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Abstract

The significant amount of medicinal chemistry information contained in patents makes

them an attractive target for text mining. In this manuscript, we describe systems for

named entity recognition (NER) of chemicals and genes/proteins in patents, using the

CEMP (for chemicals) and GPRO (for genes/proteins) corpora provided by the

CHEMDNER task at BioCreative V. Our chemical NER system is an ensemble of five open

systems, including both versions of tmChem, our previous work on chemical NER. Their

output is combined using a machine learning classification approach. Our chemical NER

system obtained 0.8752 precision and 0.9129 recall, for 0.8937 f-score on the CEMP task.

Our gene/protein NER system is an extension of our previous work for gene and protein

NER, GNormPlus. This system obtained a performance of 0.8143 precision and 0.8141 re-

call, for 0.8137 f-score on the GPRO task. Both systems achieved the highest performance

in their respective tasks at BioCreative V. We conclude that an ensemble of independ-

ently-created open systems is sufficiently diverse to significantly improve performance

over any individual system, even when they use a similar approach.

Database URL: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/.

Introduction

While publications such as those found in the biomedical

literature contain a significant amount of useful chemical

information (1), much of the useful information on medi-

cinal chemistry is found in less formal documents, such as

patents. The CHEMDNER task at BioCreative V, a major

challenge event in biomedical natural language processing,

addressed the extraction of chemical and gene/protein

entities from medicinal chemistry patents (2). A sentence

with example annotations of both a chemical and a protein

is shown in Figure 1. NCBI participated in both the CEMP

[chemical named entity recognition (NER)] and GPRO

(gene and protein related object identification) subtasks.

We addressed the CEMP subtask with an ensemble system

combining the results of 10 models from five open NER
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systems for chemical NER. We addressed the GPRO sub-

task by adapting the open source GNormPlus system (3).

The corpus for the BioCreative V CHEMDNER task

was generated using the annotation guidelines from the

BioCreative IV CHEMDNER task, with slight differences

to adapt the guidelines to patents. These differences in-

crease the focus on capturing the broad chemical termin-

ology rather than specifically on mentions that can be

converted to a chemical structure. As in the BioCreative IV

CHEMDNER task, seven types of chemical (CEMP) men-

tions are highlighted: systematic, identifiers, formula, triv-

ial, abbreviation, family and multiple. Several high

performance open source chemical recognition systems

were developed during the CHEMDNER task, in which

the best performance was over 87% f-score (1). A descrip-

tion of the CHEMDNER patent corpus and its CEMP

mentions can be found in Table 1.

Recognition of mentions of genes/proteins, diseases and

related objects in biomedical literature has been well

studied in the past decade (4–7), including through mul-

tiple community-wide text-mining challenges (8). The best

performance is over 80% f-score for both recognizing

gene/protein mentions and normalizing the mentions to

specific gene/protein identifiers within a controlled vo-

cabulary (e.g. NCBI Gene or UniProt). Unlike previous

gene recognition/normalization tasks (9–13), the

BioCreative V GPRO subtask attempts to identify genes

and proteins in patent texts. Under the criteria of the task,

only gene/protein name mentions (named type 1 in this

task), which can be normalized to a database (e.g. UniProt

and NCBI Gene) identifier are evaluated. Other related

entities, such as gene/protein families, domains, sequences,

motifs and DNA/RNA (named type 2 in this task) are not

considered in the evaluation. The main challenge in this

task therefore becomes how to recognize the difference be-

tween genes and proteins that can be normalized and other

objects. A description of the GPRO mentions in the

CHEMDNER patent corpus can also be found in Table 1.

We address both the CEMP and GPRO tasks with an en-

semble approach, combining the results of several models to

improve performance. Variations of ensembles have been

used in machine learning for many years; one well-known

method—bagging—uses bootstrap samples of the training

data to train multiple models, then averages their predictions

(14). Attempts to address NER with ensemble systems vary

greatly in the composition of the ensemble and the method-

ology used for combining the predictions. At the gene/protein

NER task at the first BioCreative challenge, one participant

combined a support vector machine and two hidden markov

models using majority vote (15). Other gene/protein named

entity recognizers have used conditional random fields models

exclusively by training the same model using different tagging

directions, then combining using their tagging probabilities

(16) or by training the same model on corpus-specific alter-

nate annotations, then combining with rule-based strategies

(17). Our ensemble approach is similar to methods combin-

ing team results (13, 18).

