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Simple Summary: Methane is one of the main contributors to climate change. A potential to reduce
emissions by genetic selection exists; however, the genetic architecture of methane production
remains largely unknown. We aimed to estimate its heritability and to perform genome-wide
association studies for the identification of candidate genes associated with daily methane production
and concentration. Methane was measured in the air exhaled by dairy cows during milking in an
automated milking system and was analyzed using genomic information that was available for some
of the cows. We showed that methane production and concentration are partly controlled by genes;
however, no major genes were found. The estimated heritabilities indicate that selection for lower
methane emission could be successful.

Abstract: The genetic architecture of methane (CH4) production remains largely unknown. We
aimed to estimate its heritability and to perform genome-wide association studies (GWAS) for the
identification of candidate genes associated with two phenotypes: CH4 in parts per million/day
(CH4 ppm/d) and CH4 in grams/day (CH4 g/d). We studied 483 Polish Holstein-Friesian cows kept
on two commercial farms in Poland. Measurements of CH4 and carbon dioxide (CO2) concentrations
exhaled by cows during milking were obtained using gas analyzers installed in the automated
milking system on the farms. Genomic analyses were performed using a single-step BLUP approach.
The percentage of genetic variance explained by SNPs was calculated for each SNP separately and
then for the windows of neighbouring SNPs. The heritability of CH4 ppm/d ranged from 0 to 0.14,
with an average of 0.085. The heritability of CH4 g/d ranged from 0.13 to 0.26, with an average of
0.22. The GWAS detected potential candidate SNPs on BTA 14 which explained ~0.9% of genetic
variance for CH4 ppm/d and ~1% of genetic variance for CH4 g/d. All identified SNPs were located
in the TRPS1 gene. We showed that methane traits are partially controlled by genes; however, the
detected SNPs explained only a small part of genetic variation—implying that both CH4 ppm/d and
CH4 g/d are highly polygenic traits.

Keywords: methane emission; dairy cows; genome-wide association study

1. Introduction

Methane (CH4) is one of the main contributors to climate change. Its global warming
potential over 100 years is 28 times higher than that of carbon dioxide (CO2) [1]. Among
various sources of emissions, the livestock industry plays an important role [2]. Although
CH4 does not accumulate over time, by reducing its emission the livestock industry can
slow down the climate change process [3].

Among enteric methane mitigation strategies, which include nutritional and manage-
ment strategies, selective breeding to reduce the amount of methane produced per kg of
milk is of interest. Genetic reduction of CH4 emission requires measurements of emission
from many animals. Emission of CH4 can be measured in several ways. One group of mea-
suring methods is breath analyzing techniques. These are well-documented methods based
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on the principle that about 90% of enteric CH4 is released during eructation events and by
breathing [4]. These methods are cost-effective and non-invasive. Some of them are based
on infrared spectroscopy and have been used successfully by several research groups [5–7],
showing the possibility of acquiring large amounts of data suitable for genetic analysis.

Once the methane measurements are collected, one may define various methane phe-
notypes, which include: methane production, methane intensity, methane yield, or residual
methane production [8]. Commonly, the amount of methane produced by an animal [9,10]
is expressed in grams or liters of CH4 per day, which is calculated in accordance to Madsen
et al. (2010) [11]. The aforementioned phenotype is based on the CH4/CO2 ratio (ppm)
multiplied by CO2 L/day estimated from the heat production unit [11,12]. An alternative
solution is to use raw CH4 concentrations, which are obtained without taking into account
other traits. Thus far there have been few studies based on direct CH4 emission [13,14],
and only the study of van Engelen et al. (2018) [15] provides heritability estimates—but
without a focus on more detailed genetic architecture.

The genetic architecture of CH4 remains largely unknown. Several studies have
attempted to approach this issue, and results indicate that genes control approximately
20–30% of methane emission variability [9,10,16]. Differences between the estimates may
arise from the complexity of the emission process and differences between populations and
periods of measurement. In addition, the emission process is affected by several factors,
e.g., biological processes in the rumen, type of diet, amount of feed intake, and size of the
animal [17].

