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Editorial on the Research Topic

Microbial Advances Towards Sustainable Environment: Microbiome

Structure & Integrated Technologies

Microbial diversity at the contamination sites is the major driving force behind the

bioremediation of organic and inorganic matter (Cui et al., 2021; Mali et al., 2022). The

multiphasic distribution of pollutants due to increased anthropogenic activities makes

the bioremediation process more intricate. The microbes can break down the complex

pollutants into simple degradable compounds through metabolic activity. However, the

mixture of pollutants impairs the biodegradation ability of microorganisms (Singh and

Kumar Mishra, 2021). The development of effective decontamination strategies can be

achieved by the optimization of microbes and process parameters (Leng et al., 2020).

The previously published research in microbes-based approaches has included water/soil

bioremediation, waste management/ utilization, bioenergy generation, and (waste)

water treatment. The increasing energy demands associated with industrialization and

urbanization along with global policies for sustainable development have led to an

increased focus on renewable energy projects (Kiliç and Özdemir, 2018). Recently,

scientists have been working to understand and upgrade naturally available microbial

processes for environmental sustainability.
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The microbes are abundant in nature and their ability

to transform various pollutants into nutrients or other

valuable products enables them to fulfill the mission of a

sustainable environment (Kaur and Gosal, 2021). The microbes

can utilize contaminants as a carbon source to maintain

metabolic activity and produce less complex substances which

are easily degradable (Azubuike et al., 2022). Environmental

factors also play a crucial role in the bioremediation of

pollutants and bioenergy production (Agrawal and Verma,

2021). The microbial community composition and activity

can be influenced by environmental (abiotic) conditions and

biotic interactions.

In this Research Topic, microbial research has led to

breakthroughs in four areas: (1) Restoration of fragile

soil ecosystems, (2) Combination of soil microbes as

environmentally friendly chemical alternatives, (3) Soil microbes

as potential sources of industrial products, (4) Bioremediation

is carried out simultaneously with biofuel production.

Under the pressure of rapid development of

industrialization and huge energy demand, the exploitation of

coal, petroleum, and metal resources has caused serious damage

to soil surface microecology (especially microbial community),

making the ecosystem fragile. Due to soil microbes’ excellent

nitrogen-fixing function and ability to influence soil nutrient

and organic matter conversion and plant growth, their diversity

contributes to the restoration and maintenance of ecosystem

functions. For damaged soil, the restoration of the soil microbial

community is the key to driving sustainable restoration. It was

found that there was a close relationship between vegetation

types and the overall structure of the soil microbial community

(Peay et al., 2013; Barberan et al., 2015). Therefore, clarifying the

relationship between the structure and function of soil microbial

communities and vegetation types is helpful for the restoration

of damaged soil ecosystems. Zhao et al. studied the structure

and function of soil microbial communities in damaged mining

areas under different vegetation reconstruction modes using

omics tools (MiSeq high-throughput sequencing technology,

PICRUSt2, and FUNGuild). It is proved that the change of

vegetation reconstruction mode can lead to the change of

microbial community structure and function, which provides a

reference for biological restoration of a fragile ecosystem.

Furthermore, considering soil microbes play an important

role in the circulation of soil elements and organic matter,

the removal of pollutants, the suppression of plant pests and

diseases, and the promotion of plant growth, the benefits

of their diversity are not only reflected in the restoration

and maintenance of soil ecosystem functions. Combinations

of soil microbes may also be considered as eco-friendly

alternative chemicals to increase soil fertility and promote

plant growth and development, adding or enhancing functions

that individual microbe does not have or are not signed for.

Understanding the relationship between microbial diversity

and the biochemical cycle is necessary to better play the

combined role of microbes. James et al. took acidic soil as an

example to study the relationship between microbial taxonomic

diversity and functional diversity, as well as the relationship

betweenmicrobes and depth. They deeply analyzed cell signaling

pathway genes and metabolic pathways from the omics level

and found the main microbes that maintain the function of the

acidic soil ecosystem (James et al.). Future research is expected

to explore the relationship between more soil types, vegetation

types, and microbes, and give full play to the role of microbes in

environmentally sustainable development.

Uncontrolled industrial production and wanton human

activities in addition to the destruction of the soil ecosystem,

the production of chemicals have also caused great damage to

the environment. Seeking eco-friendly alternatives has become

a hot topic. Once again, microbes, in addition to their function

of restoring and maintaining soil ecosystems, secrete substances

that can be used as eco-friendly alternatives to industrial

products. Sharma et al. isolated a slime fungus, Pyxidicoccus sp.

S252, which produces alkaline protease from the soil. Alkaline

protease is known to be used in pharmaceutical, cosmetic, food,

and laundry industries (Ramkumar et al., 2018). However, it

is expensive and time-consuming extraction and purification

process limits its large-scale application in various industries.

