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Abstract

We studied functional effect of rs12722489 single nucleotide polymorphism located in the

first intron of human IL2RA gene on transcriptional regulation. This polymorphism is associ-

ated with multiple autoimmune conditions (rheumatoid arthritis, multiple sclerosis, Crohn’s

disease, and ulcerative colitis). Analysis in silico suggested significant difference in the

affinity of estrogen receptor (ER) binding site between alternative allelic variants, with stron-

ger predicted affinity for the risk (G) allele. Electrophoretic mobility shift assay showed

that purified human ERα bound only G variant of a 32-bp genomic sequence containing

rs12722489. Chromatin immunoprecipitation demonstrated that endogenous human ERα
interacted with rs12722489 genomic region in vivo and DNA pull-down assay confirmed dif-

ferential allelic binding of amplified 189-bp genomic fragments containing rs12722489 with

endogenous human ERα. In a luciferase reporter assay, a kilobase-long genomic segment

containing G but not A allele of rs12722489 demonstrated enhancer properties in MT-2 cell

line, an HTLV-1 transformed human cell line with a regulatory T cell phenotype.

Introduction

New technologies, modern computational capacities and collection of large study populations

through international collaboration brought new hope for understanding the mechanisms

of complex diseases with strong genetic component [1]. Genome-wide association studies

(GWAS) now include over a million single-nucleotide polymorphisms (SNP) and thousands

of participants, allowing identification of SNPs with small effect sizes and putative risk loci in

or near genes not previously suspected of being involved in the etiology of a particular disease

[2]. However, GWAS alone do not provide any definite answers on disease mechanisms, but
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deliver candidate SNP data for downstream functional annotation. A strongly associated SNP

may not be the causative polymorphism by itself; instead, it could be in a strong linkage dis-

equilibrium with the actual functional SNP or may be linked to the causative copy number var-

iant [2]. Even if the causative variant has been identified, the molecular mechanisms that

connect the genetic variant and the disease remain undetermined.

State-of-the-art approach to finding candidate SNPs for functional studies includes succes-

sive filtering by several criteria: (i) localization in the vicinity of relevant genes; (ii) mapping to

genomic regions with regulatory properties such as DNase I accessibility, evolutionary conser-

vation, appropriate epigenetic signature, ChIP-Seq-confirmed binding of transcription factors;

(iii) correlation of SNP haplotype with expression levels of candidate genes. However, such

algorithm inevitably filters out many SNPs and may lead to under-recognition of actual causa-

tive polymorphisms.

Although the majority of regulatory SNPs are cis-acting [3–5], the localization criterion

would not be satisfied by some functional SNPs that belong to long-range cis-regulatory ele-

ments and are located more than a million base pairs away from their target genes as in the

case of FTO locus SNPs and IRF3 expression [6]. Moreover, expression quantitative trait loci

(eQTL) analyses showed that considerable fraction of regulatory SNPs are trans-acting

(defined as located more than 5 Mb away from the target gene [3, 4] or on a different chromo-

some [5]), and at least some of them act in both cis and trans [3, 5]. Nevertheless, the localiza-

tion criterion is eligible and widely used. A notable fraction of regulatory SNPs identified and

confirmed by functional studies belong to proximal cis-regulatory elements and lie within 2 kb

up- or downstream of transcription start sites [7].

DNase I accessibility, histone modification patterns and data on transcription factors bind-

ing are available only for a limited number of cell types, that do not necessarily include the par-

ticular cell type involved in the disease development. Evolutionary conservation data also have

limited usability, as many human regulatory elements are absent or differently arranged in

other species [8]. Finally, a polymorphism may be functional only in a specific cell type under

specific conditions as evident from functional studies of multiple sclerosis (MS)-associated

SNPs [9, 10]. In that case, an association of the SNP with its target gene expression level would

not be revealed in a typical eQTL study where large cohorts of people are tested and therefore

individual analysis of each specific cell type is technically challenging.

A complementary approach is to select candidates for further functional assessment based

on in silico analysis of a genomic sequence that includes an SNP of interest, which can be espe-

cially useful when other filters are marginally applicable. As the majority of disease-associated

SNPs are found in non-coding regions [11], their influence on disease predisposition can be

mediated through direct or indirect alterations of transcription factor binding to DNA [7]. In

particular, sequence analysis predicts how transcription factor binding motifs change upon

single-nucleotide substitution [12, 13]. We used this approach to annotate autoimmunity-

associated SNPs of IL2RA locus. IL2RA encodes α subunit of the high affinity IL-2 receptor

and is expressed by several populations of lymphocytes. Both enhanced and disrupted IL-2 sig-

naling have been shown to induce autoimmunity in mouse models [14] and its alterations

were found in a number of autoimmune diseases in humans [10].

