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ABSTRACT
The estimation of postmortem interval (PMI) has long been a focal point in the field
of forensic science. Following the death of an organism, microorganisms exhibit a
clock-like proliferation pattern during the course of cadaver decomposition, forming
the foundation for utilizing microbiology in PMI estimation. The establishment of
PMI estimation models based on datasets from different seasons is of great practical
significance. In this experiment, we conducted microbiota sequencing and analysis
on gravesoil and mouse intestinal contents collected during both the winter and
summer seasons and constructed a PMI estimation model using the Random Forest
algorithm. The results showed that the MAE of the gut microbiota model in summer
was 0.47± 0.26 d, R2= 0.991, and theMAE of the gravesoil model in winter was 1.04±
0.22 d, R2= 0.998.Wepropose that, in practical applications, it is advantageous to selec-
tively build PMI estimation models based on seasonal variations. Additionally, through
a combination of morphological observations, gravesoil microbiota sequencing results,
and soil physicochemical data, we identified the time of cadaveric rupture for mouse
cadavers, occurring at around days 24–27 in winter and days 6–9 in summer. This
study not only confirms previous research findings but also introduces novel insights,
contributing to the foundational knowledge necessary to advance the utilization of
microbiota for PMI estimation.

Subjects Microbiology, Pathology
Keywords Rupture, PMI estimation, Season, Microbiota, Random Forest

INTRODUCTION
The utilization ofmicrobial information relevant to cadavers for the purpose of postmortem
interval inference (PMI) has ushered in a novel trajectory within the domain of forensic
science (Metcalf et al., 2017; Ziqi et al., 2021). Progressing from cadaver temperature
measurement (Brown & Marshall, 1974), bodily fluid analysis (De-Giorgio et al., 2021),
and the collection of data on necrophagous insect growth and development (Amendt et
al., 2011), to the examination of bio-macromolecular compounds (Peng et al., 2020), the
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methodologies for estimating PMI are continuously advancing. Nonetheless, inherent
limitations such as the constrained temporal range of PMI, restricted applicability
conditions, and significantmargin of error persist, prompting researchers to actively explore
supplementary methodologies. Microorganisms constitute the primary contributors
to cadaver decomposition (Carter, Yellowlees & Tibbett, 2007), the temporal alterations
within microbial communities accompanying cadaver decomposition have captivated the
attention of investigators. The capacity of microbial consortia to respond predictably to
environmental fluctuations (Metcalf et al., 2017) affording them a distinct advantage in
predictive capacities.

Microbial communities associated with the host and environment, especially the gut
microbiota, are observed to undergo synchronized growth and proliferation during the
progression of cadaver decomposition, originating from the cecum and disseminating
towards the liver, spleen, and various parts of the body (Metcalf et al., 2016; Ziqi et al.,
2021). From the body parts involved in the study, the current research on utilizing
microbial information from diverse biological samples for PMI estimation primarily
encompasses gastrointestinal, skin, scalp, liver, oral, heart, brain, and blood samples (Dong
et al., 2019; Javan et al., 2016; Li et al., 2023; Tuomisto et al., 2013). Notably, investigations
on the gastrointestinal tract aremore abundant, encompassingmultiple segmented regions.
As the postmortem interval prolongs, a reduction in the relative abundance of the phyla
Bacteroidetes and Lactobacillaceae is observed in the proximal colonmicrobiota of decaying
bodies (Hauther et al., 2015). The diversity in the cecal region decreases significantly,
whereas microbial abundance increases (DeBruyn & Hauther, 2017). Rat rectal bacterial
diversity and richness both exhibit a declining trend (Li et al., 2018). Compared to the
gastrointestinal tract, the microbial composition of body surfaces such as the skin and hair
may play a more significant role in forensic applications (Neckovic et al., 2021). Research
on the microbiota of murine abdominal cavities and the surrounding skin suggests that
skin samples can provide additional information for PMI assessment (Metcalf et al.,
2013). Moreover, microbial information is particularly informative in the early stages of
cadaver decomposition for PMI inference. A comprehensive study indicates that facultative
anaerobes dominate in bodies with shorter postmortem intervals, while obligate anaerobes
dominate in longer intervals (Can et al., 2014). Although research into microbial-based
PMI inference is expanding, it remains considerably distant from practical application,
necessitating continued in-depth investigation.