In this paper, we aim to estimate heritability for two methane phenotypes: CH4 ppm/day
(CH4 ppm/d) and CH4 grams/day (CH4 g/d), and to perform genome-wide association
studies (GWAS) for the identification of candidate genes associated with CH4 ppm/d and
CH4 g/d in the air exhaled by dairy cows.

2. Materials and Methods

We studied 483 Polish Holstein-Friesian cows kept on two commercial farms in Poland.
Detailed information on farms, measuring set-up, and data processing of records used in
this study can be obtained from Pszczola et al. (2017) [7]. The CH4 and CO2 concentrations
were measured on Farm 1 during two periods: from 02 December 2014 to 03 February
2016, and 01 June 2016 to 17 September 2016 from the 15th to 305th day in milk (DIM).
Measurements on Farm 2 were taken over the period of 05 February 2016 to 14 March
2016, from the 5th to 305th DIM. Measurements of CH4 and CO2 concentrations were
taken during milking using an FTIR gas analyzer (GASMET 4030; Gasmet Technologies Oy,
Helsinki, Finland) that was installed in the feeding bin of the Automated Milking System
(AMS, Astronaut, Lely Industries, NV, Maassluis, The Netherlands). Cows were milked
repeatedly during the experiment.

Measurements of CH4 and CO2 concentrations were corrected for diurnal variation
with a Fourier series approach [18,19] using the model described by Pszczola et al. (2017) [7],
and averaged per cow per day. Therefore, the analyzed phenotypes were daily average
CH4 concentrations (CH4 ppm/d), with a total of 34,359 CH4 measurements. The detailed
number of observations and average CH4 emission per farm, along with production
parameters, are presented in Table 1. The cows had ad-libitum group access to partial
mixed rations, and additional concentrates were given to cows during milking. Further
details on the feeding regime can be obtained from Pszczola et al. (2017) [7].
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Table 1. Average CH4 measurements, live weight, fat–protein corrected milk (FPCM) and number of
records per farm.

Farm 1 Farm 2

Mean SD Mean SD

CH4 ppm/day 505 190 517 166
CH4 g/day 396 59.70 503 93.20

Live weight (kg) 544 115 669 73
FPCM (kg) 33.70 6.82 36.60 8.79

No. of records 31,179 3180

CH4 production was calculated based on Madsen et al. (2010) [11] by multiplying the
CH4 to CO2 concentration ratio by the expected CO2 production (liters/day) estimated
from heat production [11,12]. This estimation of CO2 production used the milk production,
live weight, and day of pregnancy obtained from the AMS system. This resulted in an
estimated CH4 production expressed in liters per day, and was converted to grams per day
using a CH4 density of 0.668 g/L, which assumes normal temperature (20 ◦C) and pressure
(101.325 kPa). For more details, see Pszczola et al. (2017) [7].

Overall, 330 of the 483 cows were genotyped with the Illumina BovineSNP50 v2.0
BeadChip (Illumina Inc., San Diego, CA, USA). The SNP data were processed with the
following quality control checks: (1) being in Hard–Weinberg equilibrium, (2) not being
monomorphic, and (3) having an SNP call rate of above 0.95. We also removed SNPs
located on the sex chromosomes and unassigned SNPs. Six cows were removed as they
had a call rate below 0.9. After quality control, 39,269 SNPs remained for the genome-wide
association analysis.

The statistical model used for estimation of (co)variance components included random
and fixed effects, which were selected based on the Akaike information criteria obtained
from the lme4 package in R software [20,21]. Variance components were estimated using
the REML approach in airemlf90 software [22].

