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We are pleased to present this Special Issue of Cells, entitled ‘Feature Papers in Stem
Cells’. We hope that this collection of papers may contribute greatly to this field by
discussing and presenting new outcomes of basic and translational stem cell-based regener-
ative medicine research. The rapid progress in the field of stem cell research has laid strong
foundations for their use in regenerative medicine applications involving injured or dis-
eased tissues. Cellular therapy aims to replace damaged resident cells by restoring cellular
and molecular environments suitable for tissue repair and regeneration. Growing evidence
indicates that some of the observed therapeutic outcomes of stem cell-based therapy are due
to paracrine effects (including extracellular vesicles), rather than long-term engraftment or
the survival of transplanted cells [1]. Embryonic and induced pluripotent stem cells (ESCs
and iPSCs), as well as adult stem cells, hold great promise for future cell replacement thera-
pies. Among other candidates, mesenchymal stem/stromal cells (MSCs) represent a critical
component of stromal niches known to be involved in tissue homeostasis [2]. Additional
evidence suggests that MSCs originate from perivascular cells—principally pericytes that
are vascular mural cells—within multiple human organs including lung, adipose tissue and
placenta [3]. Accordingly, MSCs play a crucial role during lung development by interacting
with the airway epithelium, and also during lung regeneration and remodeling after injury,
particularly in chronic obstructive pulmonary disease [4]. During tissue healing, MSCs
may exhibit several therapeutic functions to support the repair and regeneration of injured
tissue. The process underlying these effects likely involves the migration and homing of
MSCs, as well as their immune-tropic functions [5]. Interestingly, tissue-nonspecific alkaline
phosphatase (ALP) (TNSALP), a ubiquitous membrane-bound glycoprotein capable of
providing inorganic phosphate by catalyzing the hydrolysis of organic phosphate esters, or
removing inorganic pyrophosphate that inhibits calcification, is highly expressed in juvenile
cells, such as pluripotent stem cells (i.e., ESCs (iPSCs) and somatic stem cells (i.e., MSCs),
and is involved in their maintenance and differentiation [6]. Understanding and controlling
these cellular products requires in-depth knowledge of their maintenance mechanisms and
their exit from undifferentiated states in specific biomaterials mimicking native niches. An
interesting approach has been established for differentiating porcine epiblast stem cells
(pEpiSCs) into proliferating and functional endothelial cells (ECs). Functional tests revealed
that the generated ECs could be used in in vitro assays to examine angiogenesis or cellular
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responses to various vascular diseases [7]. In another setting, a male mouse model for high
running performance recruited myogenic precursor cells/SATCs with lower activation
thresholds that responded more rapidly to external stimuli and were more primed for
differentiation at the expense of more primitive cells. Satellite cells (SATCs), known as the
most abundant skeletal muscle stem cells, play a main role in muscle plasticity, including
in the adaptive response following physical activity [8]. In parallel, using pluripotent stem
cells (PSCs) to generate hepatocytes is preferable because of their availability and scalability.
However, the efficient maturation of PSC-derived hepatocytes towards functional units
in liver organoids (LOs) remains a challenging subject. The incorporation of cell-sized
microparticles (MPs) derived from the liver extracellular matrix (ECM) provides an en-
riched tissue-specific microenvironment for the further maturation of hepatocytes inside
LOs [9]. This approach has led to the improvement of hepatocyte-like cells in terms of gene
expression and function, CYP activities, albumin secretion, and the metabolism of xenobi-
otics. An experimental basis for the application of stem cells in the treatment of keloids,
a pathological scar observed during wound healing, has been developed. Moreover, a
co-culture method has been set up to investigate the influence and mechanism of human
dental pulp stem cells (HDPSCs) on keloid fibroblast properties [10]. HDPSCs inhibited the
migration, the synthesis of the extracellular matrix, and the expression of pro-fibrotic genes
within human keloid fibroblasts (HKFs), while promoting the expression of anti-fibrotic
genes. Therefore, it can be concluded that HDPSCs can themselves be used as a tool for
restraining/hindering the initiation or progression of fibrotic tissue. Mechanistically, new
findings have established ten eleven translocation 1 (Tet1) as a regulator of embryonic
stem cell (ESC) proliferation by suppressing p21 to ensure a rapid G1-to-S progression [11].
Moreover, Zscan4, which is highly upregulated in telomerase-deficient late-generation
mouse ESCs and human alternative lengthening of telomeres (ALT) cancer cells, has been
shown to contribute to the telomere maintenance of those cells without telomerase activi-
ties [12]. Several features are still to be identified and resolved for improving the safety and
efficiency of stem cell-based therapy, in particular for the use of biological delivery systems.
Thus, a systematic literature review investigates the potential of therapy with MSCs associ-
ated with fibrin glue on the regeneration of the central or peripheral nervous system [13].
Recently, various strategies using a hydrogel-based system, both as encapsulated stem cells
and as biocompatible patches loaded with stem cells and applied at the tissue damage
site, were developed for regenerating the infarcted myocardium [14]. Joint engineering,
representing a potential tool for cartilage regeneration, is an interdisciplinary field that
aims to recreate a neo-tissue whose physical and biochemical properties are close to those
of the native tissue. It combines cells, biomaterials, and environmental factors. A particular
focus on the extrusion bioprinting of cellularized hydrogels for articular cartilage tissue
engineering has been discussed [15]. Furthermore, approaches for optimizing standard
MSC culture protocols during this essential primary step of in vitro expansion are required.
Several studies suggest some improvements in culture media components (amino acids,
ascorbic acid, glucose level, growth factors, lipids, platelet lysate, trace elements, serum,
and xenogeneic components) as well as culture conditions and processes (hypoxia, cell
seeding, and dissociation during passaging) in order to preserve MSC phenotypes and
functionality during the primary phase of in vitro culture [16]. Collectively, this Special
Issue, managed and supervised by Dr. Mehdi Najar, successfully gathers a great collection
of research articles and reviews highlighting recent fundamental and applied advances in
different types of stem cells.
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