Microbiology has achieved significant breakthroughs propelled by the advancement of
artificial intelligence (Arrieta et al., 2020). Machine learning can extract patterns within
data, and subsequently utilize these patterns for predicting and decision-making in real-
world events (Jordan & Mitchell, 2015). It holds pronounced value inmanaging the vast data
generated frommicrobial sequencing (Jiang et al., 2022; Zou et al., 2020). The classification
analysis finds application in personal identification (Meadow, Altrichter & Green, 2014),
cause of death analysis (Highet et al., 2014), and geographical inference (Habtom et al.,
2019). The regression analysis holds remarkable significance in estimating time of death.
With the aid of machine learning, numerous PMI prediction models have been established,
such as the PMI prediction model based on bacterial communities within the cecum of
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rats, exhibiting accuracies of 90.48% for the 0–7 days and 9–30 days prediction groups,
with average absolute errors (MAEs) of 0.580 days and 3.165 days respectively (Li et al.,
2023). Results from predictive models (Random Forest, RF) constructed using microbial
samples from the oral cavity and skin of pig cadavers demonstrate an impressive 94.4%
concordance between predicted PMI and actual PMI (Pechal et al., 2014). Another study
involving diverse machine learning algorithms for predicting microbiome information
from various organs of mice indicates that the Artificial Neural Network (ANN) model
yields the best results when applied to postmortemmicrobial datasets from the cecum. The
MAE within 24 h is 1.5 ± 0.8 h, while within 15 days, it is 14.5 ± 4.4 h (Liu et al., 2020).
The utility of machine learning algorithms has further fortified the applicability of utilizing
cadaver microbiome data for PMI inference.

The surrounding soil of a cadaver is also a reservoir of extensive microbial information,
and the introduction of decomposition byproducts from the cadaver into its surrounding
environment induces alterations in the adjacent microbial communities (Bergmann,
Ralebitso-Senior & Thompson, 2014). Previous studies have substantiated that the bacterial
succession in soil surrounding buried cadavers exhibits temporal variations in relation to
the PMI (Cobaugh, Schaeffer & DeBruyn, 2015). Therefore, on the basis of our previous
study (Cui et al., 2023), this study focuses on mice cadavers and the associated burial soil
(gravesoil), while also accounting for seasonal factors, employing a Random Forest-based
model to construct a PMI inference framework. Moreover, our investigation identifies the
time points at which cadaveric rupture occurs during the decomposition process. These
findings lay the theoretical foundation for enhancing the utility of cadaver-associated
microbiota data in PMI estimation.

MATERIALS & METHODS
Mice model preparation and samples collection
The experimental procedure, animal use and protocols involved in this study have been
approved by the Ethics Committee of Central South University (No.2020KT-36). A total of
65 specific pathogen-free (SPF) mice were used for winter experiments, and 45 mice were
used for summer experiments. The experimental mice (a total of 110) were provided by
Nanjing Qinglongshan Animal Breeding Farm, with an average weight of approximately
20 g per mouse. The mice were sacrificed by cervical dislocation, and corpses were placed
in pre-dug pits within the forest located at the Zhongshan Mausoleum in Nanjing, China
(32◦04′N, 118◦50′E). The square plastic containers were placed upside down over the
carcasses and buried with about 10 cm of soil. No other processing steps were performed.

Sampling was conducted during winter at days 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33,
and 36, and during summer at days 0, 3, 6, 9, 12, 15, 18, 21, and 24. At each time point,
the contents of the complete intestinal tract of 5 mice were extracted and rapidly frozen
in liquid nitrogen, and stored at −80 ◦C. The gravesoil were divided into two portions:
one was stored at −80 ◦C for microbial analysis, and the other was air-dried for soil
physicochemical property testing. As a control, soil from a location 10 m away from the
burial site was also collected. The soil temperature (◦C) and relative humidity (%) were
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measured in situ using a soil tester (TA8672, TASI, China). The chemical parameters of
soil samples, including total carbon (TC, mg/Kg) content, total nitrogen (TN, mg/Kg)
content, pH, and ammonium content, were determined using an elemental analyzer (multi
EA 5000, Analytik Jena AG, Germany), flow analyzer (Seal AutoAnalyzer AA3; SEAL
Analytical, Germany), and pH meter (PB-10; Sartorious, Germany).

DNA extraction, high-throughput sequencing and amplicon data
preprocessing
Total DNA from intestinal contents and gravesoil was extracted using the Soil
FastDNA™ Spin Kit (MP Biomedicals, Santa Ana, CA, USA). As a template, the V3-
V4 region of the 16S rRNA gene was PCR-amplified using primers with barcodes. The
amplification primers used were 341F (5′-CCTACGGGNGGCWGCAG-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′). Amplicons were detected and purified on a 2%
agarose gel using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City,
CA,USA), specifically isolating fragments within the 400–500 bp range. The TruSeq® Nano
DNA LT Library Preparation Kit (Illumina, San Diego, CA, USA) was employed to generate
sequencing libraries. Library quality was assessed using the Quant-iT PicoGreen dsDNA
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) and the Agilent Bioanalyzer
2100 System (Agilent, Santa Clara, CA, USA). Sequencing was performed on the Illumina
MiSeq PE300 platform (Illumina), yielding raw data.

