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Studying the effect 
of alpha‑synuclein and Parkinson’s 
disease linked mutants on inter 
pathway connectivities
Sagnik Sen1,2, Ashmita Dey1,2* & Ujjwal Maulik1

Parkinson’s disease is a common neurodegenerative disease. The differential expression of alpha-
synuclein within Lewy Bodies leads to this disease. Some missense mutations of alpha-synuclein may 
resultant in functional aberrations. In this study, our objective is to verify the functional adaptation 
due to early and late-onset mutation which can trigger or control the rate of alpha-synuclein 
aggregation. In this regard, we have proposed a computational model to study the difference and 
similarities among the Wild type alpha-synuclein and mutants i.e., A30P, A53T, G51D, E46K, and 
H50Q. Evolutionary sequence space analysis is also performed in this experiment. Subsequently, 
a comparative study has been performed between structural information and sequence space 
outcomes. The study shows the structural variability among the selected subtypes. This information 
assists inter pathway modeling due to mutational aberrations. Based on the structural variability, 
we have identified the protein–protein interaction partners for each protein that helps to increase 
the robustness of the inter-pathway connectivity. Finally, few pathways have been identified from 
12 semantic networks based on their association with mitochondrial dysfunction and dopaminergic 
pathways.

One of the common neurodegenerative disorders (NDs) is Parkinson’s disease (PD) which has been reported 
to be associated with the protein alpha-synuclein(Asyn)1,2. Asyns are usually known for their robust expres-
sion within lewy bodies (LB). For example, the association between expression levels of the Asyn especially 
through the Lewy Bodies, and functional disorder of the dopaminergic neuron are reported3. Propensity of the 
Asyn towards aggregation might be responsible for functional disorder of its protein partners4. These genetic 
aberrations due to mutations can lead to functional modifications. For example, the EGFR1 signaling pathway 
is highly dependent on the activities of the asyn proteins. Any mutational modification can lead to functional 
changes in EGFR1 signaling pathways. In 1997, a point mutation at G209A has been reported. The substitution 
has resulted in point mutation A53T which is an early onset mutation linked with PD. However, this mutation 
is highly debatable as threonine can naturally be identified at rodent synuclein homologs, followed by two more 
mutations Viz., E46K, and A30P. The observation has justified the occurrence of functional similarity and path-
way orchestrations associated with synuclein homologs and paralogs. Early-onset and late-onset mutations Viz., 
A53T, E46K, H50Q and G51D are reported in5. Usually, alpha-synuclein has three domains. Among them, A53T, 
E46K and H50Q are shown to enhance the aggregation propensity6,7 whereas G51D is associated with slower 
rate of aggregation. Similarly , non-beta component of Alzheimer’s disease amyloid plaque (NAC) domain i.e., 
residue range 61–95 plays significant role during aggregation (residue range 61–95). On other hand, β - and γ
-synucleins8 helps to inhibit the aggregation process Asyn. The mutations on genomic encoding of SNCA gene 
have been identified as major element in Lewy bodies. So far 16 loci (PARK1 to PARK16) and 11 genes have 
been associated with pathogenic progression of PD.

Impacts of such sequential changes are significant. For example, the amyloid formation mechanism of alpha-
synuclein is mostly associated with a monomeric primary level of nucleation9. Usually the aggregation rate is too 
slow to detect. However, the phenotypical modifications due to mentioned mutations would have been affecting 
the residues at NAC domain (which is the prime point of aggregation). Therefore, intra-molecular allosteric 
effects would lead mutant to behave like ancestral phenotypes. However, these activities are directly affecting the 
functional profiles of the targeted proteins. Modifications, enhanced due to phenotypical changes, are correlated 
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with the ontology terms. These are shared as common semantics among the pathways separately for wild type 
(WT) protein their mutants and closest neighbors from each of the cases. During the pathogenic progression, 
phenotypical modifications can explain the internal orchestration of the pathways based on the mutated candi-
date and their interacting neighbors. Mostly, these connections are observed for the mutated candidates by fol-
lowing the ancestral protein neighbors. A point mutation at a certain residual position cannot change the whole 
structure. However, it can affect the co-evoluting residues. Therefore, the relation among pathways is modified 
which may lead to the initiation of neurodegenerative progression.