Ensemble techniques have been found to be particularly

effective in noisy domains. For example, a participant in

the 2010 i2/b2 NLP Challenge combined two dictionary

systems and five machine learning systems using majority

vote (19). These results suggest that ensemble methods

should be useful in patents, which are also somewhat

noisy. Since system diversity is typically considered to be

important for an ensemble (19), however, it is still some-

what unclear whether a combination of conditional ran-

dom field systems with broadly similar approaches that

have not been specifically engineered to be different will

produce increased performance.

CEMP task methods

We addressed the CEMP subtask using an ensemble system

that combines the results from five individual systems,

trained with different data to create a total of ten models.

An overview of the system architecture is depicted in

Figure 2. Each of the individual systems included are ma-

chine learning systems based on conditional random fields

and employ a rich feature approach. The systems used are

tmChem Model 1 and tmChem Model 2 (4), becas[chem-

ical] (20), the Wuhan university CHEMDNER tagger (21)

and banner-chemdner (22). All systems are retrainable,

Figure 1. An example sentence from the CHEMDNER training corpus

with chemicals and gene/proteins in Patent ID: CA2119782C.

Table 1. Description of the training, development and test

sets for the BioCreative V CHEMDNER task, including men-

tions for the chemical named entity recognition (CEMP) and

gene and protein related object identification (GPRO)

subtasks

Count description Training set Development set Test set

Patent abstracts 7000 7000 7000

CEMP mentions 33543 32142 33949

GPRO mentions 6876 6263 7093

Type 1 only 4396 3934 4093
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with the exception of becas[chemical], which is only avail-

able as a web service.

We trained the constituent systems using combinations

of two corpora. First, we used the training and develop-

ment sets of annotated patents provided by the organizers.

We pooled these sets and randomly split them into three

sets: the training set, containing 12 000 articles, and two

evaluation sets containing 1000 articles each. Second, we

also used the full corpus of PubMed abstracts from the

BioCreative IV CHEMDNER task as a training corpus

(23). We created ten separate models: four models using

only the patents training data, two models using only the

PubMed data and four models using both, as shown in

Figure 2.

We combined the results of the ten models using a ma-

chine learning classification approach. Each mention re-

turned by at least one model was represented as an

instance to be classified. We used 10 binary features—one

feature per model—with the value of the feature reflecting

whether the respective model returned the mention. We

tested several classifiers, including majority vote, logistic

regression and support vector machines (both of which

learn weights for each feature) and random forests (which

considers feature interactions). Majority vote performed

much better than random forests, but we selected logistic

regression and support vector machines because they pro-

vided the highest performance. Our implementation used

Weka (24) and libsvm (25), with the default parameters

for each classifier (a grid search found no configuration

with higher performance).

We handle overlapping mentions by selecting the men-

tion with the highest classification score, in case of a tie we

use the longer mention. This changes the precision/recall

balance, which we address by determining the optimal

classification score threshold for each classifier on the two

evaluation sets, we use their average for the final ensemble.

We created two versions of the ensemble with the inten-

tion of maximizing recall. The first (‘high recall’) omits the

thresholding step, returning all mentions found after han-

dling overlaps. The second (‘higher recall’) also omits the

thresholding step and adds an additional post-processing

step. This step considers each text that was marked as a

mention by the ensemble and then searches the document

for other instances of that text. If another instance is

found, then it is also added as a chemical mention, unless it

was already present.

