
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6884  | https://doi.org/10.1038/s41598-022-10503-6

www.nature.com/scientificreports

Robot touch with speech boosts 
positive emotions
Taishi Sawabe1*, Suguru Honda1, Wataru Sato2, Tomoki Ishikura1,4, Masayuki Kanbara1,4, 
Sakiko Yoshikawa3,4, Yuichiro Fujimoto1,4 & Hirokazu Kato1,4

A gentle touch is an essential part of human interaction that produces a positive care effect. 
Previously, robotics studies have shown that robots can reproduce a gentle touch that elicits similar, 
positive emotional responses in humans. However, whether the positive emotional effects of a robot’s 
touch combined with speech can be enhanced using a multimodal approach remains unclear. This 
study supports the hypothesis that a multimodal interaction combining gentle touch and speech 
by a robot enhances positive emotional responses. Here, we conducted an experiment using a 
robotic arm to perform a gentle touch combined with speech and compared three conditions: touch 
alone, speech alone, and touch with speech. We assessed participants’ subjective ratings of valence, 
arousal, and human likeliness using subjective emotional responses. Furthermore, we recorded facial 
electromyography (EMG) from the corrugator supercilii and zygomaticus major muscles and measured 
skin conductance levels (SCLs) as physiological emotional responses. Our results show that touch 
combined with speech elicited higher subjective valence and arousal ratings, stronger zygomaticus 
major EMG and SCL activities than touch alone. The results suggest that the positive emotional effects 
of robotic touch can be boosted by combining elements of speech.

Touch plays an essential role in communication between people1. The social touch, occurring between 
individuals2, is used to ease interpersonal communication and express personal feelings for other people3. We 
intuitively perform acts of gentle touch daily, for example, when we care for or reassure a sick or anxious person4,5. 
Some well-known caring practices, such as Humanituide and Taktil massage, use gentle touch to improve emo-
tional well-being in the nursing and medical fields6–10. Its positive effects are supported by empirical evidence, 
including several clinical psychological and psychophysiological studies showing that touch has a facilitative effect 
on people’s health11–14. Some experimental psychophysiological studies have shown that touch at a particular 
speed (i.e., stimulating C-tactile afferent at 3-10 cm/s) elicited subjective and physiological positive emotional 
responses, such as heightened valence and zygomatic major EMG activity15–19.

Presently, there are barriers to providing sufficient touch to every patient who might benefit from it. The 
increasing number of single-elderly persons living alone, and a shortage of healthcare workers, such as nurses20,21. 
In response to these factors, recent robotics studies have attempted to develop touch care robots. These studies 
suggest that touch interactions performed by robots offer a suitable substitute, producing positive experiences 
for human patients22,23. Another study showed that gentle touch including stroke motion from robots also elicits 
similar positive emotional responses automatically24,25. These findings also found that while a gentle touch by a 
robot can produce positive emotional responses for humans, a robot touch without adequate communication 
or consent can be experienced as violent26.

However, whether the positive emotional effects of a robot’s touch combined with speech can be enhanced 
using a multimodal approach remains unclear. Although no robotics studies have focused on the subject, several 
psychological field studies have shown that the most effective touch care methods incorporate simultaneous 
touch and calm, caring talk27–29. Additionally, some previous robotics studies produced empirical evidence30–32 
and theoretically proposed33–35 that a robot’s gentle touch combined

