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A B S T R A C T

Wild mammals are susceptible to infection by Leishmania parasites. Although canine leishmaniasis is widely
distributed in mainland Portugal, the sylvatic cycle of the parasite remains poorly understood. In this study, the
occurrence of L. infantum in wild carnivores from Portugal was assessed by molecular screening of 132 hunted or
accidentally road-killed animals. Spleen samples from Egyptian mongoose, red fox, stone marten, common genet
and European badger were tested by amplification of Leishmania kinetoplastid DNA and ITS1. Five egyptian
mongoose were confirmed Leishmania DNA-positive by kDNA-PCR. Phylogenetic analysis of a kDNA amplicon
sequence clustered the strain with L. infantum sequences from Portugal. These results may suggest that L. in-
fantum strains circulating in wild animals are genetically related with strains from more humanized settings.
Exposure of wild carnivores to Leishmania infantum emphasizes the need of systematic studies to clarify the role
of several taxa in the eco-epidemiology of leishmaniasis in Portugal, particularly in areas of carnivore species
synanthropy and wherein disease control in the domestic population is inefficient or insufficient.

1. Introduction

Leishmaniasis is a complex of diseases that affects humans, domestic
and wild mammals worldwide. It is caused by parasitic protozoans
classified as Leishmania species (order Kinetoplastida, family
Trypanosomatidae). Natural transmission may be zoonotic with the
involvement of reservoir hosts such as rodents, marsupials, edentates,
monkeys, domestic dogs, and wild canids, usually by the bite of a
phlebotomine sandfly species of the genera Phlebotomus or Lutzomyia. In
a few cases and for particular Leishmania species, the transmission is
strictly anthroponotic, i.e., transmitted from human to human (Ready,
2010; Millán, 2014; Quinnnell and Courtenay, 2009). Leishmania in-
fantum infection is endemic in southern Europe but animal cases and
vector sand flies have also been detected in central Europe (Maroli et al.
2008; Poeppl et al. 2013). This species is the agent of both cutaneous
and visceral forms of human and viscero-cutaneous canine

leishmaniasis in Europe. Dogs are considered the main reservoir of L.
infantum infection in Mediterranean countries, with apparent pre-
valence rates ranging from 5% to 30%, depending on the region
(Millán, 2014). Wildlife monitoring programs and the increasing use of
molecular techniques such as PCR have enabled the identification of
previously unreported infected species in Spain, Italy and France, spe-
cially among carnivores. Serological or direct evidence of L. infantum
infection in animals from the Canidae, Felidae, Mustelidae, Viverridae
and Herpestidae families have been reported (reviewed in Maia et al.,
2018; Millán, 2014; Franco et al., 2011). Although there is no official
strategy for the control of canine leishmaniasis, an increasing access to
vaccination, awareness of dog owners, use of repellent collars and the
treatment of animals, have jointly contributed to decrease the number
of clinical cases. Despite the prophylactic measures provided to the
canine population, leishmaniasis remains widely distributed in Portugal
and highly endemic in certain areas. Notwithstanding the major burden
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of leishmaniasis in the dog population, it is also important to under-
stand the contribution of wild carnivores to the epidemiology of this
disease. This study is thus a preliminary work aiming to detect natural
infection of wild mesocarnivores from Portugal with Leishmania spp.,
particularly focusing on a species that has been under expansion in the
mainland territory for the last decades, the Egyptian mongoose (Her-
pestes ichneumon). Although not considered threatened, some wild
species included in this study are widely distributed in Portugal
(Bencatel et al., 2017) and thus are candidates for further studies to
confirm them as Leishmania spp. suitable hosts.

