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The increase of life expectancy and the decline of biological functions with advancing age
are impending obstacles for our society. In general, age-related changes can be separated
into two processes. Primary aging is based on programs governing gradual changes which
are generally not harmful. On the other hand, secondary aging or senescence is more
aleatory in nature and it is at this stage that the progressive impairment of metabolic, phys-
iological, and neurological functions increases the risk of death. Exploiting genetic animal
models, we obtain more and more information on the underlying regulatory networks.The
aim of this review is to identify potential links between the output of the circadian oscillator
and secondary aging. The reasons to suspect such links rely on the fact that the mouse
models without functional circadian clocks sometimes exhibit reduced life expectancy.This
may be due to their inability to properly control and synchronize energy expenditure, affect-
ing, for example, the integrity of neurons in the brain. Hence, it is tempting to speculate
that re-synchronization of metabolic and physiological functions by the circadian clock may
slow down the aging process.
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INTRODUCTION
Aging can be regarded as a progressive functional decline or dete-
rioration of physiological functions (1). This intrinsic, inevitable,
and currently irreversible process increases the vulnerability of an
organism and consequently enhances the loss of viability (2, 3).
In principle, aging can be described by two independent but con-
nected processes. Primary aging describes the gradual process of
body deterioration that takes place throughout life. It was demon-
strated that primary aging is partly based on genetic programs,
and consequently seems pre-programed. The second process is
referred to as secondary aging or senescence, which likely results
from external factors such as disease, lack of physical activity,
unhealthy activities (e.g., excessive smoking and drinking), poor
nutrition, and exposure to hazardous materials (4). How sec-
ondary aging impacts primary aging is actually unknown. Hence,
secondary aging is considered more haphazard and therefore, a
difficult process to characterize (2).

In order to better understand the effects of aging on mammals,
nine hallmark processes have previously been defined (Figure 1)
(1). These encompass metabolic or regulatory changes within a
cell (cellular level), or problems in the interaction of cells (organ
level). The hallmark process of genomic instability is character-
ized by increased mutation rate, which may lead to inappropriate
expression of target genes (5). A specific case occurs at the ends
of the chromosomes, the telomeres, which diminish in length
with each cell generation, ultimately causing chromosome aberra-
tions (6). Epigenetic alterations group processes that affect target
gene expression without changing the underlying genetic code,
for example, by altered DNA methylation (7). Loss of proteostasis
refers to the increasing inability of cells to remove misfolded pro-
teins and other debris leading to the accumulation of toxic prod-
ucts (8). Deregulated nutrient-sensing affects signaling cascades
within cells, which normally regulate the balance of metabolic

activity and rest (9). Mitochondrial dysfunction may be due to
damage from oxygen radicals produced during the process of
oxidative phosphorylation (10). Cellular senescence restricts the
replicative life of a cell and has previously been validated as a
primary mediator of aging (11). Impairment of stem cells is sup-
posed to explain aging of tissues because stem cells are essential
for maintaining tissue homeostasis, and loss of these cells leads to
a breakdown of functions in organs, for example, in the forebrain
(12). Finally, inflammation and consequently perturbed commu-
nication between the individual cells within an organ may cause
substantial damage to its overall functioning (13).

In this review, we would like to relate some aspects of the
hallmark processes of aging to the circadian clock (14, 15). The
circadian clock in mammals is based on interconnected transcrip-
tional feedback loops, which are fine-tuned by post-translational
regulation to generate rhythms with a periodicity of about a day
(16). The circadian clocks are ubiquitous throughout the body and
help us to regulate rhythmic processes in metabolism and phys-
iology. Many age-related phenotypes observed in mice without
functional circadian clocks suggest that the circadian clock may be
able to counteract the aging process.

