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Visual world studies show that upon hearing a word in a target-absent visual context

containing related and unrelated items, toddlers and adults briefly direct their gaze toward

phonologically related items, before shifting toward semantically and visually related ones.

We present a neural network model that processes dynamic unfolding phonological

representations of words and maps them to static internal lexical, semantic, and

visual representations. The model, trained on representations derived from real corpora,

simulates this early phonological over semantic/visual preference. Our results support the

hypothesis that incremental unfolding of a spoken word is in itself sufficient to account

for the transient preference for phonological competitors over both unrelated and

semantically and visually related ones. Phonological representationsmapped dynamically

in a bottom-up fashion to semantic-visual representations capture the early phonological

preference effects reported in visual world tasks. The semantic visual preference typically

observed later in such a task does not require top-down feedback from a semantic or

visual system.

Keywords: language, attention, neuro-computational models, visual world task, machine learning, lexical

competition, spoken word recognition

1. INTRODUCTION

Upon hearing a spoken word, listeners selectively attend to an item that best matches the word’s
referent. For example, on seeing a display containing a hat and a bear, listeners hearing the word
trousers selectively attend to the hat, which is semantically related to the referent of the word
trousers. Likewise, when hearing trousers while presented with a display containing a train and
a fridge, they selectively attend to the picture of the train, whose label is phonologically related
to trousers. In more complex displays such as Figure 1A, which contain both phonological and
semantic foils to the referent of trousers, listeners exhibit selective attention to both types of
foil relative to the unrelated items. Furthermore, listeners selectively and briefly attend to the
phonological foil before switching attention to the semantically related item. Figure 1B depicts early
fixations to phonological foils by 30-month old toddlers within 400 ms of word onset followed by
a shift to semantic foils (Chow et al., 2017). Similar results are found with adults, though the initial
phonological preference is conditioned by the picture preview time relative to word onset (Huettig
and McQueen, 2007).
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FIGURE 1 | (A) Example of the type of display used in visual world tasks (Huettig and McQueen, 2007; Chow et al., 2017). (B) Successive fixation of phonological

and semantic foils in a 4-picture visual world task by 30-month old toddlers, adapted from Chow et al. (2017).

This pattern of findings is explained by assuming that
the listener generates a phonological representation from the
unfolding auditory signal and uses this representation to identify
the best matching semantic and visual representation generated
from the visual input provided by the images. The locus of the
match could, in principle, occur at any of the representational
levels linking the auditory and visual stimuli: phonological,
semantic, or visual. However, the early preference for the
phonological foil suggests that the locus of the match resides at
the phonological level1.

A recent computational model uses a hub-and-spoke, neural
network architecture to capture the integration of phonological,
semantic and visual information in referent selection in visual
world tasks (Smith et al., 2017). The recurrent hub of the
model receives inputs from visual and phonological layers, and
propagates activity to target semantic and eye layers which
themselves feedback activity to the hub. Using an artificially
constructed corpus, the model successfully replicates rhyme
effects, e.g., when listeners hear coat, they selectively attend to the
picture of a boat in the absence of a picture of a coat (Allopenna
et al., 1998).

Smith et al. (2017) argue that the close integration of visual,
phonological, and semantic information in the hub is central
to the model’s capacity to capture the phonological rhyme
effect observed in visual world tasks. We would argue that a
feature of the model also critical for obtaining a preference

1Huettig and McQueen (2007) also point out that removal of the picture preview

phase in this task obliterates the early phonological preference, presumably because

participants don’t have time to generate the phonological codes for the images..

for rhyming over unrelated items is the persistence of all the
discrete phonological segments at the input during processing.
The rhyming segment of the word thereby comes to dominate
the phonological input as the simulation of a visual world
trial proceeds.