The final model was the following:

CH4ijkl = LACj + ∑4
n=1 βnDIMkn + FYWl + ∑3

n=1 animalinDIMkn+

∑3
n=1 peinDIMkn + eijkl

(1)

in which CH4ijkl is the raw average daily CH4 concentration in ppm of the ith cow in
the jth lactation, on the kth day in milk (DIM) over a range of 5th to 305th day, and the
lth farm-year–week of the measurement; βn are fixed regression coefficients. Lactation
(LAC) had two levels: 1 and 2+, for which records up to lactation 8 were included. The
general lactation curve was modeled using third-order Legendre polynomials and random
animal (animal), and permanent environment (pe) effects were modeled with second-order
Legendre polynomials [23].

The covariance structure for model (1) was:

var

 animal
pe
e

 =

 G⊗H
0
0

0
P⊗ I

0

0
0

Iσ2
e

, (2)

where G and P are covariance matrices of the random regression coefficients for animal and
permanent environment effects, ⊗ is the Kronecker product, H is the combined pedigree
and genomic relationship matrix, I is an identity matrix and σ2

e is the residual variance.
The G matrix was defined as:

G =
ZZ′

2 ∑j pj
(
1− pj

) , (3)
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where Z contains genotypes adjusted with allele frequency and pj is the allele frequency for
marker j [24]. The H matrix was created as in [25,26]:

H =

(
A11−A12A−1

22 +A12A−1
22 GA−1

22 A21 A12A−1
22 G

GA−1
22 A21 G

)
, (4)

where subscripts 1 and 2 represent ungenotyped and genotyped animals, respectively, A is a
pedigree matrix and G is a genomic relationship matrix. All three matrices were computed
using the BLUPF90 suite of programs [22]. To investigate the existence of a possible
population structure, we performed principal component analysis on the calculated G
matrix.

Some of the animals with phenotypes were not genotyped. Therefore, to utilize
all the available information for estimating SNP effects, we used a single-step genomic
BLUP (ssGBLUP) method that integrates phenotypes, genotypes, and pedigree informa-
tion [25,26]. Genome-wide association studies were conducted with the BLUPF90 suite of
programs [27]. The implemented algorithm uses the ssGBLUP procedure, which fits all
the SNPs simultaneously and then obtains estimates of marker effects and their associated
p-values from the estimated breeding values [28,29]. The main advantage of using ssBLUP
for GWAS is the potential for using ungenotyped animals and the lack of need for using
de-regressed phenotypes. The threshold for identifying significant SNPs was p ≤ 0.05;
therefore, after Bonferroni correction to account for multiple testing (i.e., 0.05/39,269), we
obtained a threshold of 5.9 on the -log10 scale.

Next, we calculated the proportion of genetic variance explained by significant SNPs.
In addition, we calculated the proportion of genetic variance explained by the moving
windows of adjacent SNPs. We used two approaches to define the windows: in the
first, window size was arbitrarily fixed to 50 SNPs, and in the second, window size
was set according to the average length of the haplotype block. A haplotype block was
required to have at least 95% of combinations of SNPs within a region in very high linkage
disequilibrium [30]. As the average block length in the bovine genome is 69.7 +/− 7.7 kb,
the window size was set to 70 kb. As a result, the number of SNPs grouped per window
varied from 1 to 5 SNPs across the chromosomes. In the final step, potential candidate SNPs
were checked in the Cow QTL database [31] for linkage to previously detected quantitative
trait loci (QTLs) for CH4 production or other traits.

3. Results
3.1. CH4 Measurements

Variances of average daily CH4 ppm/d were 36,401 (CH4 ppm/d)2 for Farm 1 and
27,820 (CH4 ppm/d)2 for Farm 2 and differed significantly (Bartlett test p-value < 0.001).
Variances of average daily CH4 g/d were 7789 (CH4 g/d)2 for Farm 1 and 10,962 (CH4 g/d)2

for Farm 2 and differed significantly (Bartlett test p-value < 0.001). Animals on Farm 1
and Farm 2 produced similar amounts of CH4 ppm/d (Table 1). Although Farm 2 had
higher CH4 concentrations by about 12 ppm than Farm 1, differences between average
CH4 ppm/d per farm were not statistically significant (Welch two-sample t-test). In the case
of CH4 g/d (Table 1), Farm 2 had higher CH4 concentrations by 107 g and was significantly
different from Farm 1 (p-value < 0.001, Welch two-sample t-test).