2. Materials and methods

2.1. Sample collection

One hundred and thirty-two wild carnivores belonging to Canidae,
Mustelidae, Viverridae and Herpestidae taxonomic families (order
Carnivora) were collected during 2011 and 2012, namely Egyptian
mongoose (Herpestes ichneumon, n = 106), red fox (Vulpes vulpes,
n = 18), stone marten (Martes foina, n = 2), European badger (Meles
meles, n = 3) and common genet (Genetta genetta, n = 3). Animal
carcasses were collected in all five regions from continental Portugal,
originated from accidental road-kills or legal predator control actions
(Egyptian mongoose and red fox) and were donated for scientific pur-
poses (Fig. 1). All species listed as game species, or targeted by predator
control actions (the case of red fox and mongoose), by Portuguese
legislation (Portaria n.° 142/2015 - Diário da República n.° 98/2015,
Série I), can be legally hunted by the hunting associations and fellow
credentiated hunters authorized by the National Institute for Nature
Conservation and Forest (ICNF). After collection, all animals were

preserved in sealed plastic bags, refrigerated and transported to a col-
lection centre, under a license from ICNF – Licence no. 222/2010/
TRANS, where they were kept at −20 °C. The sex and age [determined
by dental analysis- Bandeira et al. (2016)] of the specimens and the geo-
coordinates of the collection sites were registered. Necropsy and sub-
sequent spleen collection were performed at the national reference la-
boratories for animal health, the National Institute for Agrarian and
Veterinary Research (INIAV IP), or at University of Aveiro in appro-
priate facilities. Spleen fragments were collected and stored at −20 °C
until further use.

2.2. DNA extraction and molecular analysis

The study samples were screened for the presence of Leishmania spp.
using molecular methods. Total DNA was extracted from 25 mg of
spleen tissue using the High Pure PCR Template Preparation kit
(Roche), according to the manufacturer’ instructions. Leishmania kine-
toplast DNA (kDNA) minicircle was selected as the molecular target
using primers MC1 (5′-GTTAGCCGATGGTGGTCTTG-3′) and MC2 (
5′-CACCCATTTTTCCGATTTTG-3′), which hybridize with a hypervari-
able portion of kDNA minicircles sequence (Cortes et al., 2004). Reac-
tion and PCR conditions were as described by Cortes and collaborators
(2006) and, for positive samples, a 447 bp fragment amplicon was
expected. As additional confirmation, amplification of internal tran-
scribed spacer 1 (ITS1) region of the ribosomal RNA (rRNA) encoding
gene was performed. This second PCR enables the amplification of a
300–350 bp fragment corresponding to the non-coding spacer region
ITS1 found in the ribosomal operon, located between the 18S rRNA and
the 5.8S rRNA coding regions. Primers used were LITSR (5′-TGATACC
ACTTATCGCACTT-3′) and L5.8S (5′-CTGGATCATTTTCCGATG-3′) and
reactions carried out according to El Tail et al. (2000). No-template
(water) and positive controls (Leishmania infantum DNA from a smear-
positive dog isolate) were used in each PCR batch. Amplification re-
action products were analysed by electrophoresis on 2.0% agarose gels
stained with ethidium bromide.

2.3. Sequencing and phylogenetic analysis

Amplicons from kDNA positive samples were excised from agarose
gel, purified using a commercial kit (QIAquick gel extraction kit,
Qiagen or Gel Band Purification, GE Healthcare) and sequenced at a
commercial company (StabVida, Portugal). The same pairs of primers
used in the amplification of each fragment were used in sequencing.
Original chromatogram files were inspected and manually reviewed
using the ChromasPro® software (version 2.6.5). Edited sequences were
compared with similar reference sequences available in public data-
bases (http://www.ncbi.nlm.nih.gov) by BLASTn analysis and sub-
mitted to GenBank (http://www.ncbi.nlm.nih.gov).

The phylogenetic relationships between the L. infantum sequence
obtained during this study with other available sequences in GenBank
were investigated by Maximum Likelihood (ML) using MEGA7 software
(Kumar et al., 2016). The same software was used to perform the
multiple sequence nucleotide alignments (msa) and determine the ap-
propriate substitution model, using the model selection analysis. Ro-
bustness of the tree nodes was assessed by bootstrapping 1000 times.
The graphical edition of the phylogenetic tree was performed resour-
cing tree explorer, MEGA7 software (Kumar et al., 2016).

