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Human skeletal myotubes display a cell-
autonomous circadian clock implicated in basal
myokine secretion
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ABSTRACT

Objective: Circadian clocks are functional in all light-sensitive organisms, allowing an adaptation to the external world in anticipation of daily
environmental changes. In view of the potential role of the skeletal muscle clock in the regulation of glucose metabolism, we aimed to char-
acterize circadian rhythms in primary human skeletal myotubes and investigate their roles in myokine secretion.

Methods: We established a system for long-term bioluminescence recording in differentiated human myotubes, employing lentivector gene
delivery of the Bmal1-luciferase and Per2-luciferase core clock reporters. Furthermore, we disrupted the circadian clock in skeletal muscle cells
by transfecting siRNA targeting CLOCK. Next, we assessed the basal secretion of a large panel of myokines in a circadian manner in the presence
or absence of a functional clock.

Results: Bioluminescence reporter assays revealed that human skeletal myotubes, synchronized in vitro, exhibit a self-sustained circadian
rhythm, which was further confirmed by endogenous core clock transcript expression. Moreover, we demonstrate that the basal secretion of IL-6,
IL-8 and MCP-1 by synchronized skeletal myotubes has a circadian profile. Importantly, the secretion of IL-6 and several additional myokines was
strongly downregulated upon siClock-mediated clock disruption.

Conclusions: Our study provides for the first time evidence that primary human skeletal myotubes possess a high-amplitude cell-autonomous
circadian clock, which could be attenuated. Furthermore, this oscillator plays an important role in the regulation of basal myokine secretion by

skeletal myotubes.
© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION and organ function has been demonstrated in liver, whole pancreas,

pancreatic islets, and in adipose tissue (reviewed in [4]). Of note,

Circadian oscillations are daily cycles in behavior and physiology that
have been described from photosynthetic bacteria to vertebrates. They
are reflected by the existence of underlying intrinsic biological clocks
with near 24 h periods that generate self-sustained rhythms, influ-
enced by environmental stimuli, such as light and feeding [1]. Under
homeostatic conditions, the clock acts as a driver of metabolic pro-
cesses with remarkable tissue specificity that reflects the unique de-
mand of each tissue [2]. In peripheral organs, a large number of key
metabolic functions are subject to daily oscillations, such as carbo-
hydrate and lipid metabolism by the liver, and xenobiotic detoxification
by the liver, kidney and small intestine [2,3]. In rodents, the presence
of peripheral circadian oscillators and their impact on gene expression

feeding rhythms represent a potent synchronizing cue for peripheral
oscillators. Elegant studies involving inverted or restricted feeding
schedules convincingly demonstrate that feeding rhythms are powerful
enough to uncouple liver and other organ clocks from the SCN [5].
Moreover, rhythmicity in a number of clock-deficient mouse models
could be restored by feeding rhythms [6—8].

There is growing evidence for a tight reciprocal link between a number
of metabolic diseases, including obesity and type 2 diabetes mellitus
(T2D), and the circadian clockwork [3,4]. Mice with circadian clock
ablation develop hyperphagia, obesity, hyperglycemia and hypo-
insulinemia [9]. The adipocyte-specific Bmal1 knockout leads to
obesity development [10], while the islet-specific Bmal1 ablation
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Abbreviations

BMAL1 brain and muscle ARNT-like 1

CLOCK circadian locomotor output cycles kaput

CRY cryptochrome

DBP D-albumin binding protein

GLP-1 glucagon-like peptide 1

HPRT hypoxanthine-guanine phosphoribosyltransferase

IL-6 interleukin-6

IL-8 interleukin-8

Luc luciferase

MOl multiplicity of infection

MCP-1 monocyte chemotactic protein 1

M-CSF macrophage colony-stimulating factor
PER period
RORat retinoid-related orphan receptor alpha

REV-ERBo. reverse-erb alpha

SCN suprachiasmatic nucleus

T2D type 2 diabetes mellitus

VEGF vascular endothelial growth factor
T zeitgeber time

directly triggers the onset of T2D in mice [11]. In humans, genetic
analyses have shown a close association between glucose levels and
variants of the CRY2 and melatonin receptor 1B (MTNR1B) genes [2].
Skeletal muscle is the largest insulin sensitive organ in the body,
playing an essential role in whole body glucose homeostasis. It is
responsible for 70—80% of insulin-stimulated glucose uptake and
therefore representing the most important site of insulin resistance in
T2D patients [12]. The primary and best-described function of skeletal
muscles is their mechanical activity. During the last decade, however,
skeletal muscle has been characterized also as a secretory organ,
producing and releasing myokines that act on the muscle itself and
display endocrine effects on distant organs [13,14]. Recently, it has
been proposed that fully differentiated primary human skeletal muscle
cells secrete over 300 potential myokines [15]. Interleukin-6 (IL-6) is
one of the first identified myokines, which is produced by the con-
tracting skeletal muscle [16]. Acute high plasma levels of IL-6 are
associated with exercise, while chronically elevated IL-6 is observed
upon obesity and T2D. Moreover, IL-6 promotes pancreatic alpha cell
mass expansion [17] and stimulates GLP-1 production and secretion
by alpha and L-cells upon metabolic syndrome, thus exerting beneficial
effects in T2D mouse models [18]. Besides IL-6, skeletal muscle
produces a number of additional myokines, such as MCP-1 and IL-8,
which play a role in skeletal muscle inflammation, recruitment of
macrophages and insulin sensitivity [19,20].