3.2. Variance Components

Genetic, permanent environment, and residual variances for CH4 ppm/d throughout
lactation—estimated using model (1), identical to Pszczola et al. (2017) [7]—are presented
in Figure 1. The genetic variance was, on average, 2928 (ppm/d)2 and systematically rose
during lactation—reaching a maximum of 5967 (ppm/d)2 at the end of lactation. Permanent
environment variance fluctuated during lactation, with an average of 9832 (ppm/d)2, a
maximum of 20,466 (ppm/d)2 on the 5th DIM, a minimum of 7952 (ppm/d)2 on the 85th
DIM, and 14,156 (ppm/d)2 on the 305th DIM. The residual variance was estimated at
21,568 (ppm/d)2.
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Genetic, permanent environment effect, and residual variances for CH4 g/d through-
out lactation, estimated using model (1), are presented in Figure 2. The genetic variance
fluctuated during lactation, with an average of 1199 (g/d)2, a maximum of 1486 (g/d)2 on
the 5th DIM, and a minimum of 853 (g/d)2 on the 292nd DIM. Permanent environment
variance also fluctuated with a mean of 1709 (g/d)2, a maximum of 3397 on the 305th
DIM, and a minimum of 1016 on the 102nd DIM. The residual variance was estimated at
2620 (g/d)2.

Animals 2021, 11, x FOR PEER REVIEW 5 of 12 
 

Genetic, permanent environment effect, and residual variances for CH4 g/d through-
out lactation, estimated using model (1), are presented in Figure 2. The genetic variance 
fluctuated during lactation, with an average of 1199 (g/d)2, a maximum of 1486 (g/d)2 on 
the 5th DIM, and a minimum of 853 (g/d)2 on the 292nd DIM. Permanent environment 
variance also fluctuated with a mean of 1709 (g/d)2, a maximum of 3397 on the 305th DIM, 
and a minimum of 1016 on the 102nd DIM. The residual variance was estimated at 2620 
(g/d)2. 

 
Figure 1. Residual (dotted line), permanent environment (dashed line), and genetic (solid line) var-
iances (ppm/d)2 throughout lactation for CH4 ppm/d. 

 
Figure 2. Residual (dotted line), permanent environment (dashed line), and genetic (solid line) var-
iances (g/d)2 throughout lactation for CH4 g/d. 

3.3. Heritability Estimates 

Figure 2. Residual (dotted line), permanent environment (dashed line), and genetic (solid line)
variances (g/d)2 throughout lactation for CH4 g/d.



Animals 2021, 11, 3175 6 of 12

3.3. Heritability Estimates

The heritability of CH4 ppm/d systematically rose during lactation (Figure 3) starting
at 0 on the 5th DIM and reaching a maximum of 0.14 at the end. The average heritability was
0.085. The heritability of CH4 g/d (Figure 3) fluctuated with a mean of 0.22, a maximum of
0.26 on the 128th DIM, and a minimum of 0.13 on the 305th DIM.
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3.4. Genome-Wide Association Study