In this paper, we explore the hypothesis that incremental
unfolding of the spoken word, one phonological segment at
a time, is sufficient in itself to account for early phonological
preferences of the type depicted in Figure 1B, i.e., a transitory
early preference for phonologically related items over both
semantically and visually related items, as well as unrelated
ones, followed by a preference for semantically and visually
related items over both unrelated and phonologically related
ones. We evaluate this hypothesis by constructing a neural
network model that processes only unfolding phonological
representations of words at the input and learns to map these
dynamic phonological sequences to corresponding static lexical,
semantic and visual representations of the words’ referents at the
output. In essence, the model can be considered to implement a
form of lexical comprehension. Particularly noteworthy aspects
of the model include:

• All representations used are “naturalistic” insofar as they have
been derived from real corpora; these kinds of representations
have been shown to predict behavior in visual world tasks
(Huettig et al., 2006).

• The vocabulary is derived from a realistic toddler vocabulary
taken from parental questionnaire studies (Hamilton et al.,
2000).

• The phonological input consists of dynamic, as opposed to
static slotted representations.
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To anticipate the findings, our model successfully
accommodates the early phonological over semantic/visual
preference observed in visual world studies (Huettig and
McQueen, 2007; Chow et al., 2017). However, we do not consider
this model a complete account of language mediated attention
in visual world settings, but rather a tool to explore the power of
dynamic phonological representations in guiding our attention
to semantically and visually related items.

2. MATERIALS AND METHODS

The software was developed in Python 3 (Van Rossum and
Drake, 2009) using numpy, scipy, pandas, and plotnine libraries
and models were implemented, trained, and simulated with the
pytorchmachine learning framework (Paszke et al., 2019).

2.1. Vocabulary
The vocabulary consists of 200 imageable nouns typically
found in the infant lexicon, as documented by the Oxford
Communicative Development Inventory data (Hamilton et al.,
2000). Vocabulary items come from 12 distinct semantic
categories, with a majority (64%) belonging to the categories of
animals, food/drink, or household objects. Item labels range in
length from 2-phone to 9-phone words, 94.5% of which start
with a consonant, and 5.5% with a vowel. The phone inventory
of the vocabulary consists of 39 distinct phones, of which 26 are
consonants and 13 vowels. Of the 189 items with a consonant
onset label, 60% have a cohort of at least 15 items and start with
b, k, p, s, or t phones. Forty-two items in the vocabulary share
either three or more onset phones or four or more offset phones
(see Supplementary Material). Figure 2 gives distribution plots
for category membership, label length, and onset phone identity
across the entire vocabulary.

2.2. Representations
Each vocabulary item is assigned a dynamic phonological
representation of the item label (the unfolding speech
pattern) and static semantic, visual, and lexical representations
(internal representations).

2.2.1. Phonological and Lexical Representations
Each phone in the inventory is assigned a feature-based
distributed binary encoding based on 20 articulatory
and phonological features (Karaminis, 2018) (see
Supplementary Material for more details). The dynamic
phonological representation for each vocabulary item is a matrix
composed of the phonological feature representations of its
phones in the order in which they appear as the spoken word
unfolds, in which each row corresponds to a time step in the
unfolding word. To account for phone co-articulation, the
transition between two consecutive phone representations is
achieved via two intermediate rows between the phonological
representations of the two phones, so that the transition
between the feature values 1 and 0 consists of two intermediate
values of 0.95 and 0.05, and vice versa. A segmentation
character for which all 20 phonological features are set to 1
was introduced to mark the offset of all labels. The static lexical

representation for each vocabulary item is a one-dimensional
vector constructed by appending all the feature representations
of its phones in the order in which they appear in the word.
For both dynamic and lexical representations 10 phone slots
are assigned (to accommodate the longest vocabulary item
including the segmentation character). Therefore, each dynamic
representation is a 20× 32 feature matrix (10 rows for the phone
representations and 12 rows for intermediate co-articulations
steps between consecutive phones including ramping up to the
first phone and ramping down from the segmentation character)
and each lexical representation is a 200 feature vector.

2.2.2. Visual and Semantic Representations
The visual representation for each vocabulary item is derived
from the response to an illustration of the item of a resnet18
deep neural network pre-trained on ImageNet, using the 512-
dimensional activation vector for the avgpool layer (Deng
et al., 2009; He et al., 2016; Paszke et al., 2019). The
semantic representations are 100-dimensional word vectors
from the GloVe model pre-trained on aggregated global
word-word co-occurrence statistics from a 6 billion token
corpus composed of the Gigaword5 and Wikipedia 2014 dump
(Pennington et al., 2014).