In rodents, about 7% of the skeletal muscle transcriptome is expressed
in a circadian manner [21]. Moreover, clock ablation (Bma/f/ 7) leads
to skeletal muscle pathologies [22]. MyoD, a master regulator of
myogenesis, exhibits a robust circadian rhythm and was identified as a
direct target of CLOCK and BMAL1. In addition, disruption of myofil-
ament organization was detected in Bmal1~'~, Clock®', and in
MyoD*/ ~ mice, suggesting a direct link between the circadian clock
and skeletal muscle function in rodents [22]. Furthermore, a recent
study suggests that in mice muscle insulin sensitivity might be clock-
dependent [23].

In view of the accumulating evidence in rodent models, it has been
accepted that the skeletal muscle clock plays an essential role in
maintaining proper metabolic functioning (reviewed in [24]), although
the mechanism of this important regulation is not entirely clear,
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particularly in human subjects. Given that, the circadian clock in hu-
man skeletal muscle has remained largely unexplored, we aimed to
characterize the circadian oscillator in primary human myotubes and
explore its impact on the regulation of human skeletal muscle myokine
secretion.

2. MATERIAL AND METHODS
2.1. Study participants, skeletal muscle tissue sampling and
primary cell culture

Muscle biopsies were derived from non-obese or obese donors with
the informed consent obtained from all participants (see Table 1 for the

Table 1 — Characteristics of donors for skeletal muscle biopsies.

Donor Sex Age (years) BMI (kg/m?)  Biopsy source
Non-obese M=14,F=5 58 = 18 24.88 = 3.20

1? M 48 21.7 Rectus abdominus
20 M 45 21 Rectus abdominus
33 F 58 20.5 Rectus abdominus
431 F 42 19.5 Rectus abdominus
ghak M 23 29.34 Gluteus maximus
6D degnl M 62 24.3 Gluteus maximus
720 F 77 25.6 Gluteus maximus
8ol M 57 26 Gluteus maximus
god.an M 60 24 Gluteus maximus
10° F 88 29.64 Gluteus maximus
113000 F 65 25.8 Gluteus maximus
2258 M 25 19.27 Gluteus maximus
130d.en M 64 28 Gluteus maximus
1429 M 87 25.51 Gluteus maximus
1524 M 85 25.54 Gluteus maximus
1629 M 72 26.5 Gluteus maximus
170emn M 48 243 Gluteus maximus
104N M 45 28.1 Gluteus maximus
19200400 M 57 28.1 Gluteus maximus
Obese M=1,F=4 53+15 3921 = 7.16

20° M 70 30.1 Gluteus maximus
21° F 70 329 Gluteus maximus
2000 F 43 43 Gluteus maximus
23049 F 39 45.48 Rectus abdominus
24°0.91 F 45 44.58 Rectus abdominus
Alldonors M=15,F=9 57=17  27.87 +7.23

M, male; F, female.

Non-obese, data are mean + SD, n = 19.

Obese, data are mean + SD, n = 5.

All donors, data are mean + SD, n = 24.

@ donor cells used for the recording of Bmall-luc bioluminescence of
dexamethasone-synchronized samples.

5 donor cells used for the recording of Bmal7-luc bioluminescence of forskolin-
synchronized samples.

¢ donor cells used for the recording of Bmal7-luc bioluminescence of dexamethasone
vs. forskolin-synchronized samples.

9 donor cells used for the recording of Per2-luc bioluminescence of forskolin-
synchronized samples.

€ donor cells used for the around-the-clock experiment with dexamethasone
synchronization.

T donor cells used to quantify the silencing of CLOCK in siControl / siClock samples
synchronized with dexamethasone.

9 donor cells used to quantify the silencing of CLOCK in siControl / siClock samples
synchronized with forskolin.

" donor cells used for the around-the-clock experiment in forskolin-synchronized
siControl / siClock samples.

I donor cells used for the IL-6 perifusion experiments with forskolin synchronization.
1" donor cells used for the multiplex assay analysis of perifusion samples synchronized
with forskolin.

k" donor cells used for the IL-6 perifusion experiments with forskolin vs. dexameth-
asone synchronization.
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donor characteristics). The experimental protocol (‘DIOMEDE’) was
approved by the Ethical Committee SUD EST IV (Agreement 12/111)
and performed according to the French legislation (Huriet’s law). All
donors had HbAc1 levels inferior to 6.0% and fasting glycemia inferior
to 7 mmol/L, were not diagnosed for T2D, neoplasia or chronic in-
flammatory diseases, and not doing shift work. Biopsies were taken
from the Gluteus maximus (n = 18) or the Rectus abdominus (n = 6)
muscles during the planned surgeries. Primary skeletal myoblasts
were purified and differentiated into myotubes according to the pre-
viously described procedure [25]. Briefly, after removal of apparent
connective and fat tissue contaminants, the muscle biopsy was minced
with scissors and incubated successively at least 4 times for 20 min in
Trypsin-EDTA (Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA) at 37 °C under agitation. Trypsin-EDTA digested extracts were
pooled, and centrifuged (150 g). The pellet was rinsed several times
with PBS and cells were filtered on a 70-pum filter before being plated
in a Primaria flask (Falcon; Becton Dickinson, Bedford, MA) containing
growth medium composed of HAM F-10 supplemented with 2%
Ultroser G (BioSepra SA, Cergy-Saint-Christophe, France), 2% fetal
bovine serum (FBS, Invitrogen), and 1% antibiotics (Invitrogen). After 4
days, the myoblasts were immuno-selected using a monoclonal hu-
man CD56 antibody combined with paramagnetic beads (CD56
MicroBeads, Miltenyi Biotec, Germany), according to the manufac-
turer’s instructions. The selected cells were plated on Primaria plastic
ware at 4500 cells/cm? and cultured in growth medium at 37 °C. After
reaching confluence, myoblasts were differentiated into myotubes
during 7—10 days in DMEM supplemented with 2% FBS. Muscle
differentiation was characterized by the fusion of myoblasts into pol-
ynucleated myotubes (Supplementary Figure 1).