The ‘‘fastq_mergepairs’’ command from VSEARCH (Rognes et al., 2016) was employed
for merging paired-end sequences and subsequently renaming each sequence according
to its corresponding sample. Primer sequences and lengths were determined, and sample
barcode sequences were extracted. The ‘‘fastx_filter’’ command was utilized to trim
primer sequences and barcodes from both ends, ensuring a quality control error rate
of <1%. The ‘‘derep_fulllength’’ command was applied to eliminate redundancy in the
sequences, resulting in a reduction of data volume by at least one order of magnitude
to alleviate downstream analytical burden. Following 97% clustering using USEARCH
(Edgar, 2010), representative sequences, either the most abundant or the centroids, were
selected as the output. The generation of an OTU feature table was accomplished through
the ‘‘usearch_global’’ command in VSEARCH, and taxonomic annotation was performed
using the SILVA database (version 123).

The raw data have been uploaded to the NCBI BioProject under the number
PRJNA893350.

Data analysis
The α-diversity index is employed for assessing the species richness and evenness of
samples. The adequacy of sequencing data is evaluated through the rarefaction curve;
a flattening curve indicates reasonable sequencing depth. In the context of β-diversity
analysis, NMDS (Non-metric multidimensional scaling) is employed to investigate
compositional differences in microbial communities among various samples (Rivas et
al., 2013). An optimal result is achieved when Stress <0.1, with values closer to 0 indicating
better fit. PERMANOVA (Permutational multivariate analysis of variance) is employed to
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assess the goodness of fit of different grouping factors to sample dissimilarities, employing
permutation tests for statistical significance (Anderson, 2005). The F. Model represents the
F-test statistic, R2 indicates the proportion of sample dissimilarity explained by different
groupings, with larger R2 values indicating higher explanatory power of groupings, while
Pr denotes the P-value obtained from permutation tests; smaller P-values signify greater
inter-group disparity significance. A P < 0.05 signifies high confidence in the reliability
of the analysis. The taxonomic distribution of samples at various hierarchical levels is
presented using a stacked bar plot.

Using GraphPad Prism v9.0 to visualize the changes of the labeled bacteria of the
rupture and soil physicochemical factors over time. RDA (Redundancy Analysis) is a form
of ordination analysis used to explore the impact of environmental factors on the structure
of biological communities (Franklin et al., 2006). RDA seeks a projection that maximizes
the variance of response variables while simultaneously retaining the most information
from predictor variables.

Analysis tools encompassed the R software’s vegan, dplyr, and ggplot2 packages.

Random forests and PMI estimation
The analysis ofmicrobiomedatasets using theRandomForestmodel has been demonstrated
to possess high robustness and superior accuracy (Belk et al., 2018). Regression analyses
of microbial sequencing data were conducted using the Random Forest package in the
R language to establish PMI inference models for both murine gut microbiota and soil
microbiota. Initially, regression analyses were performed on sample datasets derived from
different anatomical locations during winter and summer seasons at six taxonomic levels:
phylum, class, order, family, genus, and species. The goodness of fit in the regression
results was comprehensively assessed to identify the most suitable dataset for model
establishment through training. Subsequently, ten-fold cross-validation was employed
to select marker species, ranked based on their contributions, and represented through
heatmaps. Model evaluation was carried out using correlation coefficients (R2) and Mean
Absolute Error (MAE). A high value of R2 should be closer to 1, indicating a stronger
predictive performance of the model. A smaller value of MAE signifies greater accuracy in
the model’s predictions.

RESULTS
Mouse cadaver decomposition progression
Figure 1 shows the cadaver changes during decomposition of mouse cadavers. In the winter
season, the experimental period for mice lasted for 36 days. In comparison to the mice
on day 24, which exhibited swelling, there was a noticeable collapse in the cadavers by
day 27, becoming even more pronounced by day 30. During the summer experiments,
which spanned 24 days, there was a significant and apparent cadaveric decomposition
and swelling on day 6, followed by a collapse on day 9, culminating in extensive cadaveric
decomposition beyond day 12. These observations suggest that themouse cadavers between
days 24 and 27 during winter experiments, as well as between days 6 and 9 during summer
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Figure 1 The decomposing process of buried mice. (A) The winter experiment (36 days). (B) The sum-
mer experiment (24 days). The yellow arrow indicates where the body collapsed.

Full-size DOI: 10.7717/peerj.17932/fig-1

experiments, likely underwent a process of rupture. This process may involve alterations
in soil microbiota and physicochemical properties.