In this study, one frame has been proposed by considering the sequential-structural modifications, and path-
way semantics networks for Asyn and their mutants. The experiment has been initiated focusing on five mutations 
from early and late onset PD cases have been A30P, A53T, G51D, E46K, and H50Q. Firstly, the sequential trait 
of the synuclein family is observed. Then evolutionary conserved co-evolving patches are studied by perform-
ing the Direct Coupling Analysis (DCA). Subsequently the information fetched from sequence space has been 
mapped to the structure. For five mutated cases, two distinct structures has been predicted applying ab-initio 
method. For the wild type protein, the ensemble model has been selected from the known structures. There 
after, the structure network has been formed based on normal mode scores of each residue. Comparing these 
information, the effective residues due to mutations have been fetched. Subsequently, BLAST helps to find the 
sequential similarity with ancestors from the same family. This may provide different lists of neighboring interac-
tion partners for the wild type and mutant. Finally, weighted networks are formed based on pathway semantic 
relations. The pathways and their relations represent the nodes and the edges of the network. The weight of the 
edges are computed based on the semantic similarities.

Results
It is known that α-Synuclein is the candidate protein of Parkinson’s disease. In order to understand the effect 
of this protein and its mutated samples towards the neurodegenerative diseases, a frame is proposed based on 
sequential and structural changes along with the pathway semantics.

Sequence analysis.  In sequence space, the family trait of the Synuclein family is analyzed in terms of order 
and disorder. In this regard, Shannon entropy is calculated for each protein belongs to this family, shown in 
Fig. 1. Moreover, the entropic score of consensus sequence is 2.58. This suggests that the family trait of Synuclein 
family is ordered, whereas many proteins belong to this family are disorder in nature. This gives an in-depth idea 
of evolution.

To support the evolutionary changes Direct Coupling Analysis (DCA) is performed. The co-varying residue 
patches are represented in Fig. 2a. DCA score indicates the change in one residue is responsible for the change 
in other coupled residues. The result depicts that the residue changing for point mutation is also responsible for 
the change of its co-varying patches which eventually contributes to slow as well as accelerating aggregation of 
α-Synuclein. From the analysis, among five mutations E46K, H50Q and G51D mutated samples show conserva-
tion throughout the evolution. In parallel, the residue patches are clustered depending on their DCA score and 
residue in one cluster denotes same evolution rate. Interestingly, the mutated residues are present in one cluster 
shown in Fig. 2b, which indicates that the residue present in that cluster are varying accordingly.

Selection of structure and analysis.  α-Synuclein has multiple dynamic structure with frequent muta-
tion. Due to this, an ensemble of all the structures is performed to understand the fluctuation rate, shown in 
Fig. 3. Moreover, a heatmap (Fig. 4) of all the structures also implies the minimum energy and fluctuation rate of 
structure ID 1XQ8. In this regard, we selected this PDB structure for the further analysis.

In order to have a comprehensive grasp of the changes in sequence space, the PDB structures of α-Synuclein 
and the mutated samples are constructed from the IntFOLD protein prediction server10. Based on the PDB 
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Figure 1.   The changing rate of Shannon entropic score of the protein members from synuclein protein family 
(Pfam id. PF01387).
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models, structure networks are established. The structure network provides a new insight towards the nature 
and essential factors of structure-function dynamicity and folding process of a protein.

The community detection of a protein is crucial to understand evolution. In this study, every residue pair, 
obtained from structure network (as shown in Fig. 5a–f) belongs to the same cluster or in a different cluster with 
a strong association between them as shown in Fig. 6 for 5 mutation along with WT-human. This result also 
supports the DCA score. Additionally, the betweeness centrality of the mutations are shown in Supplementary 
Figure F1.

Furthermore, the residue present in modules are compared with cluster residue of Fig. 2b in which the 
mutated residues are available. The common residues present in both the cluster in the stretch of the NAC domain 
are mutated accordingly for three models in Fig. 5. The stretch are further consider for performing BLAST. The 
highest similarity sequence is identified and applied for establishing a PPI network.

The sequence with highest similarity of each sequential models after BLAST are used to understand the 
interaction with other protein by PPI network. From the BLAST result, it is found that mutation G51D-slow, 
E46K-fast and H50Q, A53T, A30P have more similarity with Pan paniscus, Pan troglodytes, Sus scrofa, Gorilla 
gorilla gorilla and Erythrocebus patas respectively. With the cutoff, 0.5 top 11 including SNCA ( α-Synuclein) are 

Figure 2.   DI scores based on top DCA contacts, (a) The co-evolved residue patches at NAC domain. (b) A 
weighted network GDCA and corresponding color modules based on over all residual co-variation from DI score.