with speech can effectively induce positive emotions in humans. However, these studies did not system-
atically compare the differences between touch alone and touch with speech. Therefore, whether the positive 
emotional effects of a robot’s touch could be enhanced using a multimodal approach combined with speech 
remains unproven. Based on these data, we hypothesized that a multimodal interaction combining touch and 
sound boosts positive emotional responses of touch by robots.
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This study aimed to demonstrate a robot that combines touch and speech can more effectively generate posi-
tive emotional responses in humans. Figure 1 shows the system architecture of the gentle touch robot which 
consists of a robotic arm with a hand end-effector to perform a gentle touch on the participant’s upper back at the 
speed required to stimulate C-tactile afferents. The robot was equipped with a speaker to reproduce speech, the 
contents of which were sampled from a speech in nursing care situations. We compared three possible conditions: 
touch alone, speech alone, and touch with speech. To measure subjective emotional responses, participants were 
asked to rate their own valence and arousal during the stimulus presentation. For touch and speech, we tested 
only one touch and one speech type. For subjective ratings, we also assessed the rating of human likeliness to test 
the hypothesis that multimodal communication could increase the human likeliness of robots38. For the objective 
measure of emotional responses, which can offset subjective bias in ratings36, facial electromyography (EMG) 
of the corrugator supercilii and zygomaticus major muscles and skin conductance level (SCL) activities were 
recorded, which were known to be linked to subjective emotional valence and arousal responses, respectively37. 
We predicted that touch with speech would result in higher subjective valence and arousal ratings, and simultane-
ously have a greater effect on the correspondent physiological response patterns (i.e., lower corrugator supercilii 
EMG activity, higher zygomaticus major EMG activity, and higher SCL activity) than touch alone.

Results
This study recorded 35 participants. However, we only analyzed the dataset of 31 participants due to technical 
problems.

Subjective ratings.  Figure 2 shows the results of the subjective ratings of valence, arousal, and human like-
liness. First, we tested the global effect of condition on subjective ratings (i.e., valence, arousal, and human likeli-
ness) using a repeated-measure multivariate analysis of variance (MANOVA). Added to the factor of conditions 
(touch alone, speech alone, and touch with speech), a block factor (first, second) was added to exploratorily test 
the effect of presentation order (e.g., learning). The results of the two-way MANOVA showed a significant effect 

Figure 1.   The system architecture of speech-enabled gentle touch robot using a robotic arm.

Figure 2.   Mean (with standard error) subjective evaluations of valence, arousal, and human likeliness.  
***, p < 0.001; **, p < 0.01; *, p < 0.05.
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on the condition, F(6,25) = 6.49, p < 0.001, η2
p = 0.609. The block factor had no significant effect, F(3,28) = 2.27, 

p = 0.102, η2
p = 0.196, or condition × block interaction, F(6,25) = 0.93, p = 0.491, η2

p = 0.182).
We further evaluated the effect of condition on each of subjective ratings using univariate analyses of variance 

(ANOVAs) with a factor of condition and follow-up multiple comparisons using Ryan method. For the valence 
ratings, the main effect of condition was significant, F(2,60) = 6.51, p = 0.003, η2

p = 0.178. Multiple comparisons 
showed that the valence ratings for touch with speech (M = 6.52, SD = 0.95) were significantly more positive 
than speech alone (M = 5.94, SD = 0.82), t(60) = 3.47, p = 0.001, 95%CI [0.17, 1.01], and touch alone (M = 6.08, 
SD = 1.14), t(60) = 2.60, p = 0.012, 95%CI [0.05, 0.83].

The analysis on the arousal ratings did not show significant main effect of condition, F(2,60) = 1.21, p = 0.305, 
η2

p = 0.039. A significant main effect of condition was found for the human likeliness ratings, F(2,60) = 12.38, 
p < 0.001, η2

p = 0.292. Multiple comparisons showed that the human likeliness ratings for touch with speech 
(M = 4.30, SD = 0.92) were evaluated as significantly more humanlike than speech alone (M = 3.34, SD = 0.97), 
t(60) = 4.94, p < 0.001, 95%CI [0.48, 1.44], and touch alone (M = 3.73, SD = 1.09), t(60) = 2.97, p = 0.004, 95%CI 
[0.13, 1.02]. The human likeliness ratings also showed a non-significant tendency that touch alone was higher 
than speech alone, t(60) = 1.98, p = 0.053, 95%CI [0.00, 0.77].