CIRCADIAN RHYTHMS AND THE HALLMARKS OF AGING
GENOMIC INSTABILITY
Genomic instability results in the loss of genetic information and
in the worst case scenario activates genes favorable for tumor
formation (17). To prevent this phenomenon, some genes act
as tumor suppressor proteins to maintain genomic stability, for
example, the NAD+-dependent deacetylase SIRT6 (18). This enzy-
matic activity, when overexpressed, extended the lifespan of mice
(19), likely by direct interaction with the chromatin remodeler
Snf2h at DNA repair sites (20). Recently, it was shown that there is
a direct interaction of SIRT6 with the circadian regulators BMAL1
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FIGURE 1 |The nine hallmark processes of aging. The scheme summarizes hallmark processes typically affected by aging, see text. Adapted from López-Otín
et al. (1).

and CLOCK adding a circadian component to its activity (21). Fur-
thermore, the rate-limiting enzyme for NAD+ synthesis, NAMPT,
was shown to be linked to the circadian oscillator by a similar
mechanism (22, 23), and to decline in SCN neurons with age (24).
Concomitantly, the cofactor required for the functioning of SIRT6
decreases in the brain. Hence, it is tempting to speculate that the
activity of SIRT6 in the nucleus is affected by the circadian oscil-
lator with age and as such the circadian oscillator may adversely
impact genomic stability.

TELOMERASE ACTIVITY
Telomeres are characteristic repetitive sequences at the end of
chromosomes, whose length has to be reconstituted after each cell
division by a specific enzyme, the telomerase (TERT) (6). Their
main function is to prevent the loss or rearrangement of chromo-
somes. Surprisingly, in humans, telomerase activity declines with
age limiting the replicative life and affecting function of cells. For
example, if telomere shortening occurs in hematopoietic stem cells
(25), their function and engraftment ability are significantly com-
promised. Interestingly, the enzyme TERT and its activity were
found to be under circadian control in mice. Circadian expression
of TERT mRNA is hardwired to the circadian oscillator via direct
regulation by the BMAL1 and CLOCK heterodimer (26). Mice
deficient for CLOCK do not display rhythmic telomerase activ-
ity and their chromosomes have shorter telomeres. On the other
hand, it was shown that reconstitution of TERT into senescent
fibroblasts could reconstitute their circadian system (27). Taken
together, the interplay between TERT and the circadian oscillator
may contribute to aging.

EPIGENETIC ALTERATIONS
Epigenetic changes are inherited from one cell generation to the
next without changing the underlying genetic code (7). This may

be achieved by transferring specifically modified histones or DNA
methylation patterns to the next generation. Both kinds of epige-
netic changes may activate or repress neighboring genes. As an
example for the impact of the circadian oscillator on the epi-
genetic histone modification machinery, the NAD+-dependent
histone deacetylase SIRT1 is implicated in circadian gene regu-
lation by enhancing Bmal1 and Clock transcription (28, 29). This
enzymatic activity declines in the brain with age (24), which may
directly impact the functioning of the circadian oscillator and feed
back on Sirt1 expression. Many other histone modifying enzymes
have been linked to the circadian oscillator as well (30). As an
example for the effect of changing methylation patterns, oxidation
of 5-methyl-cytosine to 5-carboxyl-cytosine changed the binding
activity for the Wilms Tumor protein with age (31). The binding
site for BMAL1 and CLOCK, 5′-CACGTG-3′, may be sensitive to
a similar phenomenon with age, because it contains the cytosine
methylation motif 5′-CG-3′ in its center. A potential concomitant
reduction in DNA binding would mimic a loss of BMAL1 and
CLOCK function and mice deficient in Bmal1 or Clock exhibit a
significantly reduced life expectancy (32, 33), implicating a func-
tion of these factors in the aging process. Here, again we find a
potential impact of the circadian oscillator on very basic regulatory
processes in the cell.