3. Results

Detection of Leishmania kDNA in the spleen samples of 18 red fox,
two stone marten, three European badger, three common genet and 101
of the surveyed Egyptian mongoose was negative. However, a kDNA
fragment of the expected size (approximately, 447 bp) was obtained in
five Egyptian mongoose samples among the 132 DNA spleen extracts
analysed. A second, independent PCR directed towards the ITS1

Fig. 1. Spatial distribution of wild carnivore samples in mainland Portugal.
Administrative regions at the district level are indicated. The overall proportion
of samples per district is indicated by the grey scale.
The abbreviatures of districts are as follows: Viana do Castelo (VC), Braga (BR),
Vila Real (VR), Bragança (BG), Porto (PT), Aveiro (AV) Viseu (VS), Guarda
(GR), Coimbra (CM), Castelo Branco (CB), Leiria (LR), Santarém (SA),
Portalegre (PA), Lisboa (Lx), Setúbal (ST), Évora (EV), Beja (BJ) and Faro (FR).
White circles with numbers in red specify the number and location of Egyptian
mongooses that were kDNA-positive by PCR. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of
this article.)
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intergenic region was employed to test in parallel the 132 carnivore
samples. Confirmation of the presence of Leishmania DNA by both
techniques was attained in only one spleen sample. This specimen be-
longed to a female adult Egyptian mongoose collected in Beja district
during 2011, southern Portugal. A kDNA sequence with 402 bp ob-
tained from the amplicon of this positive Egyptian mongoose was de-
posited in GenBank under accession number MH799321. Despite sev-
eral attempts, it was not possible to sequence the amplicon obtained
from amplification of the ITS1 fragment.

Positive animals were detected in Beja (n = 3), Portalegre (n = 1)
and Viseu (n = 1) administrative units (Fig. 1).

Using partial kinetoplastid minicircle nucleotide sequences, the re-
lationship between this strain and other Leishmania infantum strains
from nine countries, mostly from the Mediterranean basin (mainland
Portugal, Spain, Morocco, Tunisia, Algeria and Italy) was investigated
by Maximum Likelihood (ML) phylogenetic inference. The Hasegawa-
Kishino-Yano (HKY) model (Hasegawa et al., 1985) with gamma dis-
tributed rate variation among sites (+G) (HKY + G) showed the lowest
BIC (2456.521) and AICc (2147.195) values and was subsequently used
to infer phylogenetic relationships using ML analysis. It is noteworthy
that the T92+G model also displayed similar BIC (2456.564) and AICc
(2161.279) values.

Phylogenetic analysis suggests a higher resemblance of the L. in-
fantum strain obtained from the Egyptian mongoose (MH799321) with
other L. infantum strains obtained in mainland Portugal from 1970 to
2003, originating from dogs (Canis lupus familiaris) and humans (Homo
sapiens), although the Bootstrap (Bs) values supporting those nodes
are< 70 (Fig. 2). This closer genetic relatedness is also suggested by
the high genetic similarity, with homologies ranging from 97,51% to
98,01% (Table 1, supplementary material), and low genetic distances,
ranging from 0,01282 to 0,01807 (Table 2, supplementary material),
found between strain MH799321 and the L. infantum strains from
mainland Portugal.

4. Discussion

Leishmaniasis is a parasitic disease of great importance in veterinary
medicine, considering the high number of infected dogs, but also with a
major impact on Public Health. Canine leishmaniasis is virtually present
throughout Portugal, although prevalence rates vary across regions. In
the present study, the confirmation of Leishmania infection in wild
carnivores was based on the detection of Leishmania infantum nucleic
acids in spleen samples. Using an end-point PCR for the detection of
kinetoplastid DNA, it was possible to identify five positive animals
among Egyptian mongoose. The kinetoplast DNA minicircle was se-
lected as the molecular target as it is present in hundreds of copies in
Leishmania, increasing the probability of detecting this protozoan in
frozen samples in which microscopic analysis for detection of amasti-
gotes or protozoan isolation could not be performed. The animal from
whom kDNA was sequenced was an adult female and probably an
asymptomatic carrier, since during the necropsy no evidence of clinical
disease nor cutaneous or visceral lesions were apparent. This specimen
was collected in Beja district, one of the southern regions with higher
seroprevalence of canine leishmaniasis (12.12%) (Cortes et al., 2012).
Sequencing analysis of the kinetoplastid DNA allowed the identification
of L. infantum and phylogenetic inference by ML suggested a closer
genetic relationship of this strain with other L. infantum strains from
mainland Portugal, originating from dogs and humans. This geographic
relationship of Leishmania sp. isolates and, particularly, the genetic
relatedness between strains circulating in the wild and in more huma-
nized environments emphasize that the interface between these two
compartments at a local scale may be attenuated by the vector-borne
nature of Leishmania transmission.