The visual and semantic representation vectors are pre-
processed to replace outliers (vector values with a zscore >2)
with the median value for the corresponding dimension. Visual
representation vectors are further processed using principal
component analysis to reduce their dimensionality to 150
(cumulative variance explained: 95%). Both visual and semantic
representations are then digitized using two bins (one below
and one above the median value for each dimension) to obtain
binary vectors.

The relationships between vectors in the lexical, semantic,
and visual representation spaces are evaluated using the Jaccard
index, which is a measure of the similarity between two vectors:
the larger the Jaccard index, the higher the similarity. The Jaccard
index is given by the ratio of the intersection and the union of the
components of the two vectors that have a value of 1, therefore
giving ameasure of the frequency of one-to-onematches between
the two vectors. Figure 3 displays the distribution for the Jaccard
index for all pairs of lexical, semantic, and visual representation
vectors. The figure shows that the distributions of the Jaccard
index for pairwise comparisons between semantic and visual
vectors are symmetrical and similar in spread. By contrast,
the Jaccard index for the pairwise comparisons between lexical
forms are more widely distributed with a tailed distribution
toward larger index values. This is a reflection of the slotted
design of the lexical form representation combined with the
fact that words vary in length (see Figure 2). The Jaccard
index for the lexical forms captures both the differences in the
phonological representations of items’ individual phonemes and
the differences in word length.

2.3. Model Architecture and Training
The model is designed to associate the unfolding of the dynamic
phonological representations of the vocabulary items with the
corresponding aggregated static semantic, visual, and lexical

Frontiers in Human Neuroscience | www.frontiersin.org 3 September 2021 | Volume 15 | Article 700281

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Duta and Plunkett Model of Lexical-Semantic Competition

FIGURE 2 | Descriptive statistics for vocabulary items: word category membership, word length distribution, and cohort size distribution.

FIGURE 3 | Distributions for Jaccard index between pairs of lexical, semantic, and visual vectors.

representations. The model processing cycle for an individual
vocabulary item consists of the number of timesteps required
to fully unfold the phones in the item’s label including the
intermediate steps accounting for phone co-articulation and the
segmentation character.

The architecture consists of a gated recurrent unit (GRU)
(Cho et al., 2014) whose inputs are a 20-dimensional vector

with the encoding of the current phone and whose outputs
are a 450-dimensional vector of aggregated semantic,
visual, and lexical representations (Figure 4A). A GRU is a
recurrent neural network particularly well-suited for processing
sequential information, like the unfolding of the phonological
representation of a word over time. GRU functionality is
achieved via a reset gate and an update gate, each a trainable
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FIGURE 4 | (A) Illustration of the model activation at the unfolding of the word teddy; intermediate co-articulation timesteps are suppressed in the graphic. (B)

Detailed illustration of the GRU functionality.

vector used in conjunction with the GRU’s current input and
output from the previous timestep to filter out irrelevant
information and retain pertinent information (Figure 4B). The

role of the update gate vector is to select the information from
the previous processing timestep to be kept for the processing of
subsequent timesteps. The role of the reset gate is to determine
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which information from the previous timesteps is irrelevant
and therefore does not need to be kept for the processing of
subsequent timesteps.

To obtain the update gate vector ut and the reset gate vector rt
at each time step t, the current input xt and the output from the
previous timestep ht−1 are each multiplied with their respective
gate weights (Wu and Hu for the update gate andWr , andHr for
the reset gate) and added together before applying a sigmoidal
function σ to constrain the vector values between 0 and 1:

ut = σ (Wu
× xt +Hu

× ht−1)

rt = σ (Wr
× xt +Hr

× ht−1)
(1)

The reset gate is used in conjunction with the current input and
the GRU’s output at the previous timestep to select the relevant
information from the current time step in the intermediate
memory h

′

t . First, the current input xt and the output at the
previous timestep ht−1 are both weighted with the W and U
weight vectors, respectively. The element-wise product between
the reset vector and the weighted output from the previous
timestep is added to the weighted current input before applying a
tanh function:

h′t = tanh(W × xt + rt ⊙ U × ht−1) (2)