Figure 3.   Square fluctuation map on PDB structures of alpha synuclein where each color represents one 
monomeric chain.
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selected. The details list of associated proteins with their scoring depending on the shortest distance from SNCA 
are listed in Table 1. From this table it is clear that most of the associating proteins are remain common among 
organisms which depicts that, these proteins remain connected through the evolution of α-Synuclein protein. It 
is concluded that protein may remain to interact but their connection scores change from one species to other.

Pathway semantic similarity.  The six proteins are further studied in details to understand the role 
of pathways during evolution. From Reactome11 and Enrichr12,13 associated pathways of the six proteins are 
curated. We consider those pathways having more than two proteins including α-Synuclein. The biological pro-
cess and cellular component are considered for each pathway and a semantic similarity graph is constructed 
shown in Fig. 9. The semantic network of mutation G51D-slow and A30P are shown in Supplementary Fig-
ure F2. Each colour of the nodes represent a particular pathway and the edges between them depict the semantic 
scores. Moreover, the bold edges of the pathway graphs represent the connection weight between two pathways 
depending on the common biological terms. Additionally, we have included a Table 2 where we have validated 
few outcomes from literature (rest are shown in Supplementary Table T1). The table helps to conclude that this 
model provides an anonymous pipeline. There is no such model which targets the desired biological question-
naire best of our knowledge.

In Fig. 7, the certain courses of Van der Waals interaction are shown of the domain 40–95 where mutations 
mostly occur for three sequential models for he structure network of (a) WT-human, (b) G51D-slow, (c) E46K-
fast other three mutations are reported in Supplementary Table T2. Along with the non-covalent force the 
hydrophobic profiling is represented through a graph in Fig. 8.

An adjacency matrix of each type is obtained during pathway semantic calculation. This matrix is used as 
input for PR algorithm to rank the pathways according to their importance. From the resulted rank list we noticed 
that apart from Parkinson disease and Alzhimer’s disease dopaminergic synapse, Amphetamine addiction and 
Cocaine addiction secured a higher position in all five mutations. However in the WT-type parkin ubiquitin 
proteasomal system pathway ranked high which is absent in both the mutations. A table of each mutation of 
alpha-synuclein along with their PR score is reported in Supplementary Table T3.
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Figure 4.   A Heatmap to show structural affinity among the monomeric PDB structures of the Alpha Synuclein 
where density of color reflected ensemble similarity with other stucture based on Normal Mode score.
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Figure 5.   The structure network of (a) WT-human, (b) G51D-slow, (c) E46K-fast, (d) H50Q, (e) A53T and (f) 
A30P models.
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Figure 6.   The community cluster modules of structures (a) WT-human, (b) G51D-slow, (c) E46K-fast, (d) 
H50Q, (e) A53T and (f) A30P after performing modularity detection.
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Discussion
The dynamic nature of the α-synuclein lies on the NAC domain. As this domain has a higher propensity of aggre-
gation, it can be considered as the most unstable region. As discussed before, the β-synuclein and γ-synuclein 
proteins are paralogous to α-synuclein. However, α-synuclein has two more domains. SE scores on each member 
from the synuclein family indicate that overall trait of the family is highly ordered. In the case of α-synuclein, 
a certain range of disorder has been observed. This trait indicates the unstructured region of the α-synuclein. 
Furthermore, from coupling analysis, 291 potential coupling pairs have been found. Among them, very few have 
fallen under NAC domain range. However, the mutated samples, namely, A53T, H50Q, G51D and E46K, are not 
known as part of the aggregation domain. So, the preliminary level of aggregations is somehow influenced by 
such mutations. Residual association within the protein is majorly controlled by the covalent and non-covalent 
interactions. In folding purposes, non-covalent forces such as weak van der Waals and ionic interactions play a 
vital role. Also, the hydrophobic residual shields guard the hydrophilic residues against misfolding. Following 
this theory, the abruption at non-covalent forces is not allowing the proper folding activity. In Fig. 7, the certain 
courses of non-covalent interaction have been shown at the affected targeted region at three sequential models. 
With that, hydrophobic profiling of the models are assist to describe the unstructured nature. In Fig. 8, the 
individual hydrophobic profiling of the WT and five mutants have been shown. Strikingly, the profiling of WT 
and E46k-fast are more similar including A30P. H50Q and G51D are also similar. Therefore, the folding pattern 
of these mutations are supposed to be similar. On other hand, generic extensive effects of the co-evolution at a 
group of residues have been shown through network GDCA (shown in Fig. 2a). To make a comprehensive under-
standing, the sequence space information is mapped to individual structural information corresponding to the 
structure networks WT, G51D-slow and E46K-fast (shown in Fig. 5). From the colour modules of the GNMA , it 
is observed that the distribution of the clusters is giving proper evidence of the aggregation. As each networks 

Table 1.   The associating proteins of α-Synuclein for all the six sequential models are listed.