GPRO task methods

We addressed the GPRO task by adapting GNormPlus (3),

our previous work on gene/protein name recognition and

normalization. GNormPlus is a conditional random fields

(CRF) (26) based method which can recognize gene/pro-

tein, family and domain mentions, and also determine their

respective identifiers in NCBI Gene. By default,

GNormPlus is trained using the refactored corpus of

BioCreative II Gene Normalization task (11).

For the GPRO task, we used the BIEO (B: begin, I: in-

side, E: end and O: outside) labeling model and a CRF

order of 2. More specifically, we created five individual

models (M1-M5) based on different training data and fea-

tures, as shown in Table 2. We first separated all gene/pro-

tein-related annotations into two distinct types: mentions

that can be normalized to a database record (type 1) and

mentions that cannot (type 2). Next, our five models were

designed as follows: In model 1, both types of mentions

were used and were treated the same. In model 2, both

types were used but treated as two separate classes. In

model 3, the type 2 mentions were ignored and the model

was trained with only the type 1 mentions. Models 4 and 5

resembled models 1 and 3 respectively, but also used the

recognition result of the default GNormPlus system as an

additional feature. The other features used in the five mod-

els were directly adapted from GNormPlus, including lin-

guistic features, character calculation, semantic type and

contextual words.

As in GNormPlus, we employed several post-processing

steps: including enforcing tagging consistency and abbrevi-

ation resolution. In addition, we performed filtering, espe-

cially for the false positive predictions in two major types:

‘gene/protein family name’ and ‘not a gene/protein men-

tion.’ We filtered these using a maximum entropy classifier

trained with three types of features: the five tokens sur-

rounding the span, whether the span can be found in NCBI

Gene, UniProt or the list of type 1 mentions in the training

and development sets, and morphological features: The

number of uppercases, lowercases, digits, tokens, and

Figure 2. Architecture of the ensemble chemical named entity recogni-

tion system for the CEMP task.
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binary features of common gene/protein (e.g. ‘alpha’) or

family (e.g. ‘proteins’) suffixes.

We also filtered composite mentions (‘MULTIPLE’

type) by applying our previous study SimConcept (27) to

recognize these mentions rather than simplify them. The

mentions are recognized as mention with coordination el-

lipsis or range mention are definitely type 2 and should be

removed from our output result. The individual mentions

(e.g. ‘hdac2 and/or hdac3’) should be separated to multiple

spans (‘hdac2’ and ‘hdac3’). However it is difficult to de-

termine whether overlapping abbreviation pair mentions

(e.g. ‘NMDA (N-methyl-D-aspartate) receptor’) belong to

type 1 or 2. Thus, our system looks at the two individual

mentions (‘NMDA receptor’ and ‘N-methyl-D-aspartate

receptor’), which are identified by SimConcept. These are

ignored if there is a type 2 mention in training corpus with

the same text, otherwise they are kept (e.g. ‘tumor necrosis

factor (TNF)-a’).

We observed that in the training corpus, some chemical

identifiers are recognized as gene/proteins (e.g. ‘KRP-101’

in patent ID: WO2006090756A1). Thus, we applied the

lexicon of chemical identifiers which was used in tmChem.

This lexicon is collected from the CTD database (http://

ctdbase.org/) by extracting the chemical names consisting

of 2–5 letters, followed by at least two digits.

Taken together, these post-processing steps improve the

f-score by 3–5% on the development set. For the final task

submissions, we created two variants that used majority

voting to aggregate the results of multiple individual

models.

CEMP task results

We evaluated our ensemble and the individual models cre-

ated for the CEMP task in terms of precision, recall and

f-score, requiring the predicted span to match the span

annotated to consider it a true positive. We report the per-

formance of both versions of tmChem on our two evalu-

ation sets for the CEMP task in Table 3. We found that

applying models trained on PubMed abstracts to the patent

corpus reduced performance as much as 20% (data not

shown). Performance improved considerably when the sys-

tems were retrained on the patent set, as would be ex-

pected. Less expected, however, is that training with a

combination of the PubMed and patent sets consistently

resulted in a slightly higher net f-score, due to higher

recall.