Considering available disease association data, transcription-factor-binding site predic-

tion and epigenetic data, we chose to focus on rs12722489, an SNP from IL2RA gene associ-

ated with rheumatoid arthritis, multiple sclerosis, Crohn’s disease, and ulcerative colitis.

Our functional analysis showed that genomic region containing the risk allele of rs12722489

specifically binds human estrogen receptor (ER) α and exerts cell-type-specific enhancer

properties.

SNP variant in IL2RA locus determines differential ER binding
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Materials and methods

Computational analysis of transcription factor binding sites

We analyzed preselected SNPs with flanking sequences (25 nucleotides at each side) using

PERFECTOS-APE, a specialized software to predict effects of SNPs on transcription factor

binding using predefined collection of position weight matrices [15] with the following param-

eters: HOCOMOCO v10 [16] collection of mono- and dinucleotide position weight matrices

(PWMs) (only highest quality matrices, A,B,C and secondary motifs S, were used), 0.0005 as a

threshold for motif P-value for any of two alternative alleles, and 4 as a threshold for the ratio

between the motif P-values for two alternative alleles.Triallelic SNPs were virtually split into

three twoallelic variants and each pair was analyzed separately.

Electrophoretic Mobility Shift Assay (EMSA)

The following oligonucleotides were used to create radiolabeled probes:

IL2RA fw 5’-ACTTATCCAAGG(G/A)TCTGAGTGGTCTT-3’,

IL2RA rev 5’-CCCTCCAAGACCACTCAGA(C/T)CCTT-3’;

V1B1 fw 5’-CCTCCAGTCACTGTGACCCAACCACAC-3’,

V1B1 rev 5’-CTGAATGTGTGGTTGGGTCACAGTGACTGG-3’.

The oligos (1.5 pmol/μl each) were annealed by boiling and slow cooling overnight in the

buffer containing 0.2 M EDTA, 10 mM Tris-HCl (pH 8.0) and 100 mM NaCl. The annealed

oligos were then labeled with α-32P dATP at room temperature. Each labeling reaction con-

tained 4.5 pmol oligos, 2 units of Klenow Fragment (Thermo Scientific), Klenow reaction

buffer, 3 nmol dCTP+dTTP+dGTP mix and 15 pmol dATP32(3uCi/pmol) in a total volume of

15 μl. After 20 min, the reaction was stopped by adding 35 μl of EDTA water solution to the

final concentration of 10 mM. The oligos were purified using illustra ProbeQuant G-50 Micro

Columns (GE Healthcare Lifesciences).

Each binding reaction contained 10% (v/v) glycerol, 80 mM KCl, 25 mM NaCl, 15 mM Tris

(pH 8.0), 0.18 mM EDTA, 1 mM MgCl2, 1.1 mM DTT, 50 μM Na3VO4, 33.3 μg/ml BSA,

150 μg/ml poly-dIdC, 12 μg/ml human recombinant ERα (Thermo Scientific) and1.5 μl of

radiolabeled oligonucleotide probe in the total volume of 10 μl. Competitor non-radiolabeled

probe, when present, was added to the reaction in 100-fold excess. The mix was incubated for

20 min at room temperature and then loaded to 5% polyacrylamide gel in 0.5xTBE (45 mM

Tris base, 45 mM Boric acid, 1 mM EDTA, pH 8.0) pre-run for 1.5 h at +4˚C. Electrophoresis

was performed at 4˚C, 10V/cm. Gels were dried end exposed to phosphor screen overnight.

The signal was detected using Phosphorimager Cyclone (Packcard).

Nuclei and nuclear extracts preparation

The protocol described in [17] was used with some modifications. Briefly, lymphocytes were

washed in PBS and the cell pellet was resuspended and incubated for 5 min in 5 volumes of

buffer A (0.32 M sucrose, 3 mM CaCl2, 2 mM Mg acetate, 0.1 mM EDTA, 10 mM Tris-HCl

pH 8.0, 1 mM DTT, 0.5 mM PMSF, 0.5% NP-40, 1x protease inhibitor cocktail (Sigma)) on

ice. The pelleted nuclei (14000g, 15 sec, +4˚C) were resuspended in the equal volume of buffer

B (20 mM HEPES pH 7.9, 25% glycerol, 1.5 mM MgCl2, 0.02 M KCl, 0.2 mM EDTA, 0.5 mM

DTT, 0.5 mM PMSF, 1x protease inhibitor cocktail) and used for chromatin immunoprecipi-

tation. For pull-down experiments, two volumes of buffer C (20 mM HEPES pH 7.9, 25% glyc-

erol, 1.5 mM MgCl2, 0.8 M KCl, 0.2 mM EDTA, 1% NP-40, 0.5 mM DTT, 0.5 mM PMSF, 1x

protease inhibitor cocktail) was then added to the nuclei, followed by incubation on ice for 10

SNP variant in IL2RA locus determines differential ER binding
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min. Extracts cleared by centrifugation (14000g, 20 min, +4˚C) were snap-frozen and stored in

liquid nitrogen.