WT-human G51D-slow E46K-fast H50Q A53T A30P

Annotations Score Annotations Score Annotations Score Annotations Score Annotations Score Annotations Score

STUB1 0.996 PINK1 0.933 SLC6A3 0.939 SNCA 0.835 APP 0.741 SNCA 0.908

SLC6A3 0.99 LRRK2 0.861 DYRK1A 0.847 PINK1 0.847 TH 0.785 SLC6A3 0.754

UCHL1 0.985 MAPT 0.84 LRRK2 0.842 PARK7 0.796 DYRK1A 0.763 PINK1 0.82

APP 0.983 APP 0.818 SNCAIP 0.808 PARK2 0.726 PARK7 0.795 PARK7 0.772

LRRK2 0.971 DYRK1A 0.788 SNCA 0.795 MECOM 0.673 PINK1 0.824 PARK2 0.801

HSPA4 0.97 SLC6A3 0.775 MAPT 0.749 MAPT 0.713 SNCAIP 0.92 MAPT 0.658

SNCA 0.969 PARK2 0.725 PINK1 0.724 LRRK2 0.884 MAPT 0.714 LRRK2 0.919

FYN 0.968 SNCAIP 0.717 ATP13A2 0.696 HDH 0.724 CHM 0.664 DYRK1A 0.747

PARK2 0.965 PARK7 0.706 TH 0.696 APP 0.764 SLC6A3 0.726 APP 0.751

Table 2.   Validating the pathway outcomes from the available literature.

Mutation Pathway Interaction partners Litrature survey

WT-Human

Parkinson’s disease PARK2,LRRK2, APP 14–16

Dopaminergic APP, LRRK2 17,18

Alzheimers disease LRRK2, PARK2 15,19

Monoamine transport PARK2, SLC6A3 15

A53T

Dopaminergic synapse APP,LRRK2,PARK7,PINK1,SNCAIP 20–22

Amphetamine addiction PARK7 23

MAPK signaling pathway APP,LRRK2,PARK7,PINK1 24–27

Parkinson APP,LRRK2,DYRK1A,PARK7,PINK1,SNCAIP 2,28–32

Alzhimer APP,LRRK2,DYRK1A,PARK7,PINK1,SNCAIP 19,32–36

E46K

Parkinson’s disease SLC6A3,PINK1,LRRK2 37,38

Alzheimer’s disease MAPT,PINK1,LRRK2 37,39,40

Cocaine addiction SLC6A3,TH 41,42

Amphetamine addiction SLC6A3,TH 43,44

H50Q

Parkinson disease STUB1,SNCAIP,SLC6A3,UCHL1,APP,LRRK2,HSPA4,FYN,PARK2 36,45–48

Alzheimer disease APP,SNCAIP,UCHL1,LRRK2,FYN 33,39,45,49

MAPK signaling pathway LRRK2,FYN 50,51

Dopaminergic synapse LRRK2,SLC6A3 52,53

Mitophagy SLC6A3,STUB1,SNCAIP,UCHL1,APP,LRRK2,HSPA4 54–59



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:16365  | https://doi.org/10.1038/s41598-021-95889-5

www.nature.com/scientificreports/

has the same tree cutter threshold, the distribution of the modules should be unbiased. Following this trait, it has 
been observed that G51D-slow has a higher propensity of aggregation than the other five. Mohite et al.60 shows 
the strong effect of G51D phenotypical changes. In the rest of mutation, structure network can not provide much 
relevant information. All these monomeric models are highly prone to aggregation that reflect in the normal 
mode based weighted networks. Most of the residue nodes are conserved within fewer communities. From 
Fig. 2a, the coupling propensity of the NAC domain has shown. Interestingly, the distribution of co-evolutionary 
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Figure 7.   Comparative study on WT-human, G51D-slow and E46K-fast based on variation in Van der Waal’s 
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patches of the NAC domain is large. Comparing with individual structure networks, the individual lists of the 
affected residues due to an individual set of mutations are considered to be found the ancestral sequential traits. 
Eventually, the sequence traits are indicating the type of structural aberration from the WT. Subsequently, 
structural modifications in each case can provide a different list of top interaction partners. In Table 1, the list 
of interaction partners for the individual types are given. Few of the pathways are usually performed in every 
eukaryotic cell. However, the activities of the pathways are revised based on their metabolome. In Fig. 9, networks 
based on semantic similarity have been shown. From the networks, all the non-pathogenic pathways associ-
ated mostly with the common top neighbors of α-synuclein (with few protein sample specific neighbors) are 
semantically associated with each other. BP has been considered for the similarity calculation. In WT-human, 
the non-pathogenic pathways have almost homogeneous association where the connection between blue and 
yellow node is slightly strong. In E46K-fast, this association between blue and yellow node is extremely strong. 
This information is comparable with the module distribution of the GNMA where the propensity of aggregation 
is highly strong in G51D-slow.