Physiological activity.  To measure the physiological activity, physiological data were standardized for each 
participant, as shown in Fig. 3. We analyzed the physiological data similar to the subjective ratings. A repeated-
measures MANOVA for physiological measures (i.e., corrugator supercilii EMG, zygomatic major EMG, and 
SCL) with conditions and blocks showed only a significant effect, F(6,25) = 3.83, p = 0.008, η2

p = 0.479. No other 
significant effects or interactions were recorded (main effect of block: F(3,28) = 1.57, p = 0.220, η2

p = 0.144; con-
dition × block interaction: F(6,25) = 0.72, p = 0.641, η2

p = 0.147).
The follow-up ANOVA with the corrugator supercilia EMG condition as a factor did not show any signifi-

cant effect since, F(2,60) = 0.10, p = 0.901, η2
p = 0.003. The zygomatic major EMG recorded a significant effect, 

F(2,60) = 4.30, p = 0.018, η2
p = 0.125. Multiple comparisons showed that the zygomatic major EMG activity was 

significantly higher for touch with speech (M = 0.13, SD = 0.20) than for touch alone (M = −0.08, SD = 0.23), 
t(62) = 2.73, p = 0.008, 95%CI [0.02, 0.40], and speech alone (M = −0.05, SD = 0.29), t(60) = 2.29, p = 0.025, 
95%CI [0.00, 0.35]. For the SCL, there was a significant main effect of condition, F(2,60) = 4.57, p = 0.014, η2

p 
= 0.132. Multiple comparisons showed that SCL was significantly higher for touch with speech (M = 0.12, SD = 
0.21) than for speech alone (M = −0.11, SD = 0.28), t(60) = 3.01, p = 0.004, 95%CI [0.04, 0.42]. Moreover, there 
was a nonsignificant tendency of higher SCL activity for touch with speech than for touch alone (M = −0.01, SD 
= 0.24), t(60) = 1.73, p = 0.090, 95%CI [−0.08, 0.28].

Discussion
The results of the subjective ratings showed that the touch and speech performed by the robotic arm induced 
higher valence ratings than touch alone. From these subjective ratings, physiological data showed that touch with 
speech elicited stronger zygomatic major EMG activity than touch alone. Furthermore, the results of subjective 
valence ratings showed that the “touch only” condition induced positive emotional states (>6) compared with 
the neutral state (i.e., 5), suggesting that robot touch induced positive emotional states as reported with human 
touch20. Nevertheless, no robotics study to date has investigated the multimodal effects of touch and speech. The 
existence of such multimodal interaction has been investigated in psychological studies on human touch27–29, 
although no previous studies have looked at the effectiveness of touch and speech on subjective and physiologi-
cal emotional responses. Pushing the boundaries of and blurring the line between robotics and psychological 

Figure 3.   Mean (with standard error) standardized scores of facial electromyography (EMG) from the 
corrugator supercilii and zygomatic major muscles and skin conductance level (SCL). **, p < 0.01; *, p < 0.05;  
+ , p < 0.10.
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studies, our study provides the first evidence that multimodal touch and speech interactions by robots can induce 
heightened positive emotional responses than touch alone.

The results of human likeliness ratings showed that a combination of touch and speech resulted in higher 
human likeliness ratings than interactions involving either touch alone or speech alone. These data agree with 
the previous proposal that multimodal communication increased the human likeliness of robots, despite the 
researchers testing the effect of speech with gestures not touch with speech38. Our data analysis shows that mul-
timodal touch can enhance positive emotional responses and the human likeliness of robot touch.

Our findings have practical applications in addressing the lack of touch for patients in nursing or medical 
fields and even as a daily life treatment. If people are given more opportunities to receive touch care from robots 
in their daily, it will to a healthier lifestyle both physically and mentally.

