference. For example, MP3 (arginine and
proline metabolism) was significantly dysregulated in 14
cancer types, and all of them showed downregulation in
tumor. MP23 (purine nucleotides metabolism) was sig-
nificantly dysregulated in 13 cancer types, all of which
showed upregulation in tumor. Cluster and heatmap
analysis on the adjusted p-values show that lung adeno-
carcinoma (LUAD) and lung squamous cell carcinoma
(LUSC) formed a unique cluster branch (Fig. 3b). Nearly
all of the 29 metabolic pathways were significantly dys-
regulated between paired tumor and normal samples in
these two cancer types. Furthermore, we plotted the
average gene expression of folate metabolism pathway
for individual subjects of four cancers as examples
(Fig. 3c). In LUAD and LUSC, a universal upregulation
of folate metabolism pathway was observed between all
paired tumor and normal samples. In colon adenocar-
cinoma (COAD), majority of the tumor-normal pairs
showed upregulation in tumors. In cholangiocarcinoma

Fig. 2 Significant meta co-expression analysis results. a. Forest plot for folate metabolism pathway. b. Forest plot for glutamic acid and glutamine
metabolism pathway. c. Forest plot for glycine and serine metabolism pathway. d. Forest plot for purine nucleotides and nucleotides
metabolism pathway
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(CHOL), all tumor-normal pairs showed downregulation
of folate metabolism pathway in tumor. The inconsistent
directionality of metabolic pathway expression changes
hints at the cancer heterogeneity.

Discussion
Tumor cells reprogram metabolism to sustain cell prolif-
eration. This is designated as the Warburg effect, which
refers to the fact that tumor cells prefer metabolism via
glycolysis rather than the efficient oxidative phosphoryl-
ation pathway. A myriad of cancer metabolism studies
has proved that cancer cells require alternative activation
of metabolic pathways to obtain the necessary energy
source for cell growth. The direct relation between
metabolic pathway expression and cancer prognosis has
not been established. Since a metabolic pathway includes
multiple genes, survival analyses evaluating a pathway as
a single entity has been difficult. Using a newly devel-
oped method AESA, we constructed a composite gene

expression score to represent the expression level of a sin-
gle pathway and thus managed to conduct OS and DSS
analyses based on these scores. Overall, 166 and 170
cancer-pathway combinations were found to be signifi-
cantly associated with survival for OS and DSS respectively.
All significant results show that higher expression of meta-
bolic pathways resulted in worse survival outcomes. These
results strongly suggest that upregulation of metabolic
pathway genes reinforced/activated select metabolic path-
ways, which translated to poor prognosis. Not to confuse
with our analysis between tumor and normal, the survival
analysis was conducted entirely using tumor samples. As
we have shown, the gene expression of metabolic pathways
was not always higher in tumor than normal. Additionally,
the survival analysis results also show that cancer types
have varied survival sensitivity toward metabolic pathway
expression change. LGG and KIRC had strong survival as-
sociations with all tested metabolic pathways, while some
cancer types had no survival association at all.

Fig. 3 Differential expression analysis results between paired tumor and normal samples. A total of 17 cancer types and 29 metabolic pathways
were tested. a. Barplot denotes the number of cancers in which each metabolic pathway showed significant expression changes (up or down
regulation). b. Heatmap and cluster analysis results using adjust p-value and Euclidian distance. c. Patient-wise average gene expression of folate
metabolism pathway. Violin plots display the distribution of patient-wise average expression; line segments connect paired average expression
values of the same patients
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Our second analysis dealt with the co-expression
disturbance of metabolic pathways between tumor and
normal samples. This analysis identified four metabolic
pathways that showed repetitive co-expression disturb-
ance across multiple cancers. They are folate metabol-
ism, glutamic acid and glutamine metabolism, glycine
and serine metabolism, and purine nucleotide metabol-
ism. Folate, also known as vitamin B9, is essential for
DNA and RNA synthesis and maintenance of methyla-
tion reaction in cells. Folate metabolism is pivotal for
cell replication and survival. Interruption of folate
metabolism pathway may produce substantial toxic ef-
fect on cell division process, the key to tumorigenesis.
Inhibition of folate metabolism pathway has been used
in cancer treatment [30]. It has been long documented
that tumor cells are avid glutamine consumers [31]. Glu-
tamine also plays a crucial role in the uptake of essential
amino acid and in maintaining the activation of target of
rapamycin (TOR) kinase, which is the central component
of the well-known cancer pathway mTOR [32]. Glycine
and serine metabolism has been considered as the central
hub of cancer metabolism. Serine biosynthesis can be used
by glycolysis pathways, which is activated by cancer cells
to sustain anabolism. The purine nucleotides metabolism
is another important component in the whole DNA syn-
thesis process. Purine analogues also known as antimetab-
olites can be used for cancer treatment because they have
a similar chemical structure to purine. Masquerading as
purine, these analogues interfere with DNA synthesis, pre-
venting tumor cells from further dividing [33]. These four
metabolic pathways with significant co-expression differ-
ences between tumor and normal samples are connected
intricately by the complicated one carbon metabolic net-
work, which is centered on folate. Serine is served as a
donor to folate one carbon unit. Glycine is an important
precursor for purine biosynthesis. Glycine can provide
carbon units for one carbon metabolism. Glycine can be
converted from serine by glycolysis, which is stimulated
by glutamine.
Our last analysis is the differential gene expression ana-