The activities of Parkin-Ubiquitin Proteasomal System pathway and Ectoderm Differentiation are highly 
influential in the activity of the Dopaminergic Neurons which is key point of PD initiations61,62. However, strong 
association between the selected pathways has shown in semantic networks. From the pathway list, it has been 
observed that few pathways viz., Mitophagy, Dopaminergic synapses, MAPK signaling pathway, Amphetamine 
addiction are available in almost all prime mutations, and WT type alpha-synuclein. As per previous evidence, 
the association between the dopaminergic synapses and mitophagy can be explained. In63, the association of 
mitochondrial dysfunction and PD has been discussed. Dopaminergic Neurons are one of the highest consumers 
of ATP which explains the contribution of mitochondrial dysfunction in neuronal death64. Two perspectives so 
far can explain the relation clearly- firstly, the presence of the unpaired electrons accelerates ROS. ROS eleva-
tion facilitates aging by activating antioxidant enzymes as well as transporters. Subsequently, this also helps to 
relocate dopamine from the intercellular medium to synaptic vesicles. This whole process is associated with cell 
death where ROS levels increase throughout tissues including the brain for affected patients. Likewise, mitophagy 

Figure 9.   The pathway semantic graph of (a) WT-Human, (b) A53T, (c) E46K-fast and (d) H50Q-late onset 
mutations of Alpha-synuclein. In the graph, the color nodes represent a particular pathway associated with the 
mutation type and the edges represents the weighted connection between the pathways. The bold edges indicate 
the higher association between those pathways.
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involves the maintenance of a highly interconnected network throughout neurons. Balancing the mitochondrial 
activity in healthy cases needs the fusion and fission process65. Any sort of disruption main leads to aggrega-
tion and loss of direct movement. The common key between this activity is the mutations of mtDNA66 which 
disrupts the complex I and stops the mitophagy process. Interestingly, early-onset A53T mutation also follows 
the same path which leads to PD67. As per our results, most of the mutations are associated with mitophagy and 
dopaminergic synapses. Therefore, we are expecting that the mutations may have followed a similar path through 
mitochondrial dysfunction. However, two early-onset mutations i.e., A53T and A30P are observed to be involved 
in the MAPK signaling pathway. This explains the alternative path through MAPK kinase68. The dysfunction 
of such kinase leads during oxidative stress can responsible for mitochondrial stress and lead to mitochondrial 
dysfunction. Similarly, upregulating E46k is directly associated with the autophagy mechanism which controls 
the mitochondrial fission69. As per our study, some of the nodes from the pathway semantic networks (shown 
in Fig. 9) can be explained through previous researches. The other nodes from each network are expected to be 
partially associated with the regulation of the influential nodes. In Table, results have been validated through 
existing literature where we focused on the associated interaction partners of the mutants. Hence, the semantic 
networks can be considered as a summarization of the mutant specific molecular mechanism.