Several limitations of this study should be acknowledged. First, we used the within-subjects design, and hence, 
one condition may have influenced another (e.g., learning). Although we counterbalanced the order of condi-
tions and recorded no evident effect of block in MANOVAs, further studies using the between-subject design are 
needed to show the facilitative effect of robot multimodal touch more clearly. Second, participants’ personality 
traits were not examined. As a previous study has reported that there are reliable individual tendencies in comfort 
with receiving human touch39, such tendencies can modulate the effect of the robot multimodal touch, thereby 
presenting an essential focus for future research. Likewise, we did not control participants’ clothes, and hence, 
the possibility of varying touch effects across individuals exists depending on their clothes. This factor should be 
controlled to reduce individual differences. Third, we tested only the subjective ratings of valence and arousal. 
Debates on the representation of these measures and the relationship between them persist. Furthermore, the 
investigation of other ratings would be needed to clarify the subjective effect of robots’ multimodal touch. Fourth, 
we investigated only the global scale of the subjective ratings and averaged physiological data. Because a previous 
study has measured continuous subjective ratings and analyzed the temporal dynamics of physiological changes37, 
investigating dynamic patterns of emotional responses may deepen the effect of robot multimodal touch. Finally, 
we tested only one touch and speech type, respectively thereby restricting the generalizability of our findings. 
Furthermore, our speech contained heterogeneous contents of which some are interpreted as questioning with-
out requesting replying, and may have influenced subjective and/or physiological reactions. Future studies must 
investigate other touch and speech types to test the reliability of the facilitative effect of robot touch with speech.

Methods
Participants.  We analyzed the data of 31 Japanese volunteers (12 females; M ± SD age, 22.8 ± 3.9 years). 
We determined the sample size using an a priori power analysis. We used G*Power software40 (ver. 3.1.9.2) 
and assumed to conduct a one-way repeated-measures ANOVA with a factor of three levels with an α level of 
0.05, power of 0.80, correlation of 0.5, ε of 1, and effect size f of 0.25 (medium). The results indicated that 28 
participants would be required. Although additional 4 volunteers participated, their data were not analyzed due 
to equipment failure. The informed consent was obtained from all volunteers and/or their legal guardians. This 
study was approved by the Ethics Committee of Nara Institute of Science and Technology and was conducted 
according to institutional ethical provisions and the Declaration of Helsinki.

Experimental system architecture.  This study required a robotic arm system to perform gentle touch 
and mimic speech at the same time. As an instrument of gentle touch, a robotic arm UR3 made by Universal 
Robots41 was used for the arm parts, and hand parts, and a single-degree-of-freedom end-effector with a spring 
mechanism attached to the robotic arm was used, referring to the experiment by Toyoshima25. The end-effector 
consisted of a ni-chrome wire and a temperature sensor that could control the temperature of the end-effector 
itself. The robot’s gentle touch action was performed by specifying the starting point, stroking area, stroking 
force, and stroking speed, all based on the results of preliminary experiments, in which small groups (n < 10) 
different from those in the main experiment were tested using the same system. When the gentle touch motion 
was initiated, the robotic arm approached the starting point and made contact with the participant’s back on the 
cloth to perform a gentle touch. After the initial contact, the robotic arm applied pressure to the participant’s 
back up to the predetermined value of the force sensors. Then, by moving at a predetermined speed in the gentle 
touch area, while applying the specified amount of pressure to the participant’s back, the robot performed a 
gentle touch. During the gentle touch motion from the top to the bottom of the participant’s back in the specific 
distance, acceleration and deceleration occurred near the start point and endpoint performed, which simulated 
a natural human touch. The number of touch strokes was based on the mora/s of speech. As for the mechanism 
of speech, a plugin speaker was used to reproduce speech by playing a text to voice file created by using a speech 
synthesis system called VoiceText Web API42. Speech synthesis was performed at the specified speed by convert-
ing the speed of speech (mora/s) to VoiceText Web API’s original parameters, and by using the formula deter-
mined by Nakamura43. Using a speech synthesis system to generate speech could exclude the effect of speech 
quality (pitch, volume, and speed). The speed of speech was determined uniquely within the range of everyday 
Japanese speech cadence and the “speech pause” was adjusted so that the turn in the stroking action was syn-
chronized with each sentence uttered. The content of the speech was based on samples of caregivers speaking 
in real-life care environments. To eliminate the bias implicit in choosing a single utterance, six utterances were 
prepared. The sentences were not dialogs with participants, but rather the robot delivers a short greeting to par-
ticipants to unify the experimental environment.