The relevant information from the current timestep is taken
as the element-wise product between one minus the update
gate vector and the intermediate memory h

′

t , while the relevant
information from the previous timestep is selected as the
element-wise product between the update gate vector and the
output at the previous timestep ht . The output of the GRU at the
current timestep ht is then the sum of the relevant information
from the current timestep and the relevant information from the
previous timestep:

ht = ut ⊙ ht−1 + (1− ut)⊙ h
′

t (3)

Training was performed on the entire 200-item vocabulary
using batch update and stochastic gradient descent (learning
rate: 0.4, momentum: 0.4 and Nesterov momentum enabled,
Sutskever et al., 2013). A training trial consisted of the unfolding
at the model input of the complete dynamic phonological
representation of a word, matched with the corresponding
aggregated static semantic, visual, and lexical representations
as target. All training trials had the same number of timesteps
required to completely unfold the longest label in the vocabulary
including the intermediate steps accounting for phone co-
articulation and the segmentation character. For shorter labels
the model input was padded with zeros from the label offset
to the end of the trial. The target semantic, visual, and lexical
representations were kept active throughout the duration of the
training trial. A training epoch consisted of the presentation to
the model of all the 200 training trials corresponding to the
entire vocabulary.

2.4. Lexical and Semantic-Visual
Representations
The model performance for a vocabulary item is given by the
model’s activation of the item’s static representations during
the unfolding at the model input of its dynamic phonological
representation. The activation of a vocabulary item is given by
the Jaccard index between the model output and the item’s
static representations. The item with the highest Jaccard index
is identified as the model’s output.

The model output is evaluated separately for the aggregated
semantic-visual representations and the lexical representation.
The model is considered to have learned a vocabulary item
if, at the offset of the unfolding of the item’s dynamic
phonological representation, the model’s highest activation is
for that item’s target semantic-visual representations. This is
equivalent to the model output being closest to that item in
the semantic-visual representation space. Similarly, the model
is considered to produce the correct lexical output for a
vocabulary item if the highest activation is for that item’s lexical
representation. The progress of learning the semantic-visual and
lexical representations of the vocabulary items is evaluated at
regular intervals during the training, alongside the impact of
word length and cohort size on lexical learning.

2.5. Simulating Target-Absent Visual World
Contexts
The trained model was evaluated in simulations of visual world
trials in which the model activation is calculated for referents
in a target-absent context with four potential candidates: a
phonologically-related referent, a semantically-related referent,
a visually-related referent, and an unrelated referent. At each
time step during the unfolding of the target label, the model
activation for each candidate referent is calculated as the Jaccard
index of the current model output and the referent’s aggregated
semantic-visual representation. The model is assumed to direct
attention to the candidate referent with the highest activation,
i.e., the candidate referent whose aggregated semantic-visual
representation has the highest Jaccard index compared to the
current model output. Note that there is no direct attention
mechanism implemented in the model. Instead, the level of
activation is used as a proxy for attention, much as eye-fixations
are used as a proxy for attention in visual world experiments
(Magnuson, 2019).

The selection of the phonologically, semantically, visually,
and unrelated candidate trial items for the simulation of the
target-absent contexts was done with the following criteria:

• Phonologically related item (PREL): shares the onset phone
with the target label, does not share rhyme with the target label
and is both semantically and visually unrelated to the target

• Semantically related item (SREL): is semantically related, but
visually and phonologically (both onset and rhyme) unrelated
to the target

• Visually related item (VREL): is visually related, but
semantically and phonologically (both onset and rhyme)
unrelated to the target
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FIGURE 5 | The progress of learning of the semantic-visual and lexical

representations across all models. Bars: 95% confidence intervals.

• Unrelated item (UREL): is phonologically (both onset and
rhyme), semantically and visually unrelated to the target

The selection of the semantically and visually related and
unrelated items was made using the Jaccard index for the
comparison of the target and candidate item representations. An
item was considered semantically/visually related or unrelated
to the target if the Jaccard index of its semantic/visual
representation vector and that of the target was in the top 15th
or bottom 15th percentile of all the pairwise comparisons across
the vocabulary, respectively. All sets of items that complied with
these criteria were used to create a simulation set comprising of
695 trials using 16 target words from seven semantic categories,
all with consonant onsets (see Supplementary Material for
more details).