Aging is one of the prime reasons for losing the cognitive senses. WT type Asyn is usually coming up with 
cellular precipitation which leads to dementia. However, the early onset mutation can trigger the precipitation 
within 30–40 years of the age range. Mutational subtypes i.e., A30P, A53T, G51D-slow and E46K-fast, are stud-
ied to unveil the functional and molecular orchestration during such mutations. The associated list of pathways 
individually for these samples has been considered. The pathways are connected through the sharing of interact-
ing neighbors. Here, the list of protein interacting neighbors is modifying with mutations which brings us the 
distinct list of pathways as well as semantic connectivity. Twelve networks are based on two cognitive parameters 
i.e., Cellular component and, Biological process. From the networks, all the associated pathways are clearly 
sharing almost the same subcellular localization. In WT type, the pathways excluding Parkinson’s Disease and 
Alzheimer’s Disease are associated with two distinct types of the function where some pathways are associated 
with prevention from unusual activity within the neurons whereas the rest of the pathways are associated with 
the pathogenic progression of the diseases. For example, monoamine transport systems are neurotransmitters 
that prevent the extracellular vesicles of the neuronal cells from excess dopamine, serotonin, noradrenaline, etc. 
Dopaminergic pathway, found in the list, is one of the prime pathways from the neuronal cells which helps to 
control the cognitive senses. Monoamine transport systems are the key modulator of the dopaminergic pathways. 
It can also control the effects of nanomolar elements such as cocaine, amphetamine, etc. On the other hand, 
pathways like Parkin-Ubiquitin Proteasomal System regulates the misfolding of the proteins which are further 
responsible for the pathogenic progression of the diseases such as PD. The pathway semantic networks (shown 
in Fig. 9) show the connectivity within the pathways based on sharing list of biological processes and cellular 
components. In the BP based network, the Parkin-Ubiquitin Proteasomal System pathway is the highest-ranked 
pathway as per PR outcomes. This shows the influence of the pathway in the network which increases the pos-
sibility of the Asyn misfolding.

The pathways of the selected mutations Viz., G51D-slow and E46K-fast, are mostly associated with exter-
nal nanomolar elements. More elaborately, dopaminergic pathways are strongly associated with the proteins 
which are differentially regulated due to cocaine addiction, alcoholism, amphetamine addiction70–72. Ampheta-
mine, cocaine are known neurotransmitters. Although appropriate etiology associated with amphetamine is not 
known, amphetamines are initially used to treat PD73. However, some recent studies have shown that long use of 
amphetamine-type stimulators increases the risk of PD. The studies explain that amphetamine-type stimulators 
bind in the intrinsically disordered regions of the Asyn protein and facilitates the molecular mechanism of the 
aggregation. The studies also suggest that it promotes the post-translational modification of the Asyn directly 
or indirectly. Interestingly, the involvement of the Asyn mutants specially, H50Q and G51D have largely been 
observed in PD cases who are long users of such stimulators74,75. The decreasing number of dopaminergic neurons 
at Substantial nigra is also considered as one of the key reasons76. Also, the mutations can inhibit the activities of 
the neurotransmitters such as monoamine transport systems77. Due to that reason, the excess hormones in the 
cellular systems cannot be removed. As per the pathway semantic networks, E46K-fast shows the aforementioned 
strong connectivity. However, the amphetamine addiction pathway is disconnected in terms of BP for G51D-slow.

We have included three more mutations to explain the pd etiology clearly. From the pathway list, it has been 
observed that few pathways viz., Mitophagy, Dopaminergic synapses, MAPK signaling pathway, Amphetamine 
addiction are available in almost all prime mutations, and WT type alpha-synuclein. As per previous evidence, 
the association between the dopaminergic synapses and mitophagy can be explained. In63, the association of 
mitochondrial dysfunction and PD has been discussed. Dopaminergic Neurons are one of the highest consumers 
of ATP which explains the contribution of mitochondrial dysfunction in neuronal death64. Two perspectives so 
far can explain the relation clearly–firstly, the presence of the unpaired electrons accelerates ROS. ROS eleva-
tion facilitates aging by activating antioxidant enzymes as well as transporters. Subsequently, this also helps to 
relocate dopamine from the intercellular medium to synaptic vesicles. This whole process is associated with cell 
death where ROS levels increase throughout tissues including the brain for affected patients. Likewise, mitophagy 
involves the maintenance of a highly interconnected network throughout neurons. Balancing the mitochondrial 
activity in healthy cases needs the fusion and fission process65. Any sort of disruption main leads to aggrega-
tion and loss of direct movement. The common key between this activity is the mutations of mtDNA66 which 
disrupts the complex I and stops the mitophagy process. Interestingly, early-onset A53T mutation also follows 
the same path which leads to PD67. As per our results, most of the mutations are associated with mitophagy 
and dopaminergic synapses. Therefore, we are expecting that the mutations may have followed a similar path 
through mitochondrial dysfunction. However, two early-onset mutations i.e., A53T and A30P are observed to 
be involved in the MAPK signaling pathway. This explains the alternative path through MAPK kinase68. The 
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dysfunction of such kinase leads during oxidative stress can responsible for mitochondrial stress and lead to 
mitochondrial dysfunction. Similarly, upregulating E46k is directly associated with the autophagy mechanism 
which controls the mitochondrial fission69.