DNA pull-down assay

DNA pull-down was performed essentially as described in [18]. DNA probes for pull-down

assay were produced by PCR using the following primers: forward 5’-AGGAAGGTTTTTCAA
TGTGATTTCTACATCand reverse 5’-TTCCCCTGCTCCCTCCAAGAC for putative ERE from

IL2RA containing rs12722489 (product length 189bp); forward 5’-GTTCTTTTTGTTCTAAAT
CAGGCTGTA and reverse 5’- TTGGGGATGACACCCGGCTG for internal control (product

length 176bp). DNA fragments containing putative ERE from IL2RA were amplified using 1

kb (G) and (A) luciferase reporter constructs as a template. Control probes were amplified

using a plasmid bearing another 1 kb segment of IL2RA first intron as the enhancer and con-

tained ETS-family transcription factor binding site. The resulting PCR products were run in

1.5% agarose gels and purified with GeneJET Gel Extraction Kit (Thermo Scientific). 100 ng of

purified rs12722489 oligonucleotides, 100 ng of internal control oligonucleotides, and 10 μl of

MT-2 nuclear extract (50 μg total protein) were dissolved in incubation buffer (60 mM KCl, 12

mM HEPES pH 8.0, 4 mM Tris HCl pH 8.0, 0.5 mM EDTA, 5% (v/v) Glycerol) containing

5 μg of sonicated salmon sperm DNA (ssDNA), 1x protease inhibitor cocktail (Sigma) and 1

mM DTT. After 1 hour on ice, incubation conditions were changed to those of RIPA buffer.

2 μg of anti-ERα mouse monoclonal IgG1 antibodies (Abcam, clone C-542) or the same

amount of mouse IgG1 isotype control (Abcam) was then added and the probes were incu-

bated for 1 hour on ice. After that, 60 μl of Protein A Mag sepharose (GE Healthcare) beads

(washed with RIPA buffer and pre-absorbed with 75 ng/μl beads ssDNA and 0.1 μg/μl beads

BSA according to Abcam X-ChIP protocol) was added to each sample and incubation upon

rotation was carried out overnight at +4˚C. The next day the complexes were washed twice

with buffer 1 (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 150 mM NaCl),

once with buffer 2 (same as buffer 1 but with 500 mM NaCl) and once with Tris-EDTA (10

mM Tris, 1 mM EDTA, pH 8.0). DNA was then eluted with 20 μl of 2.5% acetic acid and neu-

tralized with 7 μl of 10% sodium bicarbonate. Eluted DNA was analyzed by real-time PCR

using qPCRmix-HS SYBR+LowROX kit (Evrogen, Moscow, Russia) and Applied Biosystems1

7500 Real-Time PCR System (Thermo Scientific). The primers were the same as for synthesis

of the oligonucleotides. Relative rs12722489 DNA amount was normalized to internal control.

Chromatin Immunoprecipitation (ChIP)

ChIP was performed as described in [18] with some modifications. Briefly, 5×106 Jurkat or

MT-2 cells were treated with 1.2% formaldehyde in complete RPMI medium for 10 minutes at

+37˚C. The reaction was stopped by adding glycine to the final concentration of 125 mM.

Nuclei were isolated as described above and diluted in 130 μl of TE buffer. Sonication of chro-

matin was performed in accordance with the manufacturer’s recommendations using a S220

Focused-ultrasonicator (Woburn, USA) to obtain 500 bp DNA fragments. Sonicates were clar-

ified by centrifugation and stored at -80˚C. 5 μl of Protein A Mag sepharose (GE Healthcare)

prewashed with TBS was incubated with 3 μg of anti-ERα mouse monoclonal IgG1 antibodies

(Abcam, clone C-542) or the same amount of mouse IgG1 isotype control (Abcam) in 300 μl

of TBS at +4˚C overnight upon rotation, followed by incubation with 20 μl of a sheared chro-

matin sample for 1–2 h at +4˚C upon rotation. Complexes were washed twice with buffer 1