Overview of sequencing results and community structure
A total of 210 samples were collected, comprising 130 winter samples (comprising 65
intestinal content and 65 gravesoil samples) and 80 summer samples (consisting of 35
intestinal content and 45 gravesoil samples). Among these, the fifth gravesoil sample
from the third day of winter and the first intestinal sample from the twenty-fourth
day of winter did not meet the quality control requirements, resulting in a total of 208
samples eligible for sequencing. After performing quality control, redundancy removal, and
other preprocessing steps on all obtained raw sequencing sequences, a total of 9,248,772
effective sequences were retained, with an average sequence length of 422 bp, as detailed in

Zhao et al. (2024), PeerJ, DOI 10.7717/peerj.17932 6/20

https://peerj.com
https://doi.org/10.7717/peerj.17932/fig-1
http://dx.doi.org/10.7717/peerj.17932


Gravesoil Gut

0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36
0

25

50

75

100

0

25

50

75

100

Days of decomposition

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

Phylum
Proteobacteria
Bacteroidota
Firmicutes
Acidobacteriota
Actinobacteriota
Chloroflexi
Verrucomicrobiota
Methylomirabilota
Myxococcota
Gemmatimonadota
Unclassified
Desulfobacterota
Deferribacterota
Latescibacterota
Nitrospirota
NB1−j
Campylobacterota
Patescibacteria
Planctomycetota
Entotheonellaeota
Others

Gravesoil Gut

0

25

50

75

100

0

25

50

75

100

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

Genus
Muribaculaceae_norank
Lactobacillus
Pseudomonas
Limosilactobacillus
Yersinia
Vicinamibacterales_norank
Rokubacteriales_norank
Unclassified
Vicinamibacteraceae_norank
Gemmatimonadaceae_uncultured
Janthinobacterium
Bacteroides
Ligilactobacillus
Alistipes
Pyrinomonadacae RB41
Roseiflexaceae_uncultured
Lachnospiraceae NK4A136 group
Xanthobacteraceae_uncultured
MB−A2−108_norank
Sphingobacterium
Others0 3 6 9 12 15 18 21 24 27 30 33 36 0 3 6 9 12 15 18 21 24 27 30 33 36

Days of decomposition

(a)
Gravesoil Gut

0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18
0

25

50

75

100

0

25

50

75

100

Days of decomposition

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

Phylum
Proteobacteria
Firmicutes
Bacteroidota
Acidobacteriota
Actinobacteriota
Chloroflexi
Myxococcota
Verrucomicrobiota
Methylomirabilota
Gemmatimonadota
Latescibacterota
Nitrospirota
Unclassified
Desulfobacterota
Patescibacteria
Entotheonellaeota
Bdellovibrionota
NB1−j
Campylobacterota
Planctomycetota
Others

Gravesoil Gut

0

25

50

75

100

0

25

50

75

100

R
el

at
iv

e 
A

bu
nd

an
ce

 (%
)

Genus
Morganella
Wohlfahrtiimonas
Lactobacillus
Escherichia−Shigella
Muribaculaceae_norank
Myroides
Proteus
Ligilactobacillus
Acinetobacter
Clostridium sensu stricto 2
Neisseriaceae_Unclassified
Vicinamibacterales_norank
Vicinamibacteraceae_norank
Comamonas
Pseudomonas
Enterococcus
Tissierella
Pyrinomonadacae RB41
Bacteroides
Limosilactobacillus
Others0 3 6 9 12 15 18 21 24 0 3 6 9 12 15 18

Days of decomposition

(b)

(c) (d)

Figure 2 Microbial community structure (Top 20). (A) and (C) are winter gravesoil samples and intesti-
nal contents samples at phylum level and genus level, respectively. (D) and (E) are summer gravesoil sam-
ples and intestinal contents samples at phylum level and genus level, respectively.

Full-size DOI: 10.7717/peerj.17932/fig-2

Table S1. These sequences were subsequently clustered into 41,856 operational taxonomic
units (OTUs), with winter and summer samples containing 24,736 and 17,120 OTUs,
respectively. These OTUs, classified at various taxonomic levels, encompassed 48 phyla,
142 classes, 359 orders, 604 families, 1,431 genera, and 2,785 species. The rarefaction curve
(Fig. S1) approaches a plateau at the end, indicating that the sequencing data volume was
sufficient, and the sequencing depth adequately covered the majority of microbial species.
Thus, the acquired sequencing data are deemed suitable for subsequent analyses.