Experimental protocol.  For the gentle touch and speech motions of the robot, we referred to the experi-
ment by Toyoshima25. In this experiment, the distance of the gentle touch was 15 cm in the middle of the partici-
pant’s back, and the robot performs a gentle touch for 10 s in that distance. The gentle touch force was set at 3 N, 
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and the gentle touch speed was 5 cm/s. The speaking speed was 6.5 mora/s (6–7 mora/s), which corresponded 
to a gentle touch speed of 5 cm/s, and which was based on modeling conducted in preliminary experiments. 
In the preliminary experiments, we investigated the relationship between the combination of the gentle touch 
and speech with different parameters and the positive emotions of participants on the basis of positive emo-
tions reports. The temperature of the end-effector was set to close to the participant’s body temperatures. For 
the speech in the speech alone and touch with speech conditions, the following six sentences were made equally 
based on the daily nursing speech environment.

1.	 Hello. How is your health? Do you feel any pain?
2.	 Hello. Did you sleep well? Have a good day.
3.	 Hello. Please take care of yourself. It has been chilly these days.
4.	 Hello. How are you doing? Feel free to tell me anything.
5.	 Hello. How are you doing? Did you sleep well last night?
6.	 Hello. Are you cold? Do you feel any pain?

The experiment consisted of a total of 36 trials presented in two blocks of 18 trials, with an equal number 
(i.e., six trials) of touch alone, speech alone, and touch with speech conditions. The trial order was randomized 
in terms of conditions and sentences within the block. A short recess was taken after the first block. Before the 
experiment began, participants engaged in 3 practice trials to gain familiarity with the procedure.

For each trial, a beep sound was presented as a warning signal. After the beep, the robot arm moved to and 
touched the participant, and paused for 10 s as the baseline period in the touch alone and the touch with speech 
conditions; the robot arm moved (to create the same sound) but did not touch in the speech alone condition. 
Then, the stimulus of each of the three conditions was presented for 10 s, after which participants rated their 
subjective experiences using a questionnaire. The physiological data were continuously recorded for all trials. 
All participants were asked to look forward toward the dark cloth covering the table. On the table, there were 
paper questionnaires of the Affect Grid.

Subjective evaluation.  A questionnaire was used to assess the subjective ratings for the valence, arousal, 
and human likeliness in response to the robot’s touch. Participants were asked to evaluate their subjective 
responses in each trial. To examine the valence and arousal effects, the Affect Grid (Fig. 4), an evaluation method 
for emotion graphically grading emotion was employed44. Its center is emotionally neutral, i.e., neither positive 
nor negative, nor normal. The horizontal axis represents emotional valence, which ranges from negative (left) 
to positive (right). The vertical axis of the Affect Grid represents the degree of arousal, ranging from high to 
low, and reflects the intensity of negative or positive emotions. At the beginning of the experiment, participants 
were instructed to rate their subjective emotional experience in response to the robot action using both axes. 
To facilitate participants’ understanding of the Affect Grid, further illustrations were provided as follows: “the 
upper-right corner denotes high positive and high arousal feelings, such as excitement; the lower-right corner 
represents high positive and low arousal feelings, such as relaxation; the lower-left corner is for high negative 
and low arousal feelings, such as depression; and the upper-left corner indicates high negative and high arousal 
feelings, such as stress.” The participant marked the position of the emotion most applicable to each action. For 

Figure 4.   The affect grid for the subjective ratings of valence and arousal.
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assessing the human likeliness, the participant marked the number on a single Likert-scale item ranging from 1 
(not at all humanlike) to 7 (very humanlike), evaluating how the robot action felt humanlike.