The principal component analyses showed two clusters (Figure 4), indicating the pres-
ence of a family structure. Animals from both farms were present in the two clusters. The
obtained PC scores were small and explained 3.4% (PC1) and 2.5% of variance, respectively.
p-values were obtained to identify candidate SNPs associated with CH4 ppm/d and with
CH4 g/d, and we found that none of the tested SNPs was significantly associated with
the phenotypes. To identify candidate regions, we evaluated SNPs in 70 kbp and 50 SNP
windows for CH4 ppm/d and CH4 g/d. The analysis using 70 kbp windows did not detect
any promising SNPs. However, the 50-SNP window approach detected potential candidate
SNPs on BTA 14 which explained more than 0.09% of variance for CH4 ppm/d (Figure 5)
and more than 1% of genetic variance for CH4 g/d (Figure 6). The discussed SNPs (Table 2)
are located in the TRPS1 gene, which has been previously associated with milk fat yield, as
evidenced by QTL:181825 [31].
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Table 2. Candidate SNPs detected for both CH4 g/d and CH4 ppm/d, their position in base pairs,
and percentage of genetic variance explained by them (%).

BTA SNP Name Position (bp) (%) CH4 g/d (%) CH4 ppm/d

14 BTB-00568855 48890778 1.62 1.19

14 Hapmap57707-
rs29024913 48858864 1.31 1.01

14 UA-IFASA-9208 48726666 1.05 0.93
14 ARS-BFGL-NGS-45675 48679326 1.09 0.92

4. Discussion
4.1. CH4 Measurements

The CH4 measurements varied across farms 1 and 2 for both CH4 ppm/d and CH4 g/d.
According to Huhtanen et al. (2015) [32], potential sources of higher differences between
farms may be sampling locations with different airflow patterns and cow variation in
exhalation rate. Animals at Farm 2 were heavier (about 125 kg) and produced about 3 kg
milk more per day (for more details see Table 1). This may indicate differences in feed
intake or feed efficiency, although an investigation of this would require feed intake data,
which were unavailable as the measurements were taken on commercial farms.

4.2. Variance Components

Estimates of genetic variance for CH4 g/d were lower when compared to the study of
Pszczola et al. (2017) [7], who used the same method and data, but no genotypes. There-
fore, the use of genotypes lowered the estimates. Fluctuations of permanent environment
variance in both traits and high levels of residual variance are probably as a result of unac-
counted disturbances such as changes in the exhalation rate of the cows, head movement,
or changes in the airflow around the feeding bin that could have been present during the
measuring period [32,33].
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4.3. Heritability Estimates

Pszczola et al. (2017) [7] reported an average heritability of 0.27 for CH4 g/d for
pedigree-based analyses of 483 Polish Holstein-Friesian cows. In this current study, the
addition of genotype data for 330 of the 483 animals resulted in a decrease in the heritability
estimates, suggesting that the genetic influence on CH4 g/d may be lower than previously
estimated. Lassen and Lovendahl [34] reported a heritability of 0.21 for Holstein-Friesian
cattle, and heritability estimates for CH4 g/kg of dry matter intake (DMI) predicted
from milk fat composition ranged between 0.12 and 0.44 [16]. A possible explanation for
these differing results is the higher number of observations (e.g., Lassen and Lovendahl
(2016) [13] used records collected from 3121 animals in their study). Direct comparison
of CH4 heritability estimates from a range of studies requires traits that are comparable
with one another. The CH4 g/kg of DMI in the study of van Engelen et al., 2015 [16]
is predicted from milk fat composition; therefore, its heritability estimates depend on
production parameters. Genomic studies based on CH4 g/kg of DMI could result in
studying production parameters and not CH4 emission itself. An alternative could be
studies based on direct CH4 measurements. The CH4 production expressed in CH4 g/d
is calculated using a ratio of direct measurements of CH4 and CO2 multiplied by the
predicted heat production, which is calculated using production parameters (i.e., fat–
protein corrected milk), resulting in higher CH4 emission heritability estimates. Therefore,
while the CH4 g/d is based on direct CH4 measurements, it is still to some extent associated
with cow production traits. Lassen and Lovendahl (2016) [34] indicated a positive additive
genetic correlation of 0.43 ± 0.10 between CH4 g/d and fat–protein corrected milk, which
may have an impact on the results of the genetic studies on CH4 g/d. Van Engelen et al.
(2017) [15] used log10-transformed CH4 ppm/d and obtained a heritability of 0.11. This
was a similar phenotype to that of CH4 ppm/d presented in this current study, since it
also is based only on direct CH4 measurements, without any additional traits involved in
the calculations. Heritability estimates of both CH4 ppm/d and log10-transformed CH4
ppm/d are relatively low when compared to other CH4 phenotypes. While genetic studies
based on CH4 ppm can remain unaffected by other traits, estimates of CH4 ppm/d or
log10-transformed CH4 ppm/d are affected by environmental factors and animal behavior
during the measuring time. The exhalation rate of the cow, head movement, or changes in
the airflow around the feeding bin may affect CH4 ppm/d estimation and, as a result, may
affect the estimation of CH4 ppm/d heritability [32,33]. It is, therefore, still unclear which
phenotype is more reliable, and more studies are required in this field.