The top 20 species with the highest average abundance are visualized through stacked
column charts (Fig. 2). Within gravesoil samples, the phylum Proteobacteria emerged as
the predominant taxonomic group, exhibiting an average relative abundance of 42.72%
in summer gravesoil samples. Notably, in winter gravesoil, the relative abundance of
the Proteobacteria displayed an overall increasing trend with the progression of PMI.
In both seasons, the dominant phyla within gut samples were consistently comprised of
Firmicutes, Bacteroidota, and Proteobacteria. Due to space limitations, intricate variations
at each taxonomic level are not extensively detailed here. From the community structure,
it is evident that certain bacterial changes exhibit temporal patterns irrespective of the
season, holding potential for estimating PMI. Furthermore, we observed distinct shifts in
community structure in winter and summer samples occurring around days 24–27 and
days 6–9, respectively.

Community diversity and potential indicator bacteria for rupture points
The values of alpha diversity indices including Chao1, ACE, Shannon, Simpson, and
Inverse Simpson are provided in Table S2. Figs. 3A and 3B depict the changes in Shannon
index in gravesoil and intestinal samples during the decomposition of mouse cadavers in
winter and summer, respectively. Firstly, regardless of the season, the Shannon index of
gravesoil was consistently higher than that of intestinal samples, indicating a higher species
diversity in gravesoil. Secondly, for gravesoil samples, significant changes were observed
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Figure 3 Changes in Shannon index over time. (A) Winter samples. (B) Summer samples. Gravesoil
samples are represented in red and intestinal samples are represented in blue. Using Tukey HSD—
multiple comparison test, usually used in the statistical analysis of variance. Its full name is ‘‘Tukey’s
Honestly Significant Difference’’ test, with p < 0.05 indicating statistically significant difference and
marked using the letter labeling method.

Full-size DOI: 10.7717/peerj.17932/fig-3
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Figure 4 Results of NMDS analysis. (A) Winter samples. (B) Summer samples. Squares represent
gravesoil and triangles represent intestinal contents. Analysis was based on Bray-Curtis distance. Stress<
0.1, indicating better results.

Full-size DOI: 10.7717/peerj.17932/fig-4

on the 27th day in winter and the 9th day in summer, highlighting significant changes in
soil microbial diversity during these two time periods. As for intestinal content samples,
although their trends were similar, the values of the Shannon index gradually decreased
with time. However, there were no statistically significant differences between adjacent
time points in both seasons, indicating that there were no substantial changes in microbial
diversity between each sampling point. The NMDS analysis based on Bray-Curtis distances
(Fig. 4) demonstrate that both gravesoil and intestinal samples separated distinctly from
each other in both winter and summer. Furthermore, the distribution of samples correlated
with time. The PERMANOVA results (Table 1) indicate statistically significant differences
in the species composition of microbial communities among samples from different
locations. The microbial community composition exhibited dynamic changes with PMI,
underscoring its potential value in PMI inference.
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Table 1 PERMANOVA analysis of winter and summer mouse samples based on Bray-Curtis distances.

Season Compare F . Model R2 Pr (> F ) Sig

Gravesoil v.s. Gut 47.885 0.38 <0.001 ***

Gravesoil∼ Day 3.019 0.402 <0.001 ***Winter

Gut∼ Day 4.866 0.51 <0.001 ***

Gravesoil vs. Gut 101.689 0.447 <0.001 ***

Gravesoil∼ Day 3.8505 0.475 <0.001 ***Summer

Gut∼ Day 2.806 0.398 <0.001 ***

Notes.
Sig: ***, P ≤ 0.001.
∼ Day, comparison between different decomposition time samples.

Based on our preceding analyses, the microbial community shifts observed around
days 24–27 and days 6–9 cannot be overlooked, potentially signifying the time of rupture.
However, microbial diversity changes in gut samples across both seasons showed no
significant disparities. This phenomenonmay be attributed to the relatively closed nature of
the gut environment, wherein even if rupture occurs, the gutmilieu remains relatively stable.
Consequently, this study conducted differential abundance analyses on soil microbiota for
the two seasons, aiming to pinpoint bacteria that are not influenced by seasonal variations
and may serve as markers for the rupture point. At the phylum level, we identified three
candidates, including Gemmatimonadota, Desulfobacterota, and MBNT15. At the genus
level, a total of 31 candidates were identified, with four differential bacteria selected from the
top 20 differential taxa, namely Desulfobacterota_norank, Steroidobacteraceae_uncultured,
Gemmatimonadaceae_uncultured, and Rokubacteriales_norank. The relative abundance
fluctuations of these bacteria throughout the decomposition process are visualized in Fig. 5
and Fig. S2. Notably, their relative abundances exhibited significant decreases on day 27
in winter and day 9 in summer, followed by a gradual resurgence in the subsequent time
intervals.