3. RESULTS

Twenty models2 were each trained for 100,000 epochs. This
allowed all models to learn both semantic-visual and lexical
representations for all vocabulary items. The performance of
each model was evaluated every 10,000 epochs during training.
First, we consider model performance in learning the target
lexical and semantic-visual representations. Second, we evaluate
performance of the trained model in target-absent situations,
such as those depicted in Figure 1.

3.1. Learning Lexical and Semantic-Visual
Representations
Figure 5 provides a snapshot of model performance every
10,000 epochs during training for the semantic-visual and
lexical representations for all vocabulary items across all models.
The percentages of items for which both or either constituent
semantic-visual and lexical representations are correctly mapped
are plotted alongside the percentage of items where neither
constituent is correctly mapped. The figure shows a steady

2The models all have the same architecture but for each model the training is

started from a different random initial state.

increase of the percentage of items for which both the semantic-
visual and lexical representations are learned, reaching 100%
at end of the training. Interestingly, during the early stages
of training (<30,0000 epochs), for a substantial proportion of
items (up to 40%) only the phonological→ semantic-visual
mapping has been mastered, and to a much lesser extent, the
phonological→ lexical mapping. This amounts to the models
learning only the meaning associations or the lexical associations
for these items, respectively. The models therefore appear to
learn the mapping to some of the semantic-visual or lexical
representations, before learning the mapping to both. One might
reasonably suppose that learning a word involves learning the
representations of both constituents. Figure 5 also shows that
the models exhibit accelerated learning of both constituents (as
opposed to learning only one of them) between 30,000 and
50,000 epochs.

Figure 6 displays the models’ progress in learning the lexical
representations for the vocabulary items split by label length
(long labels are defined as 5 phonemes or more) and cohort size
(large cohorts contain 15 items or more). The learning curves
indicate a clear advantage in the rate of learning for lexical
representations with short labels and small cohorts over those
with longer labels and larger cohorts, particularly during the
earlier stages of training.

Figure 7 displays the activation of the semantic-visual and
lexical representations for vocabulary items as their labels
unfold at the model input, evaluated every 20,000 epochs
during training. The horizontal axis indicates the simulation
timesteps for the unfolding of the phones in the item label
and the vertical axis is the activation grand average across all
models and vocabulary items. Figure 7 shows that as the label
unfolds, activations for the item’s semantic-visual and lexical
representations both steadily increase toward an asymptotic
level of item recognition. This level steadily increases across
training, as the models gradually fine tune their mastering
of the vocabulary items. Throughout training and also for
fully trained models the asymptotic level of item recognition
is higher for lexical representations compared to semantic-
visual representations. This reflects the differences between the
distributions of the pairwise Jaccard index within the lexical and
semantic-visual representational spaces, which in turn reflects the
distribution of the lexical, semantic and visual similarities of the
items. The lexical representations are more widely distributed
because lexical forms within the vocabulary are quite different
from each other aside from occasional random overlap. By
contrast, the semantic and visual representations are less widely
distributed, which reflects the non-random semantic and visual
similarities between the items. This means that when the models
recognize a lexical form they do so with higher accuracy than the
recognition of the semantic-visual target.

Figure 8 displays the activation of the lexical representation
for the fully trained models for vocabulary items split by the
length of their label. As in Figure 6, long labels are defined as
five phonemes or more. Figure 8 shows that the activations of
the items with short labels are higher than the activations of the
items with long labels, indicating that the models learn better the
lexical representations of items with short labels.
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FIGURE 6 | The impact of (A) label length and (B) cohort size on the learning of the lexical representation. Long labels have 5 phonemes or more, large cohorts

contain 15 items or more (see Figure 2). Bars: 95% confidence intervals.

FIGURE 7 | Grand average of the activation time course for vocabulary items as their label unfolds, evaluated every 20,000 epochs during training for (A)

semantic-visual representations and (B) lexical representations. Bars: 95% confidence interval.