Outcomes of the PR algorithm shows affinity of all the mutations with Amphetamine addictions, Cocaine 
addictions, dopaminergic synapses, etc. Also, H50Q and A30P have synaptic vesicles among the top ranking 
pathways. These observation supports the etiology associated with mitochondrial dysfunction. Interestingly, few 
pathways which are mostly associated with dopaminergic disorientation, are identified under A53T mutation.

Conclusion
From this study, the sequential variation of α-synuclein is observed depending on six mutational conditions, 
considering the structural consequences. The objective of the study is also to observe changes in pathways 
due to structural aberration. Among the mutations, the pathway semantic networks of A53T and G51D show 
maximum involvement of pathways. Also, few pathways play vital roles in mutational perspectives viz., Amyloid 
fiber formation, Parkin-Ubiquitin Proteasomal System pathway, Ectoderm Differentiation, Mitophagy, MAPK 
signaling pathway, synaptic vesicles, etc. Finally, the proposed frame can provide a comprehensive outlook on 
the mutation mediated structural aberrations and their affects on functional pathways.

Method
This study aims to understand the structural changes along with the pathway semantics of α-Synuclein concern-
ing evolution. The detailed method is described in Fig. 10.

Sequence space analysis.  Primarily, the Synuclein family is considered to unveil the family trait with the 
help of Shannon entropy (SE) calculation. It is evident that Shannon entropy is directly proportional to the rate 
of disorder. This implicates if the entropic score increases it signifies the higher disorderness of a protein. In78, 
2.9 is considered as the threshold of Shannon entropy score, i.e. sequence with score less than 2.9 is treated as 
ordered sequence and vice-versa. This idea is utilized in this study and applied on each protein sequences of 
Synuclein family. Shannon entropy is calculated as follows:

where Hi was the probability of given amino acids and L was the number of letters in a sequence. The summa-
tion run over the 20 residues that normally were present in a protein sequence. The probability Hi represent the 
composition of the consensus sequence. So the entropy range lied between 0 and the log2(20) = 4.32.

(1)ShannonE(i) = −
L

∑

i=1

Hilog2Hi

Figure 10.   The flowchart of the proposed framework.
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Moreover, multiple sequence alignment is performed of the protein sequences belong to PF01387. It is noticed 
that multiple sequence alignment have a significant role in the field of structure and function analysis of bio-
logical sequences. Due to this, full alignment FASTA format sequences were collected, which comprises of tree 
orderings and all lower case letters including dashes to indicate the gaps. Additionally, a consensus sequence 
is generated from the aligned sequences. The consensus sequence is a set of amino acids with their occurrence 
frequency. These frequencies indicate the signature amino acids remain conserved throughout the evolution. In 
this regard, Shannon entropy is calculated for the consensus sequence also.

The aligned sequences are further considered for DCA. This is a statistical framework which possesses the 
idea of direct co-evolution coupling among the residue pairs. The drawback of the Mutual Information (MI) is, 
unable to extricate direct correlation from indirect ones. This problem is easily solved by Direct Information (DI) 
theory. Depending on the DI theory, DCA is calculated. Hence, the computation of the DCA score of an aligned 
sequence indicates how directly the selected coinciding residues are coupled with each other and contributed 
toward evolution. The DI score is defined as:

Here, F(dir)st  represents reweighted frequency counts to introduce two residues for DI. where F(X,X ′) is con-
sidered as joint probability, and F(X) and F(X ′) are individual probability. Fs(X) and Ft(X ′) are for amino acid 
type A at s th position and similarly B at t  th position.

The cascading effect of the co-evolution is not conserved in a couple of residues. It is highly possible that 
mutational changes at a residual point can affect a distant residue by means of a cascading effect. To understand 
such an effect, a weighted network GDCA has been defined considering DI score between residue. The weighted 
undirected network GDCA = ( Vres , EDI ) where Vres are set of nodes, consist of residue whereas EDI are weighted 
edges, consists of DI score between the residues. Subsequently, the color modules have been formed applying 
Girvan-Newman algorithm79.

Root mean square fluctuation.  The information related to sequence space or structure space individually is not 
enough to understand the changes. For the study, the WT type protein is taken from Protein Data Bank where 
the respective PDB id is 1XQ8. Due to the dynamic structure and frequent mutations, the structure possess 
lowest energy is considered. In this regard, Root Mean Square Fluctuation (RMSF) is performed to measure 
the particle deviation. In RMSF, a mean over time is considered for a residue r at the current position and some 
reference position. The definition of the RMSF is given in Equation 4.