(0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris pH 8.0, 150 mM NaCl), once with of

buffer 2 (same as buffer 1 but with 500 mM NaCl) and once with Tris-EDTA (10 mM Tris, 1

mM EDTA, pH 8.0). Elution was performed with 50 μl of 2.5% acetic acid and neutralized

SNP variant in IL2RA locus determines differential ER binding
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with 17.5 μl of 10% sodium bicarbonate. Immunoprecipitated DNA or input chromatin (2 μl)

was diluted in TE, digested with 200 μg/ml RNase A for 1 h at 55˚C, and treated with 200 μg/

ml proteinase K and 0.5% SDS for 2 h at 55˚C. Cross-links were reversed by shaking overnight

at 65˚C. DNA was extracted with phenol/1-bromo-3-chloropropane (Sigma) and diluted in

20 μl of TE buffer. Immunoprecipitated DNA was analyzed by real-time PCR (the same prim-

ers as for pull-down assay) using qPCRmix-HS SYBR+LowROX kit (Evrogen, Moscow, Rus-

sia) and Applied Biosystems1 7500 Real-Time PCR System (Thermo Scientific). Relative

DNA quantity was normalized to input DNA.

Cells

Jurkat cell line and HTLV-1 transformed cell line MT-2 were obtained through the NIH AIDS

Research and Reference Reagent Program. The authenticity of Jurkat and MT-2 cells was con-

firmed by STR DNA profiling (GORDIZ, Moscow, Russia). Both cell lines have G/G homozy-

gous genotype at rs12722489 as assessed by Sanger sequencing. Cells were cultured in RPMI

1640 medium (Paneco, Moscow, Russia) supplemented with 10% FBS (Biological Industries,

Kibbutz, Israel), 2 mM L-glutamine (HyClone), MEM Non-Essential Amino Acids Solution

(HyClone), 10 mM HEPES (HyClone), 100 U/ml Penicillin, 100 μg/ml Streptomycin (Gibco)

at 37˚C and 5% CO2.

Luciferase reporter constructs

Human IL2RA promoter (chr10:6,104,115–6,104,700), 1 kb intronic region containing

rs12722489 (chr10:6,101,364–6,102,272) and a control region from STAT3 gene

(chr17:40508494–40509570; all genomic coordinates are given for GRCh37/hg19 assembly)

were amplified by PCR using genomic DNA from Jurkat cells as a template and specific prim-

ers containing the indicated cloning sites:

Promoter:

5’-ATATAAGCTTGCTGCCTGACCAGAATCTTG (HindIII),

5’-ATCCATGGCTTCCTGACCCTTGGGAC (NcoI)

Intronic region:

5’-AAGGATCCGCTGTACCCAGTGCGTAG (BamHI),

5’-TATGTCGACTACTGCAAAGTGGCTATGAAG (SalI)

Control:

5’-AGGATCCGGATTACAGGTGTATTTCACCAT (BamHI),

5’-TATGTCGACGTTGATGTAATTCCTTTAAATCTAT(SalI).

The A variant of rs12722489 was introduced into the 1 kb intronic fragment by overlap

extension PCR using the following mutation-introducing primers: 5’-AAGGATCTGAGTGGT
CTTGGAGG and 5’-CACTCAGATCCTTGGATAAGTCAC.

The IL2RA promoter was cloned into pGL3-basic luciferase reporter construct (Promega)

using HindIII/NcoI restriction sites. Then 1 kb putative enhancer sequences were cloned

immediately downstream of the luciferase gene using restriction sites indicated above. All con-

structs were verified by Sanger sequencing.

Control ERE-LUC reporter plasmid was kindly provided by Dr. George Reid and Dr. Frank

Gannon [19].

Transfection and luciferase reporter assay

Cells were transfected using Neon1 Transfection System (Invitrogen). Two million cells were

resuspended in 100 μl of electroporation buffer R that contained 0.5μg of pRL-CMV Renilla

luciferase control reporter vector (Promega) and 5 μg of a pGL3-based test vector or control

SNP variant in IL2RA locus determines differential ER binding
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ERE-LUC vector. The procedure was conducted according to the manufacturer’s protocol

with electroporation options recommended for each cell line (three 10 ms, 1350 mV pulses for

Jurkat; one 30 ms, 1400 mV pulse for MT-2 cells). Luciferase activity was measured 24 h after

transfection using Dual-Luciferase Reporter Assay System (Promega) according to the manu-

facturer’s protocol. Luminescence was detected at Luminometer 20/20n (TurnerBioSystems,

USA).