4.4. Genome-Wide Association Study

The principal component analysis showed some stratification in the population; how-
ever, the magnitude of PC values was small, and both farms were represented in the two
clusters (Figure 4). As shown by Mancin et al. [35], who analyzed the impact of different
population structures on GWAS results, the level of stratification present in our data should
have no influence on our analyses.

QTLs linked to the development of the digestive tract were identified by Pszczola et al.
(2018) [9] using similar data, but with CH4 g/d phenotype and a Bayesian variable selection
method [36]. In this study, we used single-step GWAS for post-analyses of ssBLUP, since it
allows the inclusion of non-genotyped animals and thus provides more insight into the
genetic architecture of the studied trait. The use of different methods on the same dataset
also allows for the validation of previous results, as well as providing a reference point for
the analysis of the new CH4 phenotype (i.e., CH4 ppm/d). In our current approach, none
of the SNPs reported by Pszczola et al. (2018) [9] reappeared, which could indicate that
Bayesian variable selection is more sensitive than the single-step GWAS approach.

Several studies [37–39] used the GBLUP method for estimation of marker effects for
GWAS and Aguilar et al. (2019) [28] indicated an empirical agreement between association
studies on beef cattle in the literature and their findings based on single-step GWAS.
Legarra et al. (2018) [40] also showed similarities between the results of the Bayesian
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approach and the GBLUP approach for GWAS studies. Pszczola et al. (2018) [9] used the
Bayesian approach for the GWAS analyses of CH4 g/d, for which only genotyped animals
could be used. In this current study, we decided to use ssGWAS, as it allowed us to include
all the 483 phenotyped animals, of which only 330 were genotyped. A larger number of
both genotyped and ungenotyped animals can improve the power of a GWAS analysis;
however, in our case, it did not yield a higher number of significant SNPs as compared
with Pszczola et al. (2018) [9].

In this study, we detected potentially novel SNPs for both CH4 ppm/d and CH4 g/d.
The identification of the same SNPs in both traits—which express CH4 emission differently—
may indicate a true association with CH4 emission. However, the found QTLs, similar
to previous studies, explained only a small percent of the genetic variation— suggesting
either the need for analysis on a larger dataset or a lack of SNPs with a large effect on
the analyzed traits. Another possible reason for finding a small number of SNPs with
significant effects on the investigated trait is the size of the SNP chip used. In this study we
used the Illumina BovineSNP50 v2.0 BeadChip; possibly, a higher density chip would help
to pin-point more significant SNPs.

5. Conclusions

This research aimed to study the genetic architecture of the CH4 ppm/day and CH4
g/day phenotypes. The obtained heritabilities of both traits indicated that CH4 emission
is partially controlled by genes. While GWAS studies reported potentially novel SNPs
associated with both CH4 phenotypes, all SNPs were associated with only one gene and
explained only a small percent of the genetic variation. We conclude that both CH4 ppm/d
and CH4 g/d are highly polygenic traits; thus, the identification of a specific gene or region
will be challenging and will require large datasets.
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