Environmental factor correlation analysis
The alterations in the microbial community structure of gravesoil may be linked to the
exchange of substances between cadavers and their surrounding environment resulting
from cadaveric rupture. The relationship between themicrobial community in the gravesoil
and soil physicochemical properties (environmental factors) is depicted in Fig. 6. Regardless
of season, temperature, ammonium salts, and pH emerge as the three primary factors
influencing the microbial community structure in gravesoil. The microbial community in
gravesoil exhibits a negative correlation with both ammonium salts and pH during days
0–24 and days 0–6, while displaying a positive correlation during days 27–36 and days
9–18. This suggests that after day 27 and day 9, the microbial community structure in
gravesoil is primarily influenced by changes in ammonium salt content and pH, remaining
unaffected by seasonal variations. This also suggests that cadaveric rupture may occur
around these two time points. The temperature, predominantly influenced by the season,
exerts contrasting effects on these two factors.
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Figure 5 Potential indicator bacteria for rupture points (at the phylum level). Blue (top row) repre-
sents the winter season, while orange (bottom row) represents the summer season. Statistical analysis was
performed using the Wilcoxon test; **, P ≤ 0.01; *, P ≤ 0.05.

Full-size DOI: 10.7717/peerj.17932/fig-5
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Figure 6 The RDA analysis results. (A) Winter samples. (B) Summer samples. Arrows represent envi-
ronmental factors, and the length of the line connecting the arrow to the origin signifies the strength of
correlation between an environmental factor and community and species distribution. Longer lines indi-
cate stronger correlations, while shorter lines suggest weaker correlations. Dots represent sample points,
with different colors denoting different days. The angles formed between samples (connected to the ori-
gin) and environmental factors illustrate the nature of the correlation (acute angle, positive correlation;
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Full-size DOI: 10.7717/peerj.17932/fig-6

Figure 7 and Fig. S3 are presented to illustrate the trends in these physicochemical
properties during the cadaveric decomposition process. Winter temperatures remain
below 10 ◦C, while summer temperatures exceed 16 ◦C, with no differences observed
between gravesoil and control soil. With the progression of cadaveric decomposition,
the pH value and ammonium salt content in gravesoil gradually increase compared to
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Figure 7 Changes in physicochemical properties of gravesoil. The first row (A–C) shows the winter
experiment and the second row (D–F) shows the summer experiment. Blue circles represent gravesoil
samples, and orange squares represent control soil samples. The statistical method was ordinary one-way
ANOVA, ****, P ≤ 0.0001; ****, P ≤ 0.001; **, P ≤ 0.01; *, P ≤ 0.05.

Full-size DOI: 10.7717/peerj.17932/fig-7

the control group, culminating upon completion of cadaver decomposition. This change
is particularly pronounced on day 9 of the summer season, aligning with the previously
analyzed time points. In contrast, the significant change in the winter season does not occur
on day 27; ammonium salt content in winter exhibits significant variation between days
30–33. While there is no statistically significant difference in winter pH changes, there is a
noticeable increase on day 30 compared to day 27, maintaining an upward trend until the
end of the experiment. This could be attributed to the low winter temperatures, resulting
in a slower and delayed cadaveric exudate compared to the more rapid process in summer.

Based on the aforementioned research findings, we propose that cadaveric rupture
occurs on day 27 in winter and day 9 in summer. Additionally, regardless of the season, the
microbial community in gravesoil undergoes significant changes following rupture, which
are closely associated with variations in ammonium salt content and pH in the soil.

PMI estimation model
We constructed PMI inference models for winter gravesoil, winter gut contents, summer
gravesoil, and summer gut contents. The goodness of fit reached the highest at the genus
and species levels. Considering the prevalence of uncultured species at the species level,
we ultimately selected the genus-level dataset for model development. The results of these
models are presented in Figs. 8A and 8C and Figs. S4A and S4C.

Overall, the summer model exhibits a lower MAE and higher inference accuracy.
Specifically, the winter model demonstrates higher accuracy in inferring PMI based on
gravesoil microbiota, while the summer model excels in inferring PMI using gut contents
microbiota. Furthermore, through a ten-fold cross-validation analysis, 18 PMI-related
markermicrobial taxawere identified forwinter samples, and 23 for summer samples. These
taxa were ranked by their importance at the genus level (Figs. 8B and 8D and Figs. S4b and
S4d). In winter samples, the most influential genus in gravesoil is Sphingobacterium from
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Figure 8 PMI estimationmodel and corresponding marker microbial taxa. The first row represents
the winter sample and the second row represents the summer sample. (A) and (C) are constructed using
gravesoil microbes in winter and gut microbes in summer, respectively. (B) and (D) are the marker bacte-
ria selected by each model, with 18 genera in winter and 23 genera in summer.