Estrogen induction

After electroporation, cell probes were divided into five equal aliquots seeded into separate

wells of a 12-well culture plate containing estrogen-depleted medium (RPMI 1640 without

phenol red supplemented with 10% charcoal-stripped FBS; other components as described

above). The next day, 17beta-estradiol (E2) (Sigma) was added to the final concentrations of

10-9M, 10-8M, 10-7M, and 10-6M. Luciferase activity was measured 18 h later. Relative Fluc/

Rluc signal was normalized to the appropriate untreated control.

Statistical analysis

To compare luciferase activity levels between different reporter constructs one-sided t-test for

independent samples was used. To calculate significance of estrogen influence on luciferase

expression one-sided t-test for paired samples was used. The difference was considered signifi-

cant at P-value < 0.05.

Results

As a case study, we considered IL2RA locus, which was one of the first to emerge from early

GWAS as an autoimmunity risk factor [20]. We extracted SNP-disease association data from

the Genome-Wide Repository of Associations between SNPs and phenotypes (GRASP) [21]

and filtered SNPs significantly associated (P < 0.001) with more than one autoimmune dis-

ease. The resulting list contained 6 SNPs (Table 1).

For these SNPs we performed computational analysis of transcription factor binding sites

that might be significantly affected by alternating allelic variants. We employed PERFECTOS-

APE software [15] to assess motif P-value changes for alternative alleles using HOCOMOCO

Table 1. SNPs of the IL2RA locus significantly associated with two or more autoimmune diseases according to GRASP database [21].

SNP ID Location In LD (r2�0.2) with*: Minor allele

frequency

Risk

allele

Phenotype (best P-value)

rs3134883 Intron 1 rs3118470 (r2 = 0.89), rs706779 (r2 =

0.41), rs706778 (r2 = 0.62)

A; 0.2143 A Rheumatoid arthritis (8.6×10−6), Alopecia areata (1.1×10−12),

Primary sclerosing cholangitis (7.3×10−7), Vitiligo (1.0×10−5)

rs3118470 Intron 1 rs3134883 (r2 = 0.89), rs706779 (r2 =

0.45), rs706778 (r2 = 0.68)

C; 0.3182 C Type 1 diabetes (1.3×10−6), Rheumatoid arthritis (9.2×10−7),

Alopecia areata (1.7×10−12), Multiple sclerosis (3.2×10−11)

rs12722489 Intron 1 rs2104286 (r2 = 0.56) T; 0.0962 C Rheumatoid arthritis (5.3×10−4), Multiple sclerosis (3.0×10−8),

Crohn’s disease (2.9×10−9), Ulcerative colitis (8.9×10−4)

rs2104286 Intron 1 rs12722489 (r2 = 0.56) C; 0.1378 T Multiple sclerosis (3.5×10−10), Rheumatoid arthritis (1.0×10−3),

Primary sclerosing cholangitis (8.7×10−4)

rs706779 Intron 1 rs3134883 (r2 = 0.41), rs3118470 (r2 =

0.45), rs706778 (r2 = 0.43)

C; 0.4721 T Type 1 diabetes (9.3×10−8), Alopecia areata (1.3×10−3), Graves’

disease (2.3×10−6)

rs706778 Intron 1 rs3134883 (r2 = 0.62), rs3118470 (r2 =

0.68), rs706779 (r2 = 0.43)

T; 0.4849 T Rheumatoid arthritis (1.4×10−11), Alopecia areata (4.9×10−10),

Primary sclerosing cholangitis (5.0×10−6)

LD, linkage disequilibrium.

* r2 values are provided according to HaploReg v.4.1 [22].

doi:10.1371/journal.pone.0172681.t001
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v10 [16] collection of mono- and dinucleotide PWMs. The overall annotation of putative bind-

ing sites that have significantly different predicted affinity for alternative allelic variants is pro-

vided in S1 Table.

The collection of dinucleotide PWMs is notably smaller, however it provides more accurate

predictions as dinucleotide PWMs account for dependencies between neighboring nucleotides

[23]. We focused on the only two SNPs that had consistent predictions across mono- and

dinucleotide PWMs. The binding sites of ERα and β and Vitamin D3 receptor (all belonging

to the nuclear receptor family of transcription factors) showed significant differences in pre-

dicted affinity for the two alternative alleles of rs12722489. The AP2A binding site was pre-

dicted to be significantly altered by rs706779. Of interest, both SNPs lie inside the T cell-

specific super-enhancer [24].

Next, we considered epigenetic data obtained by the Roadmap Epigenomics Consortium

[25], specifically histone 3 lysine 4 monomethylation signal (H3K4me1) associated with

enhancer regions, and histone 3 lysine 27 acetylation signal (H3K27ac) associated with

increased activation of enhancer and promoter regions displayed for the 10 kb area centered

on each SNP. The data is summarized in Table 2. The polymorphism rs12722489 is co-located

with H3K4me1 enhancer mark only in leukocytes, but not other cell types, and it is also co-

located with increased activation mark H3K27ac in memory T cells. Conversely, enhancer

marks at rs706779 are less immune-cell specific and are absent in T cells with low IL-2RA
expression. Therefore we chose rs12722489 for further experimental evaluation.