LOSS OF PROTEOSTASIS
With age damaged and toxic products accumulate in the cells
(8). These may be degradation products of proteins, misfolded
proteins due to impaired function of chaperones, or xenobiotic
substances. Under normal circumstances, cells can handle this
debris and even have the potential to repair some of the dam-
age. Unfortunately, during the aging process, the function of many
of these repair pathways declines, which causes accumulation of
unwanted and mostly useless materials. Although some repair
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mechanisms in the cell, for example, the removal of the methyl
group from O6-methyl-guanosine (34), are under control of the
circadian clock, a direct influence on the age-related degradation
of proteostasis is not yet illuminated. However, part of the detox-
ification program of the liver is under control of the circadian
PAR-bZip transcription factors (35). Mice deficient in these tran-
scription factors are sensitive to xenobiotic substances and have
about half the life expectancy of normal mice. A mechanistic link
between the PAR-bZip transcription factors and aging remains to
be established, though. Nevertheless, it is thought that there is at
least an indirect effect of the circadian oscillator on proteostasis in
the brain, because the circadian oscillator regulates the balance of
metabolic processes in the cell, which may become disturbed with
increasing age (36).

NUTRIENT SENSING
Caloric restriction is an established mean to prolong life span
of a variety of organisms by influencing the metabolic activity
of cells (9). The first longevity mutants isolated from C. elegans
identified the insulin and IGF-1 signaling pathway important for
nutrient sensing and longevity (37). Mice with disrupted circadian
clock are often prone to metabolic syndrome due to deregulated
metabolic pathways and concomitantly display insulin resistance
(38), which impairs nutrient sensing. Hence, the disruption of the
circadian clock, or a simple misalignment of the circadian clock
with the environment, may reduce life expectancy. This was veri-
fied in a simple experiment that correlated the life expectancy of
mice to the precision of their circadian clock in maintaining 24 h
periodicity under constant conditions (39). Interestingly, insulin
affects transcription of the Clock gene and hence feeds back on
the circadian oscillator (40). Another pathway that is affected by
the circadian clock and senses the availability of nutrients is the
target of rapamycin (TOR) pathway (41). TOR signaling is high in
Bmal1-deficient mice, which is in agreement with their reduced
life expectancy. Administration of the TOR-signaling inhibitor
rapamycin can increase the life expectancy of Bmal1-deficient mice
by up to 50%. Consequently, it is feasible that at least some part
of the reduced life expectancy of Bmal1-deficient mice is due to a
malfunction of nutrient-sensing TOR-signaling.

MITOCHONDRIAL DYSFUNCTION
Mitochondria are power-generating organelles and are the place
of some of the most aggressive oxidative reactions within the
cell (10). Due to this oxidative microenvironment, somatic muta-
tions of the mitochondrial genome are common, which ultimately
impairs its function. The circadian clock may be linked to the
aging of the mitochondria via the NAD+-metabolism (42). This
specific metabolic pathway is under the direct control of the cir-
cadian clock via NAMPT (22, 23) and NAD+ affects the activity
of the NAD+-dependent deacetylase SIRT3 (42). This enzymatic
activity rhythmically regulates, by deacetylation, the activities of
many metabolic enzymes located in the mitochondria. In general,
acetylation diminished, while deacetylation increased the activities
of mitochondrial enzymes involved in oxidative phosphoryla-
tion. In Bmal1-deficient mice, due to the lack of NAD+, SIRT3
activity was diminished and consequently the energy metabo-
lism reduced. Most importantly, this effect could be rescued by

the administration of NMN, a NAD+ precursor, to the Bmal1-
deficient mice. Hence, the connection between the NAD+ metabo-
lism and the activity of mitochondrial enzymes is well established.
This connection suggests a direct effect of the circadian oscillator
on the aging process of mitochondria.

CELLULAR SENESCENCE
Cellular senescence refers to the observation that cells kept in
culture only have limited replication performance. This phenom-
enon was already described more than 50 years ago and called the
Hayflick limit (43). Previously, it was shown that cellular senes-
cence was a major contributor to the aging of an organism and
may be partly due to the shortening of telomeres. A molecular link
to the circadian oscillator, for example, is provided by the NOPS-
family of transcriptional regulators. NONO, one of the members
of this family, was shown to interact with the circadian repressor
protein Period1 and as such to affect circadian rhythms (44). Cells
derived from Nono-deficient mice show an advanced senescence
phenotype (45). This may be due to direct interference with the
cell cycle via circadian regulation of the p16-Ink4A gene, which is
implicated in senescence. However, it is not known yet, whether
Nono-deficient mice have a reduced life expectancy. Surprisingly,
mice deficient for Bmal1 have an increased number of senescent
cells in vivo but not in vitro compared to their litter mate con-
trols (46). Further analysis revealed that Bmal1-deficient cells are
hypersensitive to damaging stress, for example, due to the genera-
tion of radical oxygen species. Hence, the phenotype observed in
Bmal1-deficient mice may be due to problems in damage control
rather than cellular senescence per se. Nevertheless, it is conceiv-
able that the circadian oscillator also affects cellular senescence
either directly or indirectly.

