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Abstract: Isotactic polypropylene (iPP) is a commonly used thermoplastic polymer with many
excellent properties. But high brittleness, especially at low temperatures, limits the use of iPP.
The presence of transcrystallization of iPP makes it possible for fiber-reinforced iPP composites with
higher strength. Bacterial cellulose (BC) is a kind of cellulose with great potential to be used as a
new filler to reinforce iPP due to its high crystallinity, biodegradability and efficient mechanical
properties. In this study, the iPP/BC hamburger composite was prepared by a simple hot press and
maleic anhydride grafted polypropylene (MAPP) was used to improve the interface compatibility
of iPP and BC. The polarizing microscope (POM) photograph shows that BC successfully induces
the transcrystallization of iPP. The differential Scanning Calorimeter (DSC) date proves that the
addition of BC could improve the thermal properties and crystallization rate of the composite.
Especially, this change is more obvious of the iPP/MAPP/BC. The mechanical properties of the
iPP/BC composites were greatly increased. This DSC date is higher than BC; we used BC particles
to enhance the iPP in our previous research. The scanning Electron Microscope (SEM) analysis
intuitively shows that the interface of the iPP/MAPP/BC is more smooth and flat than the iPP/BC.
The fourier Transform infrared spectroscopy (FT-IR) analysis of the iPP/BC hamburger composites
was shown that a new C=O group vibration appeared at 1743 cm−1, which indicated that the
hydrogen bond structure of BC molecules was weakened and some hydroxyl groups were substituted
after modification which can increase the lipophilicity of BC. These results indicated that the BC fiber
can easily induce the transcrystallization of iPP, which has excellent mechanical properties. Moreover,
the addition of MAPP contributes greatly to the interface compatibility of iPP and BC.

Keywords: isotactic polypropylene; bacterial cellulose; hamburger composite; transcrystallization

1. Introduction

Isotactic polypropylene (iPP) is a kind of semi-crystallization thermoplastic polymer with many
excellent properties such as excellent heat resistance, chemical stability, high dielectric coefficient and
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mechanical properties [1–3]. Unfortunately, high brittleness limits the use of iPP especially at low
temperatures [4]. At present, iPP has generally reinforced with various types of organic or inorganic
fillers [5–7]. Among them, fiber-reinforced iPP composites have been widely used in automobile,
agriculture and civil engineering due to their excellent properties including their light weight, low price
and high strength [8]. From the crystallographic point of view, the most common crystal form of iPP is
spherulite. The presence of the transcrystallization of iPP makes it possible for fiber-reinforced iPP
composites with higher strength, which has attracted a good deal of attention [9].

In general, the fibers were embedded in the iPP matrix and the transcrystallization is induced
by the preferential nucleation of crystals at the fiber surface [10]. As the iPP melt is allowed to cool
when in contact with fibers—a source of nucleating centers—the proximity of these sites on the surface
inhibits lateral growth of the resultant spherulites, and as a result the crystallization develops only in a
direction normal to the fiber surface [11]. Because the addition of fibers is equivalent to introducing
nuclei into iPP matrix, it has a heterogeneous nucleation effect. In this case, the crystal growth changes
from the radial direction of spherulites to the direction normal to the fiber surface as nucleation
occurs with a sufficiently high density along the fiber surface results in a columnar transcrystallization
layer [12].

Cellulose fiber is a high crystallization natural polymer with abundant nucleation sites and was
widely used in reinforced iPP. In recent years, cellulose fiber-reinforced iPP made great breakthroughs
and has been widely used in many fields [13]. Gray [14] used prepared cellulose nanocrystal from
cotton, treated it with sulfuric acid, and first observed the transcrystallization of iPP along the cellulose
I surface. This interesting result provided a new idea for the study of the transcrystallization of iPP.

Bacterial cellulose (BC) is a kind of cellulose commonly used in food, specialty paper, speaker
membranes and biomedical applications [15–17]. Compared with cellulose, BC has many excellent
properties such as a high degree of crystallinity, high purity and high mechanical properties (Young’s
modulus of BC fiber is as high as 114 GPa). Especially, the BC is a network of ultrafine fibers with
a diameter of 0.01–0.1µm. Each filamentous fiber is composed of a certain number of microfibers.
The adjacent microfibers are transversely connected by hydrogen bonds to form microfibers with
a diameter of about 3–4 nm. Multiple microfibers are combined to form febrile ribbons of variable
length, 30–100 nm in width and 3–8 nm in thickness [18]. Therefore, the special three-dimensional
network structure can better serve as heterogeneous nucleation point to induce crystallization of iPP
and has great potential for reinforcing iPP. But nonpolarity iPP and polar BC are usually incompatible,
which leads to the weak iPP/BC interfacial adhesion thus limits the mechanical properties of the
composites. From the point of view of polymer crystallization, if the interface compatibility between
iPP and BC is poor, the interface crystallization and bonding will not be stable. On the contrary, if the
interface compatibility is good, compact microcrystals or cross-crystallization will be formed at the
interface between the iPP and BC, thus greatly improving the mechanical properties of the iPP.