We applied EMSA to compare the capacity of G and A variants of rs12722489 in the context

of 32 bp genomic sequence (Fig 1) to bind purified human ERα. This transcription factor has

the highest motif P-value and its affinity is predicted to be the most altered by G to A single-

nucleotide substitution. A well-characterized estrogen response element (ERE) from Xenopus

laevis vitellogenin gene B1 5’ flanking region [26] was used as a positive control. ERα formed

complexes with the 32 bp sequence from human IL2RA gene containing the G variant of

Table 2. Epigenetic marks located at rs12722489 and rs706779 according to the Roadmap Epigenomics Consortium data [25].

Sample H3K4me1 H3K27ac

rs12722489 rs706779 rs12722489 rs706779

T cells with high IL2RA expression CD4+ CD25- IL17+ PMA-Ionomycin stimulated Th17 + ++ +++ ++

CD4+ CD25+ CD127- Treg Primary Cells + + ++ ++

Other T cells CD4+ CD25- CD45RA+ Naive Primary Cells +

CD4+ Naive Primary Cells +

CD4+ CD25int CD127+ Tmem Primary Cells + +

CD4+ Memory Primary cells + +

CD4+ CD25- CD45RO+ Memory Primary Cells + +

CD8+ Naive Primary Cells

CD8+ Memory Primary Cells

Other leukocytes CD19+ Primary Cells ++ +++

CD56+ Primary Cells + + +

CD14+ Primary Cells

Other tissues* Neurospheres, Ganglionic Eminence Derived +

Fetal Adrenal Gland +

Histone 3 lysine 4 monomethylation (H3K4me1) is associated with enhancer regions, histone 3 lysine 27 acetylation (H3K27ac) is associated with

increased activation of enhancer and promoter regions [25].

(+), (++), (+++) designate relative peak height in arbitrary units.

doi:10.1371/journal.pone.0172681.t002
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Fig 1. Purified human ERα selectively binds to the genomic sequence containing G variant of

rs12722489. (A) Position of rs12722489 in IL2RA gene. (B) ERα and β binding motifs displayed as motif logos

from HOCOMOCO v10 [16]. Aligned sequence from IL2RA gene containing putative ER binding site around

rs12722489 is shown underneath. Motif P-values indicated for alternative alleles refer to ERα. The major (risk)

allele is shown in red, the minor (protective) allele—in blue. (C) Sequence of DNA probes used for

electrophoretic mobility shift assay (EMSA). Genomic sequences are given by the chromosome (-) strand.

ER-binding sites are shown in bold. The variable nucleotide is shown in color. (D) EMSA was performed

SNP variant in IL2RA locus determines differential ER binding
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rs12722489, though the binding was weaker than binding with a canonical ERE (Fig 1D). This

appears to be an exception to the rule derived by Driscoll et al. from their experimental data

which suggested that EREs with three or more changes from the core 13-bp consensus 5’-

GGTCAnnnTGACC do not bind ER regardless of the flanking regions context [26]. Binding

of the protective A variant of rs12722489 was below detection limit in agreement with the in
silico prediction.

To test if endogenous ERα binds IL2RA intronic region containing rs12722489 in vivo, we

performed ChIP experiments with nuclei of Jurkat and MT-2 cells. We chose these two cell

lines because 1 kb genomic sequence containing rs12722489 has been shown to exert allele-

dependent enhancer properties only in MT-2 but not in Jurkat cells (see below). In both cell

lines endogenous ERα bound DNA around rs12722489. In MT-2 cells anti-ERα precipitated

about 2.5 times more corresponding DNA than isotype control, whereas in Jurkat cells this fac-

tor was only 1.5 (Fig 2A).

The differential binding of human ERα to alternative rs12722489 alleles was confirmed by

DNA pull-down assay using nuclear extracts from MT-2 cells, antibodies to human ERα and

amplified 189-bp genomic sequence embedding rs12722489. Binding of the A variant was near

background level, whereas G variant bound two times more efficiently (Fig 2B).