2.2. SiRNA transfection and lentiviral transduction

Human primary myoblasts were differentiated into myotubes as
described above. Cells were transfected with 20 nM siRNA targeting
CLOCK (siClock), or with non-targeting siControl (Dharmacon, GE
Healthcare, Little Chalfont, UK), using HiPerFect transfection reagent
(Qiagen, Hombrechtikon, Switzerland) following the manufacturer’s
protocol, 24 h prior to synchronization. To produce lentiviral particles,
Bmali-luc [26] or Per2-luc [27] lentivectors were transfected into 293T
cells using the polyethylenimine method (for detailed procedure see
[28]). Myoblasts were transduced with the indicated lentiviral particles
with a multiplicity of infection (MOI) = 3 for each, grown to confluence,
and subsequently differentiated into myotubes.

2.3. In vitro skeletal myotube synchronization and real-time
bioluminescence recording

To synchronize primary myotubes, 10 puM forskolin (Sigma, Saint-
Louis, MO, USA) or 100 nM dexamethasone (Alfa Aesar, Johnson
Matthey, London, UK) were added to the culture medium, respectively.
Following 60 min (forskolin) or 30 min (dexamethasone) incubation at
37 °Cin a cell culture incubator, the medium was changed to a phenol
red-free recording medium containing 100 pM luciferin and cells were
transferred to a 37 °C light-tight incubator (Prolume LTD, Pinetop, AZ,
USA), as previously described by us [28]. Bioluminescence from each
dish was continuously monitored using a Hamamatsu photomultiplier
tube (PMT) detector assembly. Photon counts were integrated over
1 min intervals. Luminescence traces are either shown as raw or
detrended data. For detrended time series, luminescence signals were
smoothened by a moving average with a window of 144 data points
and detrended by an additional moving average with a window of 24 h
[29]. For quantification of the circadian amplitude and period the first
cycle was not taken into consideration.
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2.4. mRNA extraction and quantitative PCR analysis

Differentiated myotubes were synchronized by forskolin or dexa-
methasone, collected every 4 h during 48 h (0 h—48 h), or during 24 h
(12 h—36 h), deep-frozen in liquid nitrogen and kept at —80 °C. Total
RNA was prepared using RNeasy Plus Micro kit (Qiagen). 0.5 pg of
total RNA was reverse-transcribed using Superscript lll reverse tran-
scriptase (Invitrogen) and random hexamers and PCR-amplified on a
LightCycler 480 (Roche Diagnostics AG, Rotkreuz, Switzerland). Mean
values for each sample were calculated from the technical duplicates
of each gRT-PCR analysis, and normalized to the mean of two
housekeeping genes (HPRT and 9S or GAPDH and 9S), which served as
internal controls. Primers used for this study are listed in
Supplementary Table 1.

2.5. Circadian analysis of basal myokine secretion by ELISA and
multiplex assay

In vitro synchronized differentiated myotubes, transduced with Bmal1-
luc reporter, were placed into an in-house developed two-well hori-
zontal perifusion chamber, connected to the LumiCycle. Cells were
continuously perifused for 48 h with culture medium containing
100 pM luciferin. Bioluminescence recordings were performed in
parallel to the automated collection of outflow medium in 4 h intervals.
Basal IL-6 levels were quantified in the outflow medium using the
Human IL-6 Instant ELISA kit (eBioscience, Affymetrix, Santa Clara, CA,
USA) following the manufacturer’s instructions. Data were normalized
to the genomic DNA content, extracted using the QlAamp DNA Blood
Mini Kit (Qiagen). Perifusion medium samples were further concen-
trated using Amicon Ultra 2 ml centrifugal filters (Ultracel-3K, Merck
Millipore, Darmstadt, Germany). The evaluation of myokine release
from human primary skeletal muscle cells was carried out using a
multiplex bead array assay system (R&D Systems, Minneapolis, MN,
USA). Custom-made luminex screening plates (CD44, CHI3L1, FABP3,
galectin-3, GRO-alpha, IGFBP-3, IL-7, IL-13, IL-17A, M-CSF, MCP-1,
MMP-2, Serpin C1, Serpin E1, TIMP-1) and high sensitivity perfor-
mance plates (IL-1 beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12 p70, IFN-
gamma, TNF-alpha and VEGF) were analyzed according to the manu-
facturer’s instructions. Plate analysis was performed on a Bio-Plex 200
array reader (Bio-Rad Laboratories, Hercules, CA, USA), with the
Bio-Plex software (Bio-Rad) used for data analysis.

2.6. Data analysis

Actimetrics LumiCycle analysis software (Actimetrics LTD) and the
JTK_CYCLE algorithm [30] were used for bioluminescence and myo-
kine secretion profile data analyses, respectively. For the ELISA and
multiplex data analysis, 2 technical duplicates from 3 biological sam-
ples were analyzed for each myokine. From these values the aver-
age + the SEM was calculated for each time point. For JTK_CYCLE
analysis the period width was set at 20—24 h. Statistical analyses were
performed using a paired Student’s t-test. Differences were considered
significant for p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

3. RESULTS

3.1. High-amplitude self-sustained clocks are functional in primary
human skeletal myotubes

Circadian bioluminescence recordings in living cells allow for the study
of molecular clocks in human peripheral tissues, as previously
demonstrated by us [28,31] and others [32]. We applied this powerful
methodology to assess clock properties in human primary skeletal
myotubes established from human donor biopsies and differentiated
in vitro (see Supplementary Figure 1 and Table 1 for donor

© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.org/licenses/by-nc-nd/4.0/).
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characteristics). Multiple in vifro stimuli have previously been
demonstrated to efficiently synchronize cultured cells, among them
forskolin and dexamethasone [28,33]. As shown in Supplementary
Figure 2, short pulses of dexamethasone or forskolin were able to
strongly synchronize human myotubes bearing the Bmali-luc lenti-
vector. Both forskolin and dexamethasone induced oscillations with
comparable period length: 25.29 + 0.13 h, n=19 for forskolin
(Table 2), and 24.48 + 0.24 h, n=8 for dexamethasone (data not
shown). However, the forskolin pulse induced more sustained cycles
with higher circadian amplitude compared to dexamethasone-
synchronized cells (Supplementary Figure 2) and was therefore
mainly used in this study as the in vitro synchronization stimulus. The
here established experimental settings allowed for continuous
recording of oscillation profiles in human primary myotubes for several
days with high resolution (Figure 1A, B). As expected, the profiles of the
Bmal1-luc and Per2-luc reporters were antiphasic (Figure 1A, B; [3]).
High-amplitude self-sustained oscillations were reproducibly recorded
from human primary myotubes for Bmal1-luc and Per2-luc reporters
with an average period length of 25.29 + 0.13 h and 25.20 & 0.19 h,
respectively (Figure 1C). Of note, no significant difference in period
length of the Bmal1-luc or Per2-luc reporter was observed between
myotubes established from non-obese and obese donors (Table 2),
which might reflect the resistance of the core clock to metabolic
changes.

To further validate the results obtained by circadian bioluminescence
reporter studies, we examined endogenous core clock gene expression
profiles in forskolin-synchronized myotubes (Figure 2C, closed circles).
mRNA accumulation patterns from synchronized skeletal myotubes
were monitored every 4 h during 48 h by quantitative RT-PCR, using
amplicons for BMAL1, REV-ERBo, PER3 and DBP. The values obtained
were normalized to the mean of the housekeeping genes HPRT and 9S.
In agreement with our Bmal7-luc reporter experiments, endogenous
BMALT transcript levels exhibited circadian oscillations over 48 h in
synchronized myotubes (compare Figure 2C BMALT panel to
Figure 1A), clearly antiphasic to the profiles of the endogenous REV-
ERBo, PER3, and DBP transcripts (Figure 2C). Similar experiments
were conducted in  dexamethasone-synchronized myotubes
(Supplementary Figure 3). BMALT and CRY71 mRNAs exhibited oscil-
latory profiles antiphasic to those of REV-ERBa and PER2-3, consistent
with the dexamethasone-induced oscillations of the Bmal1-/uc reporter
(Supplementary Figure 2).

3.2.  Human myotube clock disruption by siRNA-mediated CLOCK
knockdown

In order to disrupt the circadian clock in cultured human myotubes, we
set up an efficient siClock transfection protocol, resulting in more than
80% knockdown of CLOCK transcript levels (Figure 2A, Supplementary
Figure 4A). Circadian expression of the Bmal1-luc reporter was blunted
in siClock-transfected myotubes upon forskolin or dexamethasone
synchronization, if compared to cells transfected with non-targeting

Table 2 — Circadian period length of forskolin-synchronized human

myotubes assessed by circadian bioluminescent

Bmal1-luc period (h)  Per2-luc period (h) Mean period (h)

n  Mean =SEM n Mean + SEM n* Mean + SEM
Non-obese 15 25354 0.14 12 2525+ 0.22 27 2531 +0.12
Obese 4  2504+035 2 2485+030 6 2498+0.24
Alldonors 19 2529+ 0.13 14 2520-+0.19 33 25.25+ 0.11

*n represents the number of experimental repetitions.
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sequences (siControl) or to non-transfected counterparts (Figure 2B,
Supplementary Figure 4B), thus validating circadian clock disruption.
Moreover, the amplitudes of endogenous REV-ERBw, PER3 and DBP
transcript profiles were strongly blunted in siClock-transfected cells, in
comparison to siControl cells (Figure 2C, Supplementary Table 2). By
contrast, BMAL1 transcript levels were slightly upregulated (Figure 2C,
Supplementary Table 2).

3.3. Regulation of basal IL-6 secretion by the circadian clock in
human primary myotubes

Given the accumulating evidence on the essential role of IL-6 secretion
by skeletal muscle under physiological conditions and upon metabolic
diseases [14,17,18], we next monitored basal circadian IL-6 secretion
by human primary myotubes established from non-obese and obese
donors. To this end, we developed an in-house perifusion system
connected to the LumiCycle chamber that allows for parallel cell
perifusion and bioluminescence profile recordings. Basal IL-6 secretion
from in vitro synchronized skeletal myotubes was monitored in
“around-the-clock” experimental settings, with a continuous flow of
culture medium (see Material and methods for details). The perifusion
experiments suggested that forskolin-synchronized myotubes exhibi-
ted a circadian profile of basal IL-6 secretion over 48 h, with a Zenith
around 8 h—12 h and 32 h—36 h and a Nadir of 20 h—24 h
(Figure 3A). JTK_CYCLE analysis [30] revealed that average profile of
basal IL-6 secretion did not reach significance to be qualified as
circadian over the entire time span of 48 h. However it was signifi-
cantly circadian over the first 36 h of perifusion following in vitro
synchronization (**p < 0.01, n==6). Similar basal IL-6 secretion
profiles were observed from dexamethasone-synchronized myotubes
(Supplementary Figure 5).