Full-size DOI: 10.7717/peerj.17932/fig-8

the Bacteroidota phylum, with half of the top 18 genera originating from Proteobacteria.
In the gut, the most significant genera are Yersinia followed by Pseudomonas, both
belonging to Proteobacteria. In summer samples, the most pivotal gravesoil genus is
Erysipelothrix from the Firmicutes phylum, with nearly half of the genera belonging to
Proteobacteria. In the gut, the essential genera predominantly belong to Bacteroidota and
Firmicutes. In summary, phyla Proteobacteria, Bacteroidota, and Firmicutes house key
bacteria for PMI inference. Given the varying decomposition periods of mice in different
seasons, constructing PMI inference models based on season-specific cadaver microbiota
is essential for accurate PMI estimation.

DISCUSSION
There are several reasons hindering the widespread application of microbiology in forensic
practice. Apart from the various factors that can influence microbiota themselves, such as
age, underlying diseases, and cause of death, the accessibility of human cadavers as research
subjects is limited. Additionally, the cost associated with sequencing is also a significant
consideration (Speruda et al., 2022; Tozzo et al., 2022). The use of microbiota for PMI
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estimation is still in its nascent stages and requires further research. In this study, mice
were employed as the research subjects with the objective of developing PMI estimation
models for two seasons, utilizing microbiota data from both gravesoil and intestinal
contents, aided by Random Forest. Throughout this process, in conjunction with the decay
process of mouse cadavers and the fluctuation in microbial diversity in the gravesoil, we
identified the time points at which cadaver rupture occurred in different seasons. We
posit that the occurrence of cadaver rupture led to significant alterations in the microbial
community and physicochemical properties of the gravesoil. In the following sections, we
will delve into a detailed discussion of these findings.

The decomposition of a cadaver is a gradually evolving process with distinct
morphological features including cadaveric odor, green discoloration, and bloating,
which can be categorized into the stages of Active Decay (including bloating and rupture)
and Advanced Decay (Carter, Yellowlees & Tibbett, 2007; Cong, 2016; Parkinson et al.,
2009). The role of microbiota in this process is inseparable. Research by Metcalf et
al. (2013) and Hyde et al. (2013) has corroborated Evan’s hypothesis that a significant
microbial community transition occurs when cadaveric bloating ceases (Evans, 1963). In
this experiment, we first observed bloating and collapse of mouse cadavers, occurring
around days 24–27 in winter and days 6–9 in summer. These observations suggest that
cadaveric rupture may occur during these periods. Subsequently, the significant changes in
the community structure and diversity of gravesoil microbiota at these time points further
support our hypothesis.

Microbial activities generate chemical byproducts of decomposition, such as ammonia,
hydrogen sulfide, and amines, which alter the physicochemical properties of the soil
(Mondor et al., 2012), including an increase in pH (Metcalf et al., 2013). Building upon our
previous study (Cui et al., 2023), this research considers two seasons and finds that the
timing of increased ammonium content and elevated pH aligns with our expected rupture
points, occurring after days 6–9, but with a delayed onset in winter. We attribute this delay
to the lower temperature in winter, resulting in reduced enzymatic and microbial activity,
which in turn slows down decomposition compared to summer, thus causing a delay in
the changes in ammonium content and pH in the soil. In light of this study, we propose
that days 24–27 in winter and days 6–9 in summer represent the cadaveric rupture points
for mouse cadavers. This aligns with Metcalf et al.’s (2013) findings that cadaver rupture
occurs around days 6–9. And they showed in another report that the significant change of
ammonium salt and pH in winter and spring was about 30 days, suggesting that the time
point of rupture was similar to our results (Metcalf et al., 2016). It is imperative to note
that, while the outcomes exhibit similarity, there are disparities in the cadaver handling
methods and the specific temperature settings of the experiments. Our study investigated
the interment of mouse carcasses within a natural environment, whereas their research
entailed exposed mouse carcasses within controlled laboratory conditions. Consequently,
further research endeavors are requisite to delve deeper into and substantiate this matter.

Simultaneously, we conducted the selection of indicator bacteria for rupture point.
Unlike Metcalf et al. (2013), this study primarily focused on gravesoil bacteria. In this
experiment, we found no significant differences in the microbial community near the
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rupture point in intestinal samples, possibly due to the relatively enclosed and stable
nature of the intestinal environment, which minimizes the impact of cadaver rupture.
Based on the changes in gravesoil microbiota, the indicator bacteria for rupture point
were primarily Gemmatimonadota, Desulfobacterota, and MBNT15 at the phylum
level. Gemmatimonadota is widespread in soil, aquatic environments, and sediments,
with limited specific studies (Mujakić, Piwosz & Koblížek, 2022; Zeng et al., 2016).
Desulfobacterota has been formally classified at the phylum level (Göker & Oren, 2023;
Waite et al., 2020) and can participate in organic matter degradation and sulfate reduction
processes (Murphy et al., 2021). MBNT15 was discovered during phylogenetic analysis of
16S rRNA gene sequences obtained from paddy soil (Begmatov et al., 2022). Comparative
genomic analysis indicates that MBNT15 is distantly related to Desulfobacterota, with the
ability to reduce sulfur and nitrogen compounds but not sulfate (Chen et al., 2021). While
there is no direct experimental evidence, existing literature suggests that these three phyla
are closely associated with the production of cadaveric decomposition products such as
ammonia, hydrogen sulfide, and amines.