To test the effect of the single nucleotide variation on initiation of transcription, we cloned

a 1 kb region of IL2RA first intron containing rs12722489 to a pGL3-derived vector containing

firefly luciferase gene under IL2RA promoter (Fig 3A). As increase in plasmid size dramatically

affects the luciferase signal [27], our control vector contained irrelevant 1 kb sequence from

using human recombinant ERα and indicated radiolabeled probes. ERα-DNA complex can only be seen for

the control V1B1 oligonucleotide containing estrogen-response element from Xenopus laevis vitellogenin

gene B1 5’ flanking region and for the 32 bp genomic sequence containing G variant of rs12722489.

doi:10.1371/journal.pone.0172681.g001

Fig 2. Endogenous ERα binds genomic region containing rs12722489 and binding efficiency

depends on the allelic variant. (A) Chromatin immunoprecipitation was performed in Jurkat and MT-2 cells

using antibodies to human ERα. Precipitated DNA was analyzed by real-time PCR using primers specific to a

189-bp genomic sequence containing rs12722489. *p<0.05 comparing to isotype control. **p<0.05

comparing to Jurkat cells. (B) DNA pull-down assay was performed using MT-2 nuclear extract, 189-bp

amplicons from human IL2RA gene containing rs12722489 allelic variants, and antibodies to human ERα.

*p<0.05 comparing to isotype control. **p<0.05 comparing to the G variant. Data from at least 3 independent

experiments are represented as mean±SEM.

doi:10.1371/journal.pone.0172681.g002
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STAT3 gene with no enhancer properties. The IL2RA promoter (-367 to +218 nucleotides

from the major transcription start site) was chosen as an evolutionary conserved genomic

region having appropriate epigenetic and DNase hypersensitivity signature in lymphoid cell

lines according to the ENCODE data (S1 Fig) [28] visualized in UCSC Genome Browser

(http://genome.ucsc.edu, [29]). It includes positive regulatory region I (-276 to -244) which

contributes to the inducibility of the IL2RA gene, and positive regulatory region II (-137 to

-64) involved in basal promoter activity as well as in T-cell-specific expression [30].

We tested our reporter constructs in two cell lines, Jurkat and MT-2. Jurkat is a T cell leuke-

mia-derived cell line that retains its original T-helper properties with regard to surface antigen

expression and inducibility of the IL-2/IL-2Rα positive feedback loop [31]. MT-2 is a human

T-cell leukemia virus type 1 (HTLV-1)-infected cell line that has the phenotypic and functional

characteristics of human regulatory T cells (Tregs) and as such demonstrate high levels of con-

stitutive IL2RA expression [32].

The G variant of the 1 kb sequence enhanced luciferase expression in MT-2 cells grown in

complete RPMI medium by about 50%, whereas G to A substitution abrogated this effect. In

Jurkat cells, the 1kb fragment failed to demonstrate enhancer activity (Fig 3B). We performed

estrogen induction experiments to confirm that the observed effect was estrogen receptor

dependent. Cells were placed in steroid-free medium immediately after transfection, and 17β-

estradiol (E2) at concentrations from 10−9 to 10−6 M was added 24h later. Luciferase signal was

assessed 18h after E2 addition. As a control for adequate estrogen induction and the presence

Fig 3. Enhancer activity of the 1 kb IL2RA intronic region containing rs12722489 depends on the

single nucleotide variant and is estrogen-dependent. (A) Design of the pGL3-based vectors used for

luciferase reporter assay. The constructs contained either G or A variant of the 1kb fragment of IL2RA first

intron downstream of the luciferase gene. The control vector (not shown on the figure) contained an irrelevant

1 kb sequence (see Materials and methods section for details). Position of rs12722489 within the 1kb intronic

region is indicated. (B) MT-2 or Jurkat cells grown in complete RPMI medium were transiently transfected with

the luciferase reporter constructs. *p<0.05 comparing to control or 1kb(A) construct. (C) MT-2 cells

transfected with the constructs indicated in the legend were placed in steroid-free medium and 17β-estradiol

(E2) was added 24h later at the specified concentrations. Luciferase signal was assessed 18h after E2

addition. *p<0.05 comparing to cells without E2. Data from at least 3 independent experiments are

represented as mean±SEM.

doi:10.1371/journal.pone.0172681.g003
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of functional ER in MT-2 cells, part of the cells in each experiment were transfected with a

highly estrogen-responsive control ERE-LUC vector which gave dose-dependent induction. In

this experimental system, 1 kb (G) did not demonstrate enhancer properties in the absence of

E2 whereas addition of estrogen at 10−9–10-6M resulted in up to 1.5-fold increase in luciferase

signal. The A variant of the 1 kb sequence had no effect on luciferase expression regardless of

the E2 presence in culture medium (Fig 3C).