We evaluated five versions of the ensemble, as shown in

Table 4. The first three versions differed only in which

classifier was used for the ensemble: logistic regression,

libsvm and support vector machines with the modified

Huber loss. The last two versions were intended to maxi-

mize recall, as described in the CEMP Task Methods sec-

tion; both used logistic regression as the base classifier. To

evaluate the ensemble internally, we applied cross-valid-

ation between the two evaluation sets and averaged the re-

sults. To apply the ensemble to the test set, we included the

evaluation sets in the training data for the ensemble classi-

fier, but we did not retrain the individual models.

GPRO task results

The GPRO task evaluation was also in terms of precision,

recall and f-score, again requiring the exact span to be con-

sidered a true positive. However, only mentions that can

be mapped to an identifier (type 1) are evaluated.

Recognizing the mentions that cannot be mapped to a spe-

cific identifier (type 2) is therefore highly important, but

we unfortunately found these mentions to be highly am-

biguous with the type 1 mentions. We found that the CRF

model could not differentiate well between the two types

(models 2 and 3), but combining the types and refining the

result in post-processing provided better performance

(model 1). Adding the recognition result of GNormPlus as

an additional feature in the CRF models increased recall

about 4–6%, but reduced precision significantly. We pro-

duced two versions that aggregated the recognition results

with a majority voting strategy. The last row in Table 5

aggregated the results of all five models, and obtained

highest f-score (0.8137). All models were internally

Table 2. Detailed description of the five models for GPRO task

Model Details

M1 Use both Type 1 and 2 mentions,

treat them as a single class

M2 Use both Type 1 and 2 mentions, but treat

as two distinct classes

M3 Use only Type 1 mentions, ignore Type 2 mentions

M4 Like M1, but with the additional GNormPlus feature

M5 Like M3, but with the additional GNormPlus feature

The additional GNormPlus feature refers to the results of the default

GNormPlus model, trained on PubMed abstracts.

Table 3. Results for tmChem model 1 and model 2 on the

CEMP task in two training configurations

System Training Precision Recall F-score

tmChem.M1 Patent 0.8819 0.8088 0.8437

tmChem.M2 Patent 0.8721 0.7953 0.8319

tmChem.M1 Both 0.8741 0.8232 0.8479

tmChem.M2 Both 0.8711 0.8159 0.8426

Each measure is averaged between the two evaluation sets. The highest

value is shown in bold.
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evaluated using the development data. The models were

then retrained to include the development data for applica-

tion to the test set.

CEMP task discussion

The strong performance obtained by the ensemble of

chemical NER systems on the CEMP task is notable, given

the perceived importance of the diversity of the models.

Despite the broadly similar approach, however, the sys-

tems do exhibit many differences. These differences include

varying strategies for sentence splitting, tokenization and

also the toolkit used to implement conditional random

fields (CRF). The feature sets used are also broadly similar,

though becas[chemical] includes an extensive dictionary,

and both the Wuhan tagger and BANNER-CHEMDNER

include distributional semantics features. All systems use a

token-level CRF model, but the Wuhan tagger combines

this with a character level CRF model. All systems perform

some level of abbreviation resolution and parenthesis post-

processing, though both tmChem models and the Wuhan

tagger attempt to revise the mention boundaries so the par-

enthesis will be balanced rather than always drop a men-

tion with unbalanced parenthesis. These differences make

it likely that any errors made by one model will frequently

be different than the others and their strengths will comple-

ment each other.

While the performance gains obtained by combining in-

dependent systems into an ensemble are substantial, there

are several disadvantages. Creating an ensemble requires a

significant engineering effort: each system must be set up,

configured, retrained, and adapted to the necessary data

format(s). Each system then processes the data independ-

ently, requiring proportionally greater computing time.

Finally, we found the results to be difficult to interpret: be-

cause ensembles work by ‘averaging’ out the errors of

many individual systems, the remaining errors are

obscured.

GPRO task discussion

Despite our best efforts, several types of errors remain. We

manually analyzed the errors against the development set.