We next tested the effect of CLOCK depletion on IL-6 secretion. Similar
to previous experiments (Figure 2), CLOCK transcript expression was at
least 80% downregulated in siClock-transfected myotubes
(***p < 0.001, paired t-test, Table 3) compared to siControl-trans-
fected cells. The achieved clock disruption was also confirmed by
parallel Bmali-luc bioluminescence recording in perifused cells
(Figure 3B). Importantly, IL-6 secretion decreased on average 64% in
siClock-transfected myotubes compared to siControl-transfected
counterparts (*p < 0.05, Table 3). Furthermore, the profile of basal IL-
6 secretion became flat upon clock disruption if compared to the
siControl-transfected profile (see red line vs. black line, Figure 3A). Of
note, overall basal IL-6 secretion was on average higher in obese
siControl-transfected subjects (7 = 3) compared to non-obese
siControl-expressing counterparts (n = 3), although values did not
reach statistical significance (Table 3).

To get an insight into the regulation of basal IL-6 secretion by the
circadian clock, we assessed /L6 transcript levels following in vitro
synchronization with forskolin. No clear circadian pattern was
observed (Figure 3C). The strong immediate early peak of /L6 tran-
scription induced by the forskolin pulse might be attributed to the
presence of a cAMP response element previously identified in IL-6
promoter region [34]. Moreover, CLOCK depletion by siClock had no
effect on basal /L6 transcription (Figure 3C).

3.4. Multiplex screen identifies additional clock-regulated

myokines

Since we obtained convincing evidence on the requirement of a
functional circadian clock for basal IL-6 secretion by skeletal myotubes
(Figure 3A,B), we selected an additional panel of myokines for analysis
by multiplex assay. The around-the-clock secretory profiles of IL-6 and
24 other myokines were assessed in perifusion samples obtained from
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Figure 1: High-amplitude cell autonomous oscillators are functional in differentiated human primary myotubes. Human primary myoblasts were transduced with lentiviral particles
expressing Bmal1-luc (black line) or Per2-luc (blue line). Cells were differentiated into myotubes, synchronized with forskolin, and transferred to the Actimetrics LumiCycle for
bioluminescence recording. Raw (A) and detrended (B) oscillation profiles are representative of 19 and 14 independent experiments, respectively (one donor per experiment).
(C) The period length of Bmal1-luc or Per2-luc was on average 25.29 & 0.13 h, (n = 19) or 25.20 + 0.19 h, (n = 14), respectively. Data represent the mean + SEM.

primary human myotubes as described in Figure 3, and further
concentrated to allow for the detection of basal myokine secretion in
siControl and siClock-transfected myotubes. Selected myokines were
chosen based on their presence in the secretome of differentiated
primary skeletal muscle cells [15], their function and implication in
metabolic diseases, and their availability and compatibility for multiplex
array analysis. Out of the selected panel of 25 myokines, 15 myokines
were detected in the concentrated perifusion samples, while 10
myokines remained undetectable, due to their low levels of basal
secretion (Table 4).

Importantly, the profile and concentration levels of around-the-clock
IL-6 secretion measured by multiplex analysis were very similar to
those obtained by ELISA (compare Figure 3D—A). JTK_CYCLE analysis
[30] confirmed that the average profile of secreted IL-6 measured by
multiplex analysis was significantly circadian within 48 h (Figure 3D,
Table 4). In addition to IL-6, MCP-1 and IL-8 were secreted in a
circadian manner according to JTK_CYCLE analysis (Figure 4A,
Table 4). M-CSF and GRO-alpha exhibited a secretion profile that might
be clock-controlled; however, the adjusted minimal p-value did not
reach significance according to JTK_CYCLE analysis (Figure 4B,
Table 4). Furthermore, although the temporal secretion patterns of
VEGF, CD44, FABP3, Galectin-3 and TIMP-1 were not identified as
circadian, the overall secretion levels of these myokines were signif-
icantly reduced upon CLOCK depletion (Figure 4C, Table 4).

4. DISCUSSION

4.1. Molecular makeup of the circadian oscillator operative in
human skeletal muscle

Our study provides for the first time evidence for cell-autonomous
self-sustained circadian oscillators, operative in human primary
skeletal myotubes. Molecular characteristics of the human myotube
clock were assessed by two complementary approaches. Pro-
nounced circadian oscillations were recorded with high temporal
resolution for at least 4—5 consecutive days from in vitro synchro-
nized primary skeletal myotubes, transduced with Bmal7-luciferase
or Per2-luciferase lentivectors (Figure 1A,B). The circadian charac-
teristics of human skeletal myotubes were in accordance with those
reported for human primary thyrocytes, pancreatic islets, skin fi-
broblasts [28,31,35], and for mouse skeletal muscle assessed in vivo
[21,22]. Sustained circadian oscillations were efficiently induced in
our system by both forskolin (Figure 1) and dexamethasone

838 MOLECULAR METABOLISM 4 (2015) 834—845

(Supplementary Figure 2) pulses, suggesting that these oscillators
are functional irrespective of the synchronization stimulus or
entrainment pathway. It might be of interest to further explore
whether other physiologically relevant stimuli like glucose, insulin, or
myokine-induced signaling pathways play a role in human myotube
synchronization.

In line with the outcome of our reporter experiments, endogenous
around-the-clock gene expression analyses suggested that the core
clock genes BMAL1, REV-ERBw, and PER3, as well as the clock
output gene DBP, exhibit circadian oscillatory patterns in forskolin
and dexamethasone-synchronized myotubes (Figure 2C closed cir-
cles, Supplementary Figure 3). Of note, the circadian amplitude of
oscillations induced in vitro is typically lower if compared to in vivo
oscillations from the same tissue, as demonstrated, for instance, for
mouse islets synchronized in vitro or collected in vivo [11]. Thus,
identifying clock-controlled genes in vitro by RT-qPCR represents a
significant challenge due to rather low amplitudes [21,28]. More
accurate methods like RNA sequencing of samples collected with
higher temporal resolution might represent a solution to this
problem.