Where S is time over which the mean has been taken for reference position of the particle i , Rre
i  . The RMSF 

has been observed based on the reference position of the particle i over time.0

Structure network analysis.  To grasp this observation we have built the structure of those sequences. 
These complex models are analyzed with the help of a structure network80. The interaction between the ele-
ments of the networks is represented through nodes and edges. Generally, a secondary structure and folding 
arrangement mechanism are used to understand the structure of a protein. Another promising methodology for 
understanding the structure is through network. The equation is represented below.

Ec is the threshold of interaction strength, the default value is 4%. Here, scab was the number of side chain atom 
pairs of residues a and b. sca and Xb were the normalization factor for residues types a and b81.

In this paper, depending on the normal mode analysis (NMA) a correlation matrix is obtained. The matrix 
is applied to establish a full residue weighted network GNMA = ( Vres , ENM ) where Vres is a set of nodes repre-
senting residues whereas ENM is set of weighted edges where weights are obtained from correlation matrix. 
Consequently, the network is split into a highly correlated coarse-grained community cluster network by using 
Girvan-Newman79 clustering method where the highly interacting residues were clumped together in the clusters 
with a threshold value 0.7.

Pathway semantic.  Furthermore, mutation G51D and E46K i.e., slow and accelerating mutation on early 
onset are considered for further analysis. During mutation, co-varying residue cluster according to the DCA 
score are compared with the structure network module. The residues common in both the cases and also belong 
with the residue number 51 and 46 are mutated accordingly. As it is known that residue range 61–95 is the NAC 
domain of α-Synuclein, the residue stretch from 40 to 95 is utilized for performing Basic Local Alignment Tool 
(BLAST). The protein sequences are matched with the sequence database and statistical significance is calculated 
for the matched areas. The highest similarity sequence is selected and Protein-Protein Interaction (PPI)82 is exe-
cuted to detect the associated proteins. PPI is carried out for α-Synuclein of three species with a threshold value 
of 0.5. Pathways responsible for at least two proteins including α-Synuclein are considered. Here the semantic 
similarity is calculated over a set of a biological process responsible for the selected pathways. Wang method83 

(2)DIs,t =
∑

XX ′ ∗ F(dir)s,t ∗ (X,X ′) ∗ ln
F
(dir)
s,t

Fs(X)Ft(X ′)

(3)RSMFr =
(

1

S

S
∑

tn=1

mod(Ri(tn)− Rre
i )

2

).05

(4)Eab =
[

scab√
(sca ∗ scb)

]

∗ 100 ≥ Ec
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is applied to evaluate the similarity established on graph-like structure of gene ontology (GO). The aggregated 
contribution is done by the semantic value of GO term T to the terms in DAGT which is semantic of GO term T 
is firstly defined in Wang method. GO terms closer to T in DAGT implies more contribution toward it semantics. 
Hence, it is defined that the contribution of GO term p to the semantics of T as the S-value of GO term p related 
to GO term T. For whatever term of p in DAGT , the S-value associated GO term T, ST (p) is calculated as:

Here Ce is defined as semantic contribution factor for the edge e ∈ ET linking GO term p with its child term 
p′ . After calculating the S-value for the GO term in DAGT , the semantic value of GO term T, SV(T) is defined as:

For two given GO term such as T and Q, semantic similarity is calculated between them is as follows:

Here ST (P) is the S-value of GO term t related to term T and SQ(p) is the S-value of GO term p related to 
term Q.

Moreover, based on the semantic similarity of GO terms, Best-Match Average (BMC)84 strategy is performed 
to compute semantic similarity among sets of GO terms associated with the protein associated with a particular 
pathway and column, which defined as:

where gene G1 annotated by GO terms sets GO1 = (go11, go12 . . . go1i) and G2 annotated by 
GO2 = (go21, go22 . . . go2j).

Ranking the pathways.  The pathway semantic similarity graphs reveal the semantic strength between 
two pathway. In order to understand the importance of the pathways PageRank (PR)85 Algorithm introduced 
by Google is applied on the resulted networks. This algorithm used probability distribution based on the weight 
among different nodes. In following equation 9, pathways are represented as nodes and the edges are weighted. 
The node rank has been defined as:

where the rank of node n is relied on the PR values for each connected node m ∈ A n , divided by E(m), edges 
from node n. Therefore, according to the the PR values the pathways are ranked based on their importance in 
the network.
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