The relative abundance of these three phyla significantly decreases after cadaveric
rupture, followed by gradual recovery. This is likely due to the entry of microbial
communities from the soil into the cadaver through the rupture site, causing changes
in the relative abundance and diversity of this specific part. This observation does not
contradict Metcalf et al.’s (2013) perspective, which posits that the dominant microbial
community in the cadaver shifts from intestinal bacteria to environmental bacteria after
cadaveric rupture. Regarding the selected differential bacteria, their relative abundance did
not significantly increase, possibly because the microbial population in soil is much larger.
However, further analysis is required, particularly with regard to microbial communities in
mouse cadaver sites in contact with the gravesoil, a component not included in this study.
Therefore, these three phyla serve as preliminary candidates for marker bacteria associated
with the rupture point from the perspective of gravesoil.

In addition, this study established a PMI estimation model using the Random Forest
algorithm based on microbial data. Firstly, in alignment with prior research (DeBruyn
& Hauther, 2017; Guo et al., 2016; Liu et al., 2020), Proteobacteria, Bacteroidota, and
Firmicutes have been identified as taxonomic phyla of significance for PMI estimation.
Secondly, irrespective of season or sample type, microbial succession during the
decomposition of cadavers emerges as a predictable temporal metric post-mortem,
corroborating the feasibility of microbiota-based PMI estimation, in conjunction with
studies likeMetcalf et al. (2016).

Our findings indicate superior PMI estimation performance for summer samples,
but the collection and analysis of microbiota data from different seasons offer more
practical utility. Presently, research in this field encompasses human, mouse, rat, and pig
cadavers, with a focus on sample collection sites, modeling algorithms, and community
succession discussions (Hauther et al., 2015; Hyde et al., 2013; Javan et al., 2016; Metcalf
et al., 2013; Pechal et al., 2014). As the results of Burcham et al. (2024) on human cadaver
showed, factors such as climate, geographical location, and season can significantly affect
microbial decomposer community ecology. A study involving the burial of rats in a natural
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environment during the autumn-winter season (September 20th to November 19th)
demonstrated that, among three sampled sites (gravesoil, cecum, and skin), the Random
Forest algorithm exhibited the best modeling performance using grave soil microbiota
data, with a MAE of 1.82 days within the 60-day decomposition period (Zhang et al., 2021).
Similarly, our results reveal that, during the winter season (December 29th to February
3rd), gravesoil data also yields the best modeling performance with an MAE of 1.04 days.
However, in our summer experiments, the most effective modeling dataset is derived from
intestinal contents, with an MAE of 1.04 days. Another study conducted under laboratory
conditions at 25 ◦C suggests that using intestinal data is the most robust approach for
PMI estimation (Liu et al., 2020). Although their study population differs slightly from
ours, it still provides valuable insights. Based on this analysis, we propose the following
recommendations: for winter (low-temperature) cadavers, we recommend prioritizing
gravesoil microbiota data for constructing PMI estimation models, while for summer
(high-temperature) cadavers, we suggest prioritizing microbiota data from intestinal
content for PMI estimation modeling.

CONCLUSIONS
In summary, this study provides preliminary evidence for the timing of cadaveric rupture in
mice, occurring around days 24–27 in winter and days 6–9 in summer. Following cadaveric
rupture, the initially bloated cadaver undergoes a collapse, facilitating the exchange of
microbiota between the cadaver and the surrounding soil/grave soil. Decay products, such
as ammonium salts, from the cadaver are introduced into the adjacent soil, leading to
alterations in the microbial community structure of the gravesoil and concurrent increases
in ammonium salt content and pH levels. Based on changes in grave soil microbiota
and physicochemical properties, we have tentatively identified three candidate marker
bacteria for cadaveric rupture points: Gemmatimonadota, Desulfobacterota, andMBNT15
at the phylum level. This research serves as a foundational contribution to the limited
body of literature on cadaveric rupture and its microbial implications, facilitating future
segmented post-mortem interval estimations using this knowledge. Moreover, based on
the results of the PMI estimation models established by Random Forest, we recommend
employing gravesoilmicrobiota data for PMI estimationmodels inwinter (low-temperature
conditions) and prioritizing microbiota data from intestinal contents in summer (high-
temperature conditions).
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