4.2. Experimental model for circadian clock disruption in human
primary myotubes

Here, we have established experimental settings for a highly repro-
ducible siRNA-mediated CLOCK transcript knockdown of more than
80% in human primary muscle cells (Figure 2A, Supplementary
Figure 4A). Upon such CLOCK silencing, significant flattening of the
circadian amplitude was observed for the Bmal7-luc reporter
(Figure 2B, Figure 3B, Supplementary Figure 4B) and for endogenous
REV-ERBo, PER3 and DBP transcripts (Figure 2C), confirming circadian
core clock disruption. The discrepancy between Bmal1-luc reporter
data and endogenous BMAL1 expression upon siClock might be related
to the fact that the knockdown effect of CLOCK on the Bmal1-luc re-
porter is evident primarily after 48 h, and that the promoter length of
the Bmal1 reporter is different from the endogenous gene. While REV-
ERBo;, PER3 and DBP transcript profiles only exhibited residual
circadian oscillations, which might be explained by incomplete clock
ablation, the amplitude of the endogenous BMAL1 oscillatory profile
was not reduced and even slightly increased (Figure 2C). Similarly,
siRNA-mediated depletion of CLOCK in U20S cells was reported to
increase BMALT expression levels [36]. Moreover, Clock-deficient
mice continue to exhibit circadian patterns of behavioral and molecular
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Figure 2: Silencing of CLOCK expression attenuates circadian oscillations in human skeletal myotubes. (A) CLOCK mRNA was measured in human myotubes transfected with

siControl or siClock by RT-qPCR and normalized to the mean of 95 and HPRT. CLOCK expression was reduced by 83.5 + 3.4% (mean + SEM, n = 8; **p < 0.001) in siClock-
transfected cells. (B) Amplitude of the Bmal7-luc reporter is strongly reduced in siClock-transfected myotubes. Representative Bmal1-/uc oscillation profiles are shown for non-
transfected (black line), siControl (blue line), and siClock (red line) transfected myotubes. Bmal1-luc oscillation profiles were recorded in duplicates (3 experiments, one donor per
experiment). (C) RT-qPCR was performed for BMAL1, REV-ERBo, PER3 and DBP on RNA samples extracted from forskolin-synchronized human myotubes, transfected with siClock

(open circles) or siControl (closed circles). Samples were collected every 4 h and normalized to the mean of 9S/HPRT. Profiles (mean + SEM) are representative of 3 experiments (2
donors for time points 0 h—48 h and 3 donors for time points 12 h—36 h) with duplicates per time point.

rhythms. In the SCN and liver of Clock-deficient mice, Bmal1l mRNA
was elevated, as well as in pancreatic islets of Clock-mutant mice,
which was attributed to reduced REV-ERBa expression and a
compensatory effect of NPAS2 [11,37].
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Clockwork perturbations may develop in humans with ageing and upon
a number of disorders [3,4]. In this respect, our experimental model,
which allows for reproducible clock disruption mediated by CLOCK
depletion in differentiated skeletal myotubes, represents a valuable
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Figure 3: Basal IL-6 secretion by human skeletal myotubes is strongly inhibited in the absence of a functional circadian clock. Myoblasts were transduced with the Bmal1-luc
lentivector, differentiated into myotubes and transfected with either siControl or siClock siRNA. 24 h following transfection, myotubes were synchronized with forskolin and
subjected to continuous perifusion with parallel bioluminescence recording. (A) Basal IL-6 secretion profile (mean + SEM) in the presence or absence of a functional clock. The
perifusion outflow medium was collected continuously in an automated manner in 4 h intervals until 48 h (0—4 corresponds to the accumulation of IL-6 between 0 h and 4 h). IL-6
levels in the perifusion outflow medium were assessed by ELISA. The results represent basal IL-6 levels normalized to the total DNA content. 2 technical duplicates from 3
independent experiments (3 non-obese donors, see Table 3) were analyzed for each time point. (B) Bmal7-luc bioluminescence profiles of siControl-transfected myotubes (black
line) and siClock-transfected myotubes (red line), representative of 3 experiments, with one donor cell line used per experiment. (C) RT-gPCR was performed for /L6 on RNA
samples extracted from forskolin-synchronized human myotubes, transfected with siClock (open circles) or siControl (closed circles). Samples were collected every 4 h and
normalized to the mean of 9S/HPRT. Profiles (mean & SEM) are representative of 3 experiments (2 donors for time points 0 h—48 h and 3 donors for time points 12 h—36 h) with
duplicates per time point. (D) Basal IL-6 secretion profiles in the presence or absence of a functional clock obtained from concentrated perifusion samples, assessed by multiplex
analysis. Data shown as mean + SEM of 2 technical duplicates from 3 biological samples for each time point, normalized to the total DNA content.

tool for getting significant insights into the roles of clock perturbations
in different aspects of human skeletal muscle function. In order to
detect oscillatory alterations caused by metabolic changes it might be
necessary to develop further readouts involving clock output genes, as
the here assessed Bmal1-luc and Per2-luc reporter profiles, although
definitely informative regarding the core clock, might be of limited
value as readout for metabolic perturbations.

4.3. Basal IL-6 secretion by human skeletal muscle is regulated by
the circadian clock

Importantly, our study demonstrates that human skeletal myotubes,
synchronized in vitro by forskolin or dexamethasone, secrete basal IL-6
in a circadian manner (Figure 3A,D, Supplementary Figure 5).
Furthermore, this circadian pattern is flattened under siClock-mediated
clockwork disruption, with overall basal IL-6 secretion being strongly
downregulated by oscillator perturbation (Figure 3A,D, Table 3). The
experimental settings we have developed, combining continuous
perifusion and bioluminescence recording, allow for the direct
assessment of IL-6 secretion by cultured human myotubes. Studies in
healthy adults have suggested that IL-6 levels in the cerebrospinal fluid
exhibit a 24 h oscillatory profile, and plasma levels of IL-6 have a
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biphasic 12 h component [38,39]. However, it has to be taken into
account that plasma levels are originating from different sources of IL-
6 and are also influenced by absorption in effector organs.