We grouped our errors into several categories, as shown in

Table 6. The most common type of error appears to be due

to boundary issues since the evaluation required exact

match. Most boundary errors occur where a gene (e.g.

‘NPY1’) is nested within a larger gene mention (e.g. ‘NPY1

receptors’). Integrating gene/protein normalization may be

able to address this issue: ‘NPY1’ and ‘NPY1 receptor’ are

different genes, the prediction should therefore be the lon-

ger span (‘NPY1 receptor’).

Other errors include confusion with different entity

types and annotation inconsistency. First, in our output

gene/protein mentions were often confused and labeled er-

roneously as family names, many of which have a very

similar appearance. For example, our system incorrectly

identified ‘progesterone receptors’ as a family name be-

cause of the plural. Integrating gene/protein normalization

may also help address this error: since there is no family

with the name ‘progesterone receptors,’ the mention refers

to a protein mention. Secondly, the same entity mention

may be annotated differently in the same (e.g. only one of

the three fup1 gene mentions in CN1654074A is annotated

as a protein mention) or different documents (e.g. VEGF is

annotated as a protein mention in US20110014197, but a

family name in US20090074761). The remaining errors

(category ‘Others’) include incorrect handling of composite

mentions or abbreviations.

Conclusion

We identified chemical entities in patents (the CEMP task)

using an ensemble of open source chemical NER systems,

combined using a straightforward classification approach.

The individual systems were trained either using the CEMP

training data—which only contains patents, the

Table 4. Results for our ensemble systems on the CEMP task

as measured by precision (P), recall (R) and f-score (F)

System Evaluation sets Test set

Precision Recall F-score Precision Recall F-score

Logistic 0.8867 0.8979 0.8923 0.8752 0.9129 0.8937

Huber SVM 0.9091 0.8626 0.8853 0.8908 0.8918 0.8913

libsvm 0.9255 0.8753 0.8901 0.8971 0.8822 0.8896

High recall 0.6732 0.9562 0.7901 0.7967 0.9314 0.8588

Higher recall 0.5922 0.9622 0.7331 0.5202 0.9762 0.6787

The internal evaluation values are averaged between the two evaluation

sets. The highest value is shown in bold.

Table 5. Micro-averaged results for each model on the GPRO

task test set, as measured by precision (P), recall (R) and

f-score (F).

Methods Precision Recall F-score

M1 0.7835 0.8302 0.8062

M2 0.8224 0.7852 0.8034

M4 0.7677 0.8502 0.8069

Majority voting based on M1–M4 0.8059 0.7982 0.8020

Majority voting based on M1–M5 0.8143 0.8141 0.8137

The highest value is shown in bold.
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BioCreative IV CHEMDNER data—which only contains

PubMed abstracts, or both. Because the annotation guide-

lines for the CHEMDNER and CEMP corpora were highly

similar, all individual models produced higher recall (with

similar precision) when trained on the combination of the

two corpora rather than only on patents. Our ensemble ap-

proach produced significantly higher performance than

any of the constituent models. The models used in the en-

semble contained small differences in approach, and also

differed in the data used for training. We believe that com-

bining these two types of differences in a large ensemble

averaged out unimportant differences, producing strong

performance. In future work we intend to create a software

tool to simplify creating ensemble systems using an inter-

operable data format, such as BioC (28).

We addressed the gene product and related object

(GPRO) task using a machine learning approach based on

adapting GNormPlus, a conditional random field named en-

tity recognizer. In this task, only mentions that can be

mapped to a specific identifier (type 1) should be returned.

These are highly ambiguous with the mentions that cannot be

mapped to a specific identifier (type 2), and we found that the

named entity recognizer could not differentiate between the

two. Instead, we obtained better performance by combining

the two types and refining the result in post-processing. We

found that adding gene normalization as a feature increased

recall, but results in a significant drop in precision. The high-

est performance we obtained was by aggregating the result of

all models with a simple majority voting strategy. This task

focuses only on gene/protein recognition; in future research

we will focus on the gene/protein normalization to multiple

resources (e.g., NCBI Gene and UniProt).
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