Maleic anhydride grafted polypropylene (MAPP) as a compatibilizer has been used to improve
interfacial compatibility of iPP and BC with good results. Because the molecular chains of MAPP
contain carboxyl and iPP chains. On the one hand, the carboxyl can esterify with hydroxyl groups
on the surface of BC, and then graft onto the surface of BC to reduce its polarity. On the other
hand, the iPP chains in MAPP can form cocrystallization with the matrix of iPP. In our previous
research, renewable BC reinforced iPP composites already show promising mechanical properties [19].
Furthermore, it’s interesting to know whether BC induced iPP can also produce transcrystallization.

In this study, iPP/BC hamburger composite was successfully prepared by a simple hot press.
A POM was used to observe the crystal morphology of iPP/BC composites. The effects of BC and
MAPP addition on the crystallization behavior, mechanical properties changes of the composites were
investigated. Meanwhile, the FT-IR and SEM measurements were used for compatibility analysis of
iPP/BC composites.
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2. Materials and Methods

2.1. Materials

iPP (S1003) film (100 mm × 10 mm × 0.5 mm), MW = 3.2 × 105 g/mol, and the melt flow
index (MFI) of 3.6 g/10 min was purchased from Sinopec Beijing Yanshan Company (Beijing, China)
The BC film was obtained from Hainan Yida Food Industry Co., Ltd. (Hainan, China). It was flushed
repeatedly by deionized water until neutral, freeze-dried and then cut into strips (100 mm × 1 mm).
MAPP film (100 mm × 5 mm; 1% grafting) was supplied by Nantong Sunny Polymer New Material
Technology Co., Ltd. (Nantong, China).

2.2. Preparation of iPP/BC Hamburger Composites

The iPP film was evenly placed in a mold on a press vulcanizer (XH-406, Dongguan Xihua Testing
Instrument Co., Ltd., Dongguan, China) at 200 ◦C. Next, a BC strip was overlaid on the iPP film,
and then another iPP film has overlaid the BC like a “hamburger” (Figure 1). Finally, the sample was
hot pressed (10 MPa) into slice. Similarly, the BC strip was overlaid between two MAPP films first,
and then this “hamburger” was introduced into two pieces of iPP film.
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2.3. Characterization of iPP/BC Composites

2.3.1. Polarizing Microscope (POM)

The POM observations were performed on the composites with a Leica microscope (DFC295,
Leica Microsystems Corporation, Wetzlar, Germany) with a temperature controlled stage (LTS 420,
Linkam Scientific Instruments, Tadworth, UK). The sample was first heating to 220 ◦C and maintained
for 3 min, and then cooling down to 138 ◦C with the cooling rate of 50 ◦C/min maintained for 30 min.
The crystal morphology of the sample can be observed at a constant temperature.

2.3.2. Differential Scanning Calorimeter (DSC) Testing

The DSC testing of the iPP/BC hamburger composites was performed on a DSC (DSC1, Mettler
Toledo Corporation, Greifensee, Switzerland). Samples were firstly heated to 220 ◦C, maintained
at 220 ◦C for 3 min, and then cooled using the cooling rate of −80 ◦C/min to 138 ◦C, which was
maintained for 400 min. The isothermal crystallization time was set as 400 min. The sample was heated
using heating rate 10 ◦C/min to 220 ◦C. The isothermal crystallization and reheating curves were used
for analysis.

2.3.3. Mechanical Properties

Tensile tests were performed using a universal testing machine (Legend 2367, Instron Company,
Norwood, MA, USA) with a speed of 10 mm/min according to GB/T 1040.3-2006. The impact strength
of the composites measured using a plastic film pendulum impact tester (FIT-01, Jinan Languang
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Mechanical and Electrical Technology Co., Ltd., Jinan, China) with 1J capacity at the maximum
pendulum angle (120◦) according to GB/T 8809-2015. Ten replicates of each sample were tested with a
mechanical test.

2.3.4. Scanning Electron Microscope (SEM)

The interface between the BC fiber and iPP of the composites was characterized by a scanning
electron microscope (JSM-IT200, JEOL, Tokyo, Japan) at an accelerated voltage of 2 kV.

2.3.5. FT-IR Analysis

Fourier transform infrared (FT-IR) was performed on an FT-IR spectrometer with an ATR accessory
(Nicolet iS50, Thermo Scientific Inc., Waltham, MA, USA) taking 64 scans for each sample.