We conducted a preliminary analysis for the reliability of these scales. Cronbach’s across trials under each 
condition was found to be 0.93, 0.91, 0.92, 0.94, 0.89, 0.94, 0.97, 0.95, and 0.96 for valence-touch, valence-speech, 
valence-touch with speech, arousal-touch, arousal-speech, arousal-touch with speech, human likeliness-touch, 
human likeliness-speech, and human likeliness-touch with speech, respectively, suggesting the acceptable reli-
ability of the scales.

Physiological data recording.  EMG was recorded using sets of pre-gelled, self-adhesive 0.7 cm Ag/AgCl 
electrodes with 1.5 cm inter-electrode spacing (Prokidai, Sagara, Japan). The electrodes were placed on the cor-
rugator supercilii and zygomatic major muscles according to guidelines45,46 by placing a ground electrode on 
the forehead. The data were amplified, filtered online (bandpass: 20–400 Hz), and sampled at 1000 Hz using 
an EMG-025 amplifier (Harada Electronic Industry, Sapporo, Japan), and the PowerLab 16/35 data acquisition 
system, and LabChart Pro v8.0 software (ADInstruments, Dunedin, New Zealand). Furthermore, unobtrusive 
video recording was conducted to check for motion artifacts using a digital web camera (HD1080P, Logicool, 
Tokyo, Japan).

SCL was recorded using pre-gelled, self-adhesive 1.0 cm Ag/AgCl electrodes (Vitrode F, Nihonkoden, Tokyo, 
Japan). The electrodes were placed on the palmar surface of the medial phalanges of the index and middle fingers 
of the participants’ left hands according to guidelines47. Next, a constant voltage of 0.5 V was applied using a 
Model 2701 BioDerm skin conductance meter (UFI, Morro Bay, CA, USA). The data were recorded using the 
same data acquisition system and recording software with the aforementioned EMG, except that there was no 
online filter.

Data analysis.  Preprocessing.  One of the authors blindly checked the video data and confirmed that par-
ticipants did not produce large motion artifacts. EMG data analyses were performed using Psychophysiological 
Analysis Software 3.3 (Computational Neuroscience Laboratory of the Salk Institute) and in-house programs 
implemented in MATLAB 2018 (MathWorks, Natick, USA). The data were sampled for 1 s during the pre-touch 
baseline and for 10 s during the stimulus presentation in each trial. The data for each trial were rectified and 
baseline-corrected to the average value over the pre-stimulus period, and averaged. Trials with an absolute signal 
value > 5 SD from the mean for each electrode for each participant were rejected as artifacts. The frequency of 
artifact-contaminated trials was low (0.41 and 0.74% for corrugator supercilii and zygomaticus major, respec-
tively). The values for each stimulus were then standardized within each individual. The same analyses were 
conducted for the SPL as for the EMG analysis except that the data were not rectified. The frequency of artifact-
contaminated trials for SCL was also low (0.25%).

Statistical analysis.  We performed repeated-measures MANOVAs with condition (touch, speech, touch and 
speech) and block (first, and second) for within-subjects factors for each subjective rating and physiological sig-
nal. The assumption of no multicollinearity was attained (variance inflation factor < 1.78 and < 1.26 for subjec-
tive ratings and physiological signals, respectively). For following up the significant effects, univariate ANOVAs 
and multiple comparisons using the Ryan method (correcting Type I error rate for multiple comparisons in a 
stepwise manner49) were conducted. We reported 95% CIs after being adjusted for multiple comparisons48. The 
results of all of the tests were considered statistically significant at p < 0.05.

Because our speech stimuli contained sentences with (i.e., #1, 2, and 4–5) and without questions (i.e., #3), we 
conducted a preliminary analysis to test this effect. We conducted repeated-measures ANOVAs with condition 
(speech, touch and speech) and question (with questions, without questions) as within-subject factors for subjec-
tive rating and physiological signal data in the conditions with speech. The results showed no significant effect 
or interaction related to the factor of question (F(1,30) < 1.90, p > 0.172, η2

p < 0.060). Hence, it was disregarded.
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