Our finding that basal IL-6 secretion is regulated locally by the skeletal
muscle clock is in line with accumulating evidence that endocrine body
rhythms are tightly regulated in humans by the circadian system at
several levels (reviewed in [40]). Insulin secretion by beta cells in rodents
was suggested to be a subject for clock regulation [11]. Moreover, a
number of proinflammatory cytokines exhibit pronounced circadian al-
terations in the magnitude of their response to an endotoxin challenge at
different times of the day [41], among them IL-6. Such circadian gating
of the inflammatory response was lost for IL-6 in REV-ERBc knockout
mice. Moreover, attenuation of REV-ERBa. levels in human macrophages
implied a direct link between REV-ERBa. and IL-6 secretion [41].

Given a general controversy around the roles of IL-6 level alterations in
the etiology of metabolic diseases [42], such downregulation might
have a positive or negative impact on skeletal muscle function and
body metabolism. A recent in vivo study in humans suggested that
injection of IL-6 to T2D patients did not affect insulin-stimulated
glucose uptake [43], while it was reported to have beneficiary ef-
fects on the glucose uptake in young, healthy subjects [44]. Indeed,
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Table 3 — Overall basal IL-6 secretion after forskolin synchronization in human myotubes.

Non-obese (n=3)
Mean + SEM

Obese (n=3)
Mean + SEM

All donors (n= 6)
Mean + SEM

4386.54 + 411.71
142412 4 408.83
69.30 + 10.61
91.32 + 2.67

IL-6/48h in siControl samples (pg)
IL-6/48h in siClock samples (pg)
Inhibition of secretion (%)

Clock mRNA silencing (%)

5888.25 + 1547.86
2395.52 + 625.60
59.66 + 7.04
78.57 &+ 8.15

5137.40 + 796.43
1909.82 + 385.20
64.48 + 6.09
84.94 + 4.57

acute high levels of IL-6 found after exercise improve insulin sensi-
tivity, glucose metabolism [18,45], and fat metabolism [46], whereas
chronic exposure to IL-6 causes insulin resistance in mice [47]. At the
same time, /L6 knockout mice develop mature-onset obesity and
glucose intolerance [48]. We speculate that similar to cortisol, thyroid
hormones, insulin, and other key hormones, which exhibit circadian
rhythmicity of their levels [40,49], the oscillatory pattern of IL-6
secretion by the skeletal muscle might give an advantage for the
temporal coordination of this myokine with the rest—activity cycle, thus
ensuring optimal IL-6 response to external cues.

Our results presented in Figure 3C suggest that the circadian regu-
lation of basal IL-6 secretion may not occur at the transcriptional
level. As it has been reported, the clock is quite insensitive to large
fluctuations of transcription rate [50]. Moreover, in mouse livers
almost 50% of the cycling proteins do not have rhythmic steady-state
mRNA levels [51,52]. Similarly, the /L6 transcriptional profile was not
circadian in cultured mHypoE-37 neurons [53], while a low amplitude
oscillatory profile of /L6 transcription was detected in human
monocyte-derived macrophages [41] and in mouse astrocytes, where
lI6 transcription was suggested to be directly regulated by RORa
[41,54]. Application of more sensitive transcription analysis
approaches (RNA sequencing in samples with a higher temporal
resolution), as well as addressing the potential regulation of /L6
transcription in human skeletal muscle in particular by REV-ERBa and
RORa, might shed additional light on this conjunction. As IL-6 is
extensively modified at the post-translational level, one plausible
hypothesis beyond transcription could be that the circadian profile of
IL-6 secretion is controlled by post-translational modification [55].

Visualizing IL-6 secretion at the single cell level in synchronized
human myotubes would be necessary to provide an insight into the
mechanism of this phenomenon.

4.4. Functional circadian oscillator in human skeletal myotubes is
required for proper basal secretion of a broader range of myokines
Of note, our screening for additional clock-controlled myokines,
employing a human cytokine array, suggests that the regulatory role of
the skeletal muscle clock is not restricted solely to basal IL-6 secretion
but might represent a more general mechanism involved in the fine-
tuning of a panel of myokines (Figure 4, Table 4). Specifically, the
temporal profiles and/or overall levels of basal secretion of IL-8, MCP-
1, M-CSF, GRO-alpha, VEGF, CD44, Galectin-3, FABP3 and TIMP-1 by
human skeletal myotubes imply that these myokines might be regu-
lated by the circadian clock (Figure 4, Table 4).

The following limitations of this part of the study should be taken into
account: the low number of around-the-clock perifusion experiments
analyzed by multiplex, due to the high experimental complexity of the
automated perifusion system, and the low basal concentration levels of
many myokines. Therefore, although the technical reproducibility for
the duplicates in each around-the-clock experiment was high, in view
of the large variability among the human donors with respect to their
myokine secretion levels, these experiments must be interpreted with
caution. More experimental repetitions will therefore be required to
claim the circadian regulation of the myokines identified in our screen.
Furthermore, in order to allow for the detection and quantification of
myokines with low concentration levels in a circadian manner, more
sensitive tools need to be developed.