3. Results and Discussion

3.1. Transcrystallization of the iPP/BC Hamburger Composites

The BC particle can increase the crystallization rate of iPP because of the nucleation effect of
the BC in the iPP. This viewpoint has proved in our previous research [20]. So how does BC fiber
affect the crystallization of iPP? The POM photograph of iPP/BC composites at 138 ◦C is shown
in Figure 2. In the early stage of crystallization, it can only see the BC fiber and the iPP crystal
does not appear (Figure 2a,d). After 2 min, the iPP crystal begins to grow. It can be seen that
the amount of the crystal and the crystal size of the iPP/MAPP/BC is bigger than the iPP/BC
(Figure 2b,c,e,f). This proved that the crystallization rate of the iPP/MAPP/BC is higher than the
iPP/BC composites. This is also evidence of the compatibility improvement of the iPP/MAPP/BC
composites. Delighting, the transcrystallization layer is found in the POM photograph. It is proved that
the crystallization firstly starts at the interfaces of the BC, then extends to the iPP layers and eventually
forms the transcrystals [21]. Even in the early stages of the crystallization, the nucleation along the
edge of the BC film is very dense, so that the edge is completely covered by a transcrystallization
layer, far from the extensive nucleation in the bulk. Moreover, while the BC fiber edge enhances
nucleation, the growth rate of the transcrystallization layer is approximately the same as that as the
growth of the bulk spherulites, where the width of the layer is approximately equal to the radius
of the bulk spherulites [22]. Furthermore, with the increase of crystallization time, the thickness
of transcrystallization layer increases, the transcrystallization layer of iPP/BC is thicker than the
iPP/MAPP/BC. It indicates that the addition of MAPP improves the compatibility between iPP
and BC.

3.2. DSC Testing of the iPP/BC Hamburger Composites

The DSC curves of the iPP/BC hamburger composite were shown in Figure 3 (The direction
indicated by the arrow is endothermic). It can be seen from the isothermal crystallization curves
(Figure 3a) the crystallization peak becomes narrower which indicated the crystallization time of
the composite decreased. In addition, the area of the crystallization or melting peak represents the
enthalpy of endothermic or exothermic of the sample. The date of crystallization enthalpy and the
fusion enthalpy (∆H) of the sample was scarcely less which indicate that the crystallization time is
shorter (the crystallization peak becomes narrower), the area of the crystallization peak will remain
unchanged, and the crystallization peak will become deeper. This phenomenon proved that BC
fiber can greatly accelerate the crystallization rate of iPP [23]. Meanwhile, the reheating curves of
the composite (Figure 3b) show that the melting temperature of the composite is shifted to a higher
temperature value. The result suggested that the addition of BC could improve the thermal properties
of the composite which making the composite can be processed at high temperatures and greatly
shortening the processing cycle. Especially, the crystallization rate and the melting temperature of the
iPP/MAPP/BC are higher than iPP/BC, which indicated that the compatibility of the iPP and BC has
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a great influence on the crystallization behavior of the composite; the addition of the MAPP improved
the compatibility of the iPP and BC.Polymers 2019, 11, x FOR PEER REVIEW 5 of 9 
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3.3. Mechanical Properties of the iPP/BC Hamburger Composites

As we know, the change of the crystal structure of transcrystallization polymers will lead to the
change of mechanical properties of the polymers. In our previous research, we used BC particles to
enhance the iPP and the impact strength of the iPP increased by 27% and the BC particles did not
change the crystal structure of the iPP [20,24]. The POM photograph shows that the transcrystallization
has appeared in the hamburger composite. How does the transcrystallization affect the mechanical
properties of the composite? The tensile strength and impact strength of the iPP/BC hamburger
composites is given in Figure 4. The tensile strength of the composites was greatly increased from
31.89 to 35.68 and 37.21 MPa, respectively, representing 11.88% and 16.68% increase over pure iPP,
and the impact strength of the composites was increased from 2.06 to 2.37 and 3.15 KJ/m2, respectively,
representing 15.05% and 52.91% increase over pure iPP. This date is higher than our previous research.
It proved that the appearance of the transcrystallization greatly improved the mechanical properties of
the iPP/BC hamburger composite. Meanwhile, the variance analysis of the mechanical data in the
Figure 2 shows that F > F0.01(2,27) = 3.354, P-value < 0.01 (tensile strength), F > F0.01(2,27) = 3.354,
P-value < 0.01 (impact strength). The variance analysis data show that the BC and MAPP has a
very significant influence on the tensile properties of iPP. Moreover, the addition of MAPP can
significantly improve the compatibility between components in the composites, which then show
better mechanical properties.
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strength).