Microbes are the preferred source of industrial enzymes due

to their advantages of easy acquisition, culture, and gene

manipulation. The alkaline protease isolated from Pyxidicoccus

sp. S252 proved to have application potential in many fields. The

study opens new avenues for finding potential sources of eco-

friendly alternatives and promotes the ecologically sustainable

development of the industry.

The wide application of plastic polymer and the complex

nature of plastic makes it a major contributor to environmental

pollution. Bioremediation can remove plastic to some extent and

facilitate environmental sustainability. The microbial enzymes

produced while the bioremediation process can not only recycle

the plastic but also convert it into fuel oil (Tamoor et al.).

However, it is worth mentioning that there is still a gap between

current research results and future needs. Analytical techniques

need to be improved, such as the combination of metagenomic

sequencing and functional gene analysis. Further research is

needed for commercial applications, such as the development of

commercial enzymes and microbiology-based products.

Advances inmicrobiome-basedmolecular technologies have

paved the way to understanding the microbial communities in

their natural environments, in open, engineered ecosystems, or

confined environments. Recently, integrated omics approaches

have been widely used to understand specific metabolic

pathways and find functional genes of microbes (Prayogo

et al., 2020). A variety of functional genes (such as the

genes responsible for catabolism) in microbes discovered by

metagenomics sequencing have promoted the degradation

mechanism of exogenous compounds (Li et al., 2021). The

deep investigation of multi-omics approaches could improve
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the understanding of the metabolic behavior of microbes

toward bioremediation and biodegradation processes. Genome

sequencing and genomic libraries obtained from metagenomics

analyses can effectively predict the genes. The detailed genetic

information helps to explore and identify key microbial species

capable of degrading specific pollutants and identify their

metabolic pathways (Haque et al., 2022). The combination

of highly efficient microbes would enhance the degradation

efficiency of solid waste management and wastewater treatment,

enable the bioremediation of novel materials, and facilitate the

generation of biofuels (including biodiesel, biogas/biomethane,

bioethanol, and biohydrogen). Genetic engineering of microbes

promotes metabolic activity which further enhances clean

energy generation (Joshi and Mishra, 2022). The mechanism

of genetic engineering includes targeting the key metabolic

pathways of microorganisms, either by up or down-regulation,

overexpression of genes, and silencing the key gene to alter

the desired metabolite content without interfering with the

physiological properties of microorganisms (Ghimire et al.,

2022). The selection of suitable microbes under optimal

culture conditions can enhance the metabolic processes by

altering the pathways and accelerating the biodegradation and

bioremediation process (Tanvir et al., 2021; Azubuike et al.,

2022).

The advances in omics approaches and genetic engineering

tools have improved the understanding of microbial metabolic

processes (de Carvalho et al., 2019). However, the large-scale

applications of the bioremediation process still have some

challenges such as the occurrence of emerging xenobiotics and

other combined pollutants. The significant impact of biotic

and abiotic factors on the microbes alters the bioremediation

efficiency. The selection and separation of functional microbes

with known metabolic functions is the major hurdle in the

large-scale implementation of bioremediation (Ali et al.,

2022; Yin et al., 2022). This research work is focused on the

identification of microbes that have the potential activities

and/or synergistic remediation of co-contamination; exploring

the behavior of microbes in anthropogenic environments

(e.g., waste treatment plants, anaerobic digestion plants,

and fermentation apparatus); improving the microbes’

productivity through a combination of omics and genetic

engineering technologies; understand the metabolic pathways

to improve biomass/biomaterials/biofuel production, and

achieve zero-waste treatment using microbes and promote

environmental sustainability.

With this Research Topic, recent research work and

critical reviews in the field of Environmental Microbiology

and Bioenergy, especially on the interactions of microbial

entities during bioenergy production were reported. The major

motivation of the presented work included (1) Screening of

diverse ecosystems (water and soil) for potential microbes to

improve environmental remediation and bioenergy production,

(2) The combination of different types of microbes, (3) New

biomarkers for monitoring bioremediation, (4) Waste/biomass

microbial complete conversion to zero waste method, (5)

Optimization of fermentation process through co-culture

techniques, bio-stimulation, and technological innovation, (6)

Rational designs in microbial metabolic networks in mono- and

co-digestion for bio methanation, and (7) Application of novel

molecular techniques (e.g., genetic tools, functional genomics,

and proteomics) and adjustment and upgrading of microbial

communities for improved bio-products yield.

In this Research Topic, we proposed some emerging

techniques for treating pollutants in an environment that

takes the interest of readers to biological remediation

and biodegradation. The recently developed technology-

based studies are efficient in terms of environmental

protection but more in-depth studies are still required for

commercialization. The incorporation and understanding of

the major shortcomings in existing research would enhance the

efficiency of bioremediation and biodegradation processes in

near future.
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