3.2. Simulating Target-Absent Visual World
Contexts
Next, we evaluate the model’s capacity to activate semantic-visual
representations that are phonologically-related, semantically-
related or visually-related to the input, as described in section 2.5.
In other words, can the model mimic the target-absent behavior
produced by adults and young toddlers in visual world tasks
(see Figure 1)? In particular, does the model show an initial
preference for phonologically-related items over semantically- or
visually-related items as the word unfolds at the input? Figure 9
plots the outcome of simulating the fully trained models in
the target-absent visual world contexts. The horizontal axis is
simulation timesteps for the unfolding of the phones in the target
label and the vertical axis is the grand average of semantic-
visual activations for the phonologically-related, semantically-
related, and visually-related candidates relative to the activation
of the unrelated candidate. The relative activation is calculated
by subtracting the activation of the unrelated candidate from the
activations of interest for every simulated trial.

Figure 9 shows that activations for the phonologically related
candidates are substantially larger than any other activation
earlier on in the unfolding of the input label, shifting to larger
activations for semantically and visually related candidates later

in the trial. Semantically-related candidates maintain a minor
advantage over visually-related candidates for the overwhelming
majority of simulation timesteps.

4. DISCUSSION

The research reported in this paper evaluates the proposal that
incremental unfolding of a spoken word is in itself sufficient to
account for the pattern of referent selection observed in target-
absent trials in visual world tasks containing phonologically
related, semantically related, and visual related candidates. We
evaluate this proposal with a neural network model designed to
map dynamic phonological inputs to static semantic-visual and
lexical representations via gated recurrent units (see Figure 4).

4.1. Model Learning
Twenty trained models each successfully learned the entire
set of 200 vocabulary items. Successful performance is clearly
illustrated in Figure 5 which shows that all target lexical and
semantic-visual representations are learnt within 100,000 epochs
of training. En route to mastery of the training set, the
model learns some of the semantic-visual representations of
the vocabulary items in the absence of learning their lexical
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representations, and to a lesser extent vice versa. This pattern
of behavior in the model is akin to that observed in human
infants: theymay learn themeaning of a word without necessarily
having a lexical representation for the same word (Tincoff and
Jusczyk, 2012), and they may learn a lexical representation for
a word without knowing its meaning (Saffran et al., 1996).
However, from 40,000 epochs of training onward, the models
master both lexical and semantic-visual target representations for
each vocabulary item. This occurs during a period of accelerated
vocabulary learning, a feature that resembles vocabulary growth
in toddlers during the second year of life. Neuro-computational
models of this kind robustly show patterns of nonlinear
learning across a range of learning algorithms. However, it
remains unclear to what extent such mechanisms are akin
to the mechanisms underlying infant behavior. Simulating the
model on target items at regular intervals during training also
exhibited the expected behavior that lexical and semantic-visual

FIGURE 8 | The impact of label length on the grand average activation for the

fully trained models of the lexical representation for the vocabulary items as

their label unfolds. Long labels have 5 phonemes or more (see Figure 2).

Bars: 95% confidence intervals.

representations become increasingly robust, as indexed by the
higher levels of target activation for vocabulary items during the
course of training, illustrated in Figure 7.

Model behavior during learning also aligned with aspects
of performance of human behavior. In particular, the model
exhibited effects of word length and cohort size during the
course of learning, whereby shorter labels tend to be learnt
before longer labels, and vocabulary items with smaller cohorts
are learnt before those with larger cohorts, as illustrated in
Figure 6. Although we are unaware of any studies specifically
investigating the relation between vocabulary growth and word
cohort size, some studies of early lexical development report
a deleterious effect of similar sounding words on vocabulary
development and lexical processing. In a word learning study
with 19-month olds, Swingley and Aslin (2007) reported that
phonological similarity with an already known word interferes
with novel word learning, suggesting that word cohorts interact
with vocabulary development. In a study using picture priming
with 24-month olds, Mani and Plunkett (2011) found increased
target looking for targets with small cohorts compared to target
with large cohorts, a finding which the authors interpret as
evidence for an interference effect of the cohort on the processing
of target label and item recognition.