Discussion

International Multiple Sclerosis Genetics Consortium initially reported rs12722489 as the

strongest MS-associated SNP in the IL2RA locus in 2007 [33]. Yet, the study on a larger data

set indicated that this association was secondary to that of a nearby rs2104286 which is in mod-

erate linkage disequilibrium with rs12722489 (r2 = 0.56) [34]. Later studies gave conflicting

results as several reports confirmed the association of rs12722489/rs2104286 with MS onset

[35–38], while others revealed no such association [39, 40], and one report demonstrated cor-

relation with MS progression only [41]. Variants at rs12722489 and rs2104286 affected soluble

IL-2Rα concentration in healthy controls but not in MS patients [42] although no correlation

with mRNA level was observed [43].

Concurrently, strong association of rs12722489 with Crohn’s disease was reported [44].

Interestingly, rs2104286 did not emerge as associated with this disease at all. In type 1 diabetes

(T1D), no association with rs12722489 has been reported but rs2104286 has been shown as

associated with T1D [42].

Thus, different GWASs give confusing information on the significance of a given polymor-

phism and this makes complementary analytical tools for identification of candidate SNPs

(such as transcription factor binding site prediction) even more important.

Analysis using PERFECTOS-APE software showed that rs12722489 was located in a very

conservative position of a putative ER binding site (Fig 1B) and G to A substitution was

predicted to destroy the motif (S1 Table). This position of ER binding site is involved in

sequence-specific interaction of the ER zinc finger CI with the DNA major groove [45]. Our

prediction is biologically credible as ERα, β1 and β2 are indeed present in human leukocytes

including peripheral T and B cells [46–48] and have prominent effects on immune function

[49]. Of interest, human leukocytes contain not only full-length mRNAs of these two ER iso-

forms but also a number of exon-deleted splice variants of ERα and β which are supposed to

have distinct functions [48, 50].

The IL2RA gene encodes CD25 protein which represents α subunit of the high-affinity IL-2

receptor. The high affinity IL-2 receptor is best known for its role in T cell development and

function. CD25 is constitutively expressed at high levels by CD4+ Foxp3+ Tregs and is induced

on naïve and memory T cells upon antigen stimulation [51]. It can be detected on some mem-

ory T-cells at low levels even in the absence of activation [9, 14]. Other immune cells also

express CD25 on their surface as was shown for dendritic cells [52–54], activated B cells [55]

and activated monocytes [56, 57]. Both enhanced and disrupted IL-2 signaling can induce

autoimmunity, indicating that there is a necessity for the maintenance of an optimal level of

IL-2/IL-2R signaling given the multiple functions of this pathway [14]. Lymphoid tissue

inducer cells (LTi cells) is another interesting subpopulation that express CD25 and was found

in elevated numbers in the cerebrospinal fluid of MS patients [58–60].

Since changes in IL2RA expression can have opposing outcomes in terms of disease suscep-

tibility depending on the cell type, it is of great importance to reveal in which cell type a partic-

ular causative SNP plays its role. This would also be crucially important if gene therapy of

autoimmune disorders ever reaches practical use in clinic.
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Using luciferase reporter system we showed that the 1 kb genomic segment containing

rs12722489 increased IL2RA promoter activity in MT-2 but not in Jurkat cells and that this

SNP affected luciferase expression only in the former cell type. This is in agreement with the

observation that the majority of cell type-specific effects of common genetic variation on gene

expression results from cell type-specific use of regulatory elements [61]. DNA region contain-

ing rs12722489 is less occupied by ERα in Jurkat cells than in MT-2 (Fig 2A) and experiments

with the control ERE-LUC vector showed that Jurkat cells had low potency to respond to

estrogens (S2 Fig).Therefore, inability to demonstrate enhancer properties by the 1kb sequence

containing rs12722489 in Jurkat cell line could be at least partially explained by the low activity

of ERα in these cells, although contribution of other factors cannot be excluded.

Supporting information

S1 Table. Predicted binding sites that have significantly different affinity for alternative

allelic variants of selected SNPs (PERFECTOS-APE predictions with HOCOMOCO v10).

The predictions overlapping between mono- and dinucleotide PWMs are marked in green

(XLSX)

S1 Fig. A view of IL2RA promoter region in the UCSC Genome Browser (http://genome.

ucsc.edu), hg38 assembly. The promoter region indicated by a blue bar and the tracks consid-

ered in promoter region selection shown below.

(TIF)

S2 Fig. Jurkat cells have low potency to respond to estrogen. Jurkat cells were placed in ste-

roid-free medium immediately after transfection with ERE-LUC plasmid and 17β-estradiol

(E2) was added 24h later. Luciferase signal was assessed 18h after E2 addition. Data is repre-

sented as mean±SD.

(TIF)
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