STEM CELL EXHAUSTION
Stem cells are important to keep homeostasis of tissues by replen-
ishing cells lost due to damage (12). Only a small number of stem
cells, however, have to differentiate into new cell types, while the
remaining have to self-renew their population. With age, a reduc-
tion of stem cells is observed, which may affect the maintenance of
tissue function. Previously, it was demonstrated that the circadian
clock affects the equilibrium between self-renewal and differen-
tiation of epidermal stem cells (47). Because these cells are not
all in the same circadian phase, only a subset of stem cells in this
particular niche react to signals to become activated. Interestingly,
in Bmal1-deficient mice, there was accumulation of dormant stem
cells, while in Period1/Period2-deficient mice there was depletion
of this kind of cells. The phenotype of arrhythmic stem cells caused
premature aging of the epidermis in Bmal1-deficient mice. These
results indicate that the circadian clock fine-tunes the temporal
behavior of epidermal stem cells. Consequently, perturbation of
the delicate equilibrium of stem cells with age affect homeostasis
and tissue function (48).

INTERCELLULAR COMMUNICATION
Intercellular communication allows for synchronization of the
entire population of cells within a tissue (13). The impact of
aging on this process involves local inflammation and the con-
comitant communication of tissue and immune cells by cytokines
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and other mediators. Previously, it has been demonstrated by
parabiosis experiments that factors in the blood of old mice could
impair cognitive functions of young mice. This happened likely by
increasing local neuroinflammation due to the increased release
of chemokines (49). Interestingly, blood taken from old humans
impaired the function of the circadian oscillator in fibroblasts (50).
However, the performance of the circadian oscillators in fibroblasts
derived from either young or old individuals was indistinguishable,
prompting to a yet to be identified signaling cascade responsible for
the deteriorating effect. Similarly, the function of the suprachias-
matic nucleus, the master circadian clock in the brain of mammals,
became obstructed with age not at the molecular, but at the neu-
ronal output level affecting the communication of neurons in the
suprachiasmatic nucleus (51). This observation was recently veri-
fied in very old mice, in which the phase-synchronization between
the individual SCN neurons gets abolished, directly affecting the
rhythmicity of the mice (52). Taken together, it is well imaginable
that some circadian control of intercellular communication within
the brain is changed with increasing age with adverse effects on
the overall functioning of the neuronal networks.

CONCLUSION
Here, we provided only a handful of potential molecular links
between the circadian oscillator and aging. The circadian clock
synchronizes metabolism and physiology of an organism to
enhance fitness and to optimize energy expenditure. Consequently,
it optimizes the functioning of an organism by helping to avoid
damage to its cells and the accumulation of toxic products. Unfor-
tunately, the circadian clock is not resilient to the aging process
and its synchronization abilities steadily decline. On the other
hand, a function for the aging processes is not known. Proba-
bly, it is just not necessary to maintain an organism in perfect
shape after arresting its reproductive potential. Suicide programs
similar to those eliminating superfluous cells in the body such as
apoptosis have not yet been described to affect life expectancy.
However, both tendencies together (decline of the circadian clock
and increasing age-related changes) yield an accumulation of dam-
age which finally increases the risk of death. Hence, if it is possible
to resynchronize the circadian clock in an old organism and to
reconstitute at least part of the damage-controlling programs it
may be possible to circumvent age-related problems, for example
in the brain.
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