Table 4 — Myokines with clock-regulated basal secretion.
Circadian analysis
(p-values calculated by JTK_CYCLE, n = 3)

Fold change of secretion
(mean + SEM, n = 3)

siControl siClock siControl siClock Paired t-test

CD44? 0.777 0.692 1.00 0.67 + 0.13 0.025*
CHI3L1/YKL40? 1.000 1.000 1.00 212 +£1.22 0.378
FABP3/H-FABP* 1.000 0.231 1.00 0.53 + 0.11 0.002**
Galectin-3* 1.000 0.096 1.00 0.41 4+ 0.07 5.19E-6™**
GRO-alpha/CXCL1® 0.096 1.000 1.00 0.55 + 0.23 0.083
IGFBP-3" 1.000 1.000 1.00 0.70 + 0.23 0.226
IL-6° 0.01* 1.000 1.00 0.44 £+ 0.16 0.006**
IL-8° 0.020* 1.000 1.00 0.47 +0.20 0.036*
MCP-1/CCL2* 0.020* 0.096 1.00 0.59 + 0.27 0.157
M-CSF/CSF1? 0.059 0.777 1.00 0.64 + 0.16 0.053
MMP-2° 1.000 1.000 1.00 0.78 + 0.19 0.268
Serpin E1/PAI-1? 1.000 1.000 1.00 0.69 + 0.16 0.070
Serpin C1° 0.492 1.000 1.00 0.64 £ 0.19 0.123
TIMP-12 1.000 1.000 1.00 0.68 + 0.14 0.043*
VEGF® 0.949 0.231 1.00 0.60 + 0.10 0.002**
IFN-gamma®, IL-1 beta®, IL-2°, IL-4°, IL-72, IL-10, IL-12p70°, IL-13%, IL-17A% TNF alpha® were below detection level.
*p < 0.05,**p < 0.01,***p< 0.001.
@ custom-made luminex screening plate.
2 high sensitivity luminex performance plate.
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Figure 4: Basal myokine secretion by human skeletal myotubes is affected by circadian clock disruption. Myoblasts were transduced with the Bmal7-luc lentivector, differentiated
into myotubes, transfected with either siControl or siClock siRNA, and subjected to continuous perifusion with parallel bioluminescence recording. Concentrated perifusion samples
were assessed by multiplex analysis. 2 technical duplicates from 3 biological samples were analyzed for each time point, and normalized to the total DNA content. Basal secretion
profiles (mean + SEM) in the presence or absence of a functional clock are shown for (A) MCP-1, (B) M-CSF, and (C) VEGF.

Of note, myokines identified in our multiplex screen as potentially clock-
regulated for their basal secretion (Table 4, Figure 4) have been previ-
ously linked to obesity or T2D. For instance, serum IL-8 levels are
increased in T2D patients, with a significant diurnal variation observed
for IL-8 in blood upon LPS-stimulation [56,57]. Furthermore, insulin-
resistant human myotubes secrete higher levels of IL-8 [19]. MCP-1,
which mediates skeletal muscle macrophage recruitment, was also
suggested to play a role in the etiology of T2D [20]. Interestingly, this
proinflammatory cytokine has been previously shown to exhibit pro-
nounced circadian alterations in the magnitude of its response to
endotoxin challenge at different times of the day [41]. M-CSF has been
shown to play an important role in inflammatory diseases including
obesity [58]. VEGF, known for its angiogenic properties, is transcrip-
tionally regulated by the circadian clock [59], and has also been impli-
cated in T2D and insulin resistance [60,61]. Plasma levels of CD44 were
positively correlated with insulin resistance in humans [62,63].
Furthermore, genetic association studies have linked CD44 with T2D
[62,64]. Taken together, our data suggest that disruption of the circadian
clock might affect the level and temporal profile of basal secretion for a
number of myokines that play a role in the etiology of T2D and obesity.
Inevitably, our findings raise the question on the physiological rele-
vance of basal myokine secretion. One plausible argument is that while
induced myokine secretion is regulated acutely (for instance by ex-
ercise), circadian regulation of basal myokine secretion might repre-
sent a fine-tuning mechanism, allowing adaptation of the skeletal
muscle function to the rest—activity cycle. Given the major role of the
circadian clock in allowing organisms to anticipate daily environmental
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changes rather than react to them, circadian regulation of basal
myokine secretion might represent such an anticipatory mechanism
that coordinates skeletal muscle “availability”. Furthermore, this newly
discovered link between the functional skeletal muscle clock and basal
secretion of a number of myokines might bear potential consequences
for the development of chronic diseases, such as obesity and T2D.

5. CONCLUSION

Skeletal muscle represents the most important site of insulin resis-
tance in T2D patients [12]. Moreover, the emerging critical role of
inflammation in the etiology of T2D makes inflammatory cytokines
plausible candidates for developing new therapeutic approaches for
the treatment of this disease [65]. It is therefore of highest scientific
and clinical importance to provide further insight into the emerging
connection between circadian oscillator function, metabolic regulation,
and T2D. Given that human primary myotubes, established from T2D
patient biopsies and cultured in vitro, have been demonstrated to
maintain their in vivo phenotypes of inflammation and insulin resis-
tance [66], our model of synchronized cultured primary myotubes
represents a valuable experimental tool that allows for studying the
role of the circadian oscillator in human skeletal muscle function upon
metabolic diseases. This work is the first detailed characterization of
the human skeletal myotube circadian oscillator and its critical impact
on basal myokine secretion. It opens the way for future studies that
may link defects in these pathways with insulin resistance, obesity,
and T2D. Given obvious obstacles for studying the human circadian

© 2015 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (hitp://creativecommons.org/licenses/by-nc-nd/4.0/).
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oscillator in vivo, our experimental approach, using human primary cell
cultures established from biopsies that express a luciferase reporter
driven from a circadian promoter, constitutes a powerful model system
for human skeletal muscle clock studies.
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