3.4. SEM Photographs on the Interface of the iPP/BC Hamburger Composite

In order to further study the interface compatibility between iPP and BC, the SEM photographs on
the interface of the iPP/BC hamburger composite was shown in Figure 5. It can be seen intuitively from
Figure 5 that the structure of the composite is the hamburger-like, composed of BC encapsulated by
iPP matrix on both sides. There are many voids, convex and folds on the interface of the iPP/BC which
can easily form cracks and defects and fracture when the composite subjected to external forces. On the
contrary, the interface of the iPP/MAPP/BC is smooth and flat which shows better compatibility.
The SEM results indicated that the compatibility between iPP and BC getting better by added MAPP
which can greatly improve the mechanical properties of the iPP/BC hamburger composite.
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3.5. FT-IR of the iPP/BC Hamburger Composite

The FT-IR spectra of iPP and iPP/BC hamburger composites were illustrated in Figure 6.
The O-H stretching vibration absorption peak was shown in the FT-IR spectra of iPP/BC hamburger
composites. Especially, a new C=O group vibration appeared at 1743 cm−1 for sample iPP/BC and
iPP/MAPP/BC [25]. The effect of the addition of MAPP was confirmed by this absorption peak.
Besides, compared to iPP/BC, the O–H stretching vibration absorption peak of iPP/MAPP/BC moved
to a higher wavenumber (3330–3386 cm−1), peak intensity weakened, and the width of the peak
became narrowed, indicating that the hydrogen bond structure of BC molecules was weakened and
some hydroxyl groups were substituted after modification, which can increase the lipophilicity of BC.
The good compatibility between iPP and BC was obtained.

Polymers 2019, 11, x FOR PEER REVIEW 7 of 9 

 

3.4. SEM Photographs on the Interface of the iPP/BC Hamburger Composite 

In order to further study the interface compatibility between iPP and BC, the SEM photographs 
on the interface of the iPP/BC hamburger composite was shown in Figure 5. It can be seen intuitively 
from Figure 5 that the structure of the composite is the hamburger-like, composed of BC encapsulated 
by iPP matrix on both sides. There are many voids, convex and folds on the interface of the iPP/BC 
which can easily form cracks and defects and fracture when the composite subjected to external forces. 
On the contrary, the interface of the iPP/MAPP/BC is smooth and flat which shows better 
compatibility. The SEM results indicated that the compatibility between iPP and BC getting better by 
added MAPP which can greatly improve the mechanical properties of the iPP/BC hamburger 
composite. 

 
Figure 5. SEM photographs on the interface of the iPP/BC hamburger composite. 

3.5. FT-IR of the iPP/BC Hamburger Composite 

The FT-IR spectra of iPP and iPP/BC hamburger composites were illustrated in Figure 6. The O-
H stretching vibration absorption peak was shown in the FT-IR spectra of iPP/BC hamburger 
composites. Especially, a new C=O group vibration appeared at 1743 cm−1 for sample iPP/BC and 
iPP/MAPP/BC [25]. The effect of the addition of MAPP was confirmed by this absorption peak. 
Besides, compared to iPP/BC, the O–H stretching vibration absorption peak of iPP/MAPP/BC moved 
to a higher wavenumber (3330–3386 cm−1), peak intensity weakened, and the width of the peak 
became narrowed, indicating that the hydrogen bond structure of BC molecules was weakened and 
some hydroxyl groups were substituted after modification, which can increase the lipophilicity of BC. 
The good compatibility between iPP and BC was obtained. 

 
Figure 6. FTIR of the iPP/BC hamburger composite. Figure 6. FTIR of the iPP/BC hamburger composite.

4. Conclusions

In this work, the iPP/BC hamburger composite was prepared by a simple hot press (the BC were
embedded in the iPP matrix). MAPP was used to improve the interface compatibility of iPP and BC.
The POM photograph shows that BC successfully induces the transcrystallization of iPP. The iPP/BC
composite crystallizes first at the interface and then extends to the iPP layer and eventually forms a
transcrystallization layer. Furthermore, compared to iPP/BC composites, the spherulite size is denser
in the iPP matrix of iPP/MAPP/BC composites. The DSC date proves that the addition of BC could
improve the thermal properties and crystallization rate of the composite. Especially, this change is more
obvious of the iPP/MAPP/BC. Compared to the neat iPP, the tensile strength and impact strength of
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the iPP/BC composites were greatly increased. This DSC date is higher than BC; we used BC particles
to enhance the iPP in our previous research. The SEM analysis intuitively shows that the interface of
the iPP/MAPP/BC is more smooth and flat than the iPP/BC. The FT-IR analysis of iPP/BC composites
was shown that a new C=O group vibration appeared at 1743 cm−1, which indicated that the hydrogen
bond structure of BC molecules was weakened and some hydroxyl groups were substituted after
modification—this can increase the lipophilicity of BC. In summary, this work indicated that the
BC fiber can easily induce the transcrystallization of iPP, which has excellent mechanical properties.
Moreover, the addition of MAPP contributes greatly to interface compatibility of iPP and BC.
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