lysis of each metabolic pathway between paired tumor and
normal samples. It is important to distinguish this analysis
from the aforementioned survival analysis, which was based
on only tumor gene expression data. In the survival ana-
lysis, we observed universal poor prognosis for higher ex-
pression of metabolic pathways. However, in the differential
expression analysis, we observed more down regulation of
metabolic pathway expression in tumor compared to nor-
mal. Most metabolites are nutrients for cellular functions.
Healthy metabolisms are essential for normal cell growth.
Deficiency in certain metabolites can increase cancer risk.
For example, chronicle insufficient intake of folate may
increase risk of many cancer types [34]. However, upon
tumorigenesis, antifolate drug can be prescribed for

treatment. Metabolism is essential for all cell survival
including both normal and tumor cells. The fundamental
difference between metabolism in tumor and normal cells
is how metabolisms are activated and utilized.
Our genomic data source TCGA has several limita-

tions. The OS data in TCGA was subjected to immortal
time bias [21], the bias towards long survival because of
the time gap between the diagnosis time-point and the
enrollment time-point. This unavoidable time gap indir-
ectly enforces the study to preferentially enroll patients
with longer survival time, thus favoring survival. The
DSS data, by contrast, is a more robust measure of a dis-
ease’s real impact. However, DSS data tends to have less
statistical power due to fewer outcome events. Addition-
ally, TCGA had limited RNA-seq data on adjacent normal
tissues. On average, each cancer type has 0 to 10% adja-
cent normal tissue samples for all subjects enrolled. This
limited our analyses to merely 17 cancer types when nor-
mal samples were required.

Conclusion
Our study discovered several important findings. The most
novel finding is that higher metabolic pathway expression
corresponds to worse survival. The differential co-
expression and differential expression analyses demonstrated
the disruption of metabolic pathway gene expression be-
tween tumor and normal tissues. In summary, these results
show that heterogeneous tumor types bear varied sensitivity
to metabolic pathway expression changes.
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Abbreviations
AESA: Advanced expression survival analysis; ACC: Adrenocortical Carcinoma;
BLCA: Bladder Urothelial Carcinoma; BRCA: Breast Invasive Carcinoma;
CESC: Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma;
CGES: Composite gene expression score; CHOL: Cholangiocarcinoma;
COAD: Colon Adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-
cell Lymphoma; DSS: Disease specific survival; ESCA: Esophageal Carcinoma;
GBM: Glioblastoma Multiforme; GSNCA: Gene Sets Net Correlations Analysis;
HNSC: Head and Neck Squamous Cell Carcinoma; KICH: Kidney
Chromophobe; KIRC: Kidney Renal Clear Cell Carcinoma; KIRP: Kidney Renal
Papillary Cell Carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower
Grade Glioma; LIHC: Liver Hepatocellular Carcinoma; LUAD: Lung
Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma;
MESO: Mesothelioma; OS: Overall survival; OV: Ovarian Serous
Cystadenocarcinoma; PAAD: Pancreatic Adenocarcinoma;
PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate
Adenocarcinoma; READ: Rectum Adenocarcinoma; SARC: Sarcoma;
SKCM: Skin Cutaneous Melanoma; STAD: Stomach Adenocarcinoma;
TCGA: The cancer genome atlas; TGCT: Testicular Germ Cell Tumors;
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THCA: Thyroid Carcinoma; THYM: Thymoma; UCEC: Uterine Corpus
Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma
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