4.2. Target-Absent Trials
The trained models were simulated in target-absent visual world
contexts in which the model activations for the four candidate
referents—either unrelated to the referent of the unfolding word,
or phonologically, semantically, or visually related to it—are
continuously estimated. The activation is the estimated Jaccard
index of the comparison between the current model output
and the semantic-visual representations of all the candidate
referents. Figure 9 depicts a clear early higher activation of
the phonological candidate followed by a shift in favor of the
semantic and visual candidates later in the trial. We interpret

FIGURE 9 | Grand average semantic-visual activation time courses relative to the activation of unrelated distractors (UREL) for phonological candidates (PREL),

semantic candidates (SREL), and visual candidates (VREL), evaluated for the fully trained models across all models and simulation trials. Error bars: 95% confidence

intervals.
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these activations as an early preference for the phonological
candidate in a target-absent visual world trial, followed by
a later preference for the semantic and visual candidates.
These results confirm our proposal that a dynamic unfolding
phonological input is sufficient to generate an initial preference
for the phonological competitor over both semantic and visual
competitors in a visual world task.

We now turn to the issue of why our model exhibits an
early phonological preference over a semantic-visual preference.
Upon ‘hearing’ the onset phone of a word, the model output
migrates to the region of the semantic-visual space consistent
with the current phonological input. In a target-absent visual
world context this is bound to be toward the representation
of the phonological competitor—if one is present—which is
the only candidate consistent with the onset phone. Therefore,
the phonological candidate has the highest activation. However,
as the input word unfolds over time, the region of semantic-
visual space consistent with the phonological input shifts. The
model has been trained to associate words unfolding toward
complete forms with corresponding semantic-visual and lexical
representations: the more of the word the model “hears,” the
more its semantic-visual outputs shift toward the semantic-
visual associates of the input word. Hence, the models favors
phonological competitors before semantic-visual competitors
in a target-absent visual world context. The model therefore
predicts that in such a task where the scene also contains
a phonological onset competitor, unambiguous identification
of the target would be delayed relative to a scene that did
not contain such a competitor. Evidence for such a delay has
been reported in infant word recognition experiments. When
24-month-olds were presented with a display containing a
phonological onset competitor (doll-dog), their target responses
were delayed but not when the pictures’ labels rhymed (doll-ball)
(Swingley et al., 1999).

It is worth noting that our model architecture does
not permit feedback of activity from the semantic-visual
representations to the phonological representations. In other
words, there is no “implicit naming” of the stimuli in the
visual world trial simulations reported: the model does not
generate phonological representations from semantic-visual
representations. A corollary of this feature is that the locus of the
match between auditory and visual stimuli in a visual world task
lies at the semantic-visual level, not at the phonological level. This
built-in assumption of the model is at odds with the claim that
reducing picture preview time in a visual world task can eliminate
early phonological preferences (see Huettig andMcQueen, 2007).
However, we note a growing body of empirical evidence that
an extended picture preview time is not required to observe
an early phonological preference effect in visual world tasks
(Rigler et al., 2015; Villameriel et al., 2019). These recent findings
point to the possibility that other task demands that highlight
semantic competitors may suppress phonological effects during
referent identification.

Some forms of semantic feedback, such as that implemented
in Smith et al. (2017), may serve to eliminate early phonological
preferences in visual world tasks in certain circumstances, such

as those reported by Huettig and McQueen (2007). In this case,
identification of the neuro-computational mechanism(s)
responsible for controlling the presence/absence of the
widely-reported phonological effects would be required.
We speculate that growth in top-down connectivity from
semantic representations, perhaps through the emergence
and consolidation of the lexical-semantic system, may permit
semantic-visual representations to modulate the bottom-up
phonological processes as implemented in the current model.

We conclude that phonological representations mapped
dynamically in a bottom-up fashion to semantic-visual and lexical
representations are sufficient to capture the early phonological
preference effects reported in a target-absent visual world
task. The semantic-visual preference observed later in such
a trial does not require top-down feedback from a semantic
or visual system. We do not claim that such top-down
connections do not exist. Indeed, we would expect a proper
computational account of the visual world task to include
such resources. Our strategy has been to seek to minimize the
computational resources needed to account for the phenomenon
at hand. We suppose that incremental development of these
resources is the best way to achieve understanding of visual
world processes.
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