The historical process that led to Egyptian mongoose colonization of
Iberia is an issue that is still under debate. While Gaubert et al. (2011)
proposed that mongooses reached Iberia through the Strait of Gibraltar

during the Middle to Late Pleistocene, more recently Detry et al. (2018)
collected data that suggested that this herpestid might have been in-
troduced by the Romans, during their presence in Hispania. This
African origin of mongoose could provide additional clues for an an-
cient Leishmania/mongoose relationship.

Mongoose have underwent a tremendous natural expansion process
in the last decades from southern to northern Portugal. And recently,
the species also invaded the North-eastern areas of the country, from
where it was absent in the beginning of twentieth century (Barros et al.,
2015, 2016). The recent abandon of croplands, rural depopulation,
prodigious bio-ecological adaptability, generalist opportunistic beha-
viour and lack of natural predators, possibly cumulatively led to this
expansion success (Barros et al., 2015). Some population biology as-
pects of this mesocarnivore species are still largely unknown, namely its
health status, contribution to pathogen cross-species transmission and
competence as Leishmania spp. reservoir. Although mongooses have
distributions across several African regions and some SW European
areas, Leishmania infection has only been reported in two mongooses
from Sudan (Elnaiem et al., 2001). In the report from Elnaiem and
collaborators (2001), DNA sequences were not publicaly available for
phylogenetic comparison, but the authors reported that the species L.
donovani was responsible for infection in mongoose.

A recent report identified L. infantum DNA in rodents, lagomorphs
and wild carnivores from Southeast Spain, including stone marten,
common genet and red foxes (Risueño et al., 2018). The red fox was the
second most tested species [13.6% (18/132)] in our study. Although it
is frequently reported as an L. infantum carrier and a previous study
performed in the 80's in the Arrábida region (mainland Portugal)
identified positive animals (Abranches et al., 1983), no kDNA-positive
red fox could be confirmed among the population we surveyed. Other
species, such as the stone marten, common genet and European badger
have occasionally been found positive in other regions of the world, but
we did not find any evidence of positive cases, which could also be
related with the limited number of samples examined from these spe-
cies.

This study enabled the detection of L. infantum infection in wildlife
from Western Iberia. Such data contributes to consolidate knowledge
on the epidemiology of this pathogen in the Mediterranean basin and
identifying, for the first time, Herpestes ichneumon as a possible carrier
host in Portugal. Although the results obtained suggest that most me-
socarnivore species are not particularly exposed to this parasite in
Portugal, it is necessary to carry out further studies to better clarify the
role of wild carnivores and taxa, such as leporids and rodents, in the
enzootic Leishmania transmission cycle and the potential consequences
thereof. The limited number of positive cases in this study may also
suggest that tissue tropism of Leishmania sp. may vary according to host
species. To confirm this hypothesis, future studies should consider
testing skin and other organs besides spleen. Furthermore, xeno-
diagnostic analyses could also bring some light into the role of this
species as a reservoir or as dead-end host. Anthropogenic changes of
ecosystems resulting in the expansion or overabundance of particular
wild species, such as the mongoose, may provide more opportunities for
direct or indirect contact with domestic animals and humans, sig-
nificantly affecting protozoan distribution and risk.

The surveillance programs directed towards wildlife or focused on
particular pathogens should thus be adapted and extended to other
animal taxa and regions of the national territory. Such programs should
be a priority in areas where interaction between wild animals, domestic
animals, and humans is pronounced, the prevalence in dogs is high and
the control strategy is insufficient. Scrutiny in areas wherein natural
and anthroponotic conditions propitiate proliferation of phlebotomine
vectors should also be granted.
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