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Abstract
Purpose Artificial intelligence (AI) in healthcare is rapidly growing and offers novel options of data analysis. Machine 
learning (ML) represents a distinct application of AI, which is capable of generating predictions and has already been tested 
in different medical specialties with various approaches such as diagnostic applications, cost predictions or identification of 
risk factors. In orthopaedics, this technology has only recently been introduced and the literature on ML in knee arthroplasty 
is scarce. In this review, we aim to investigate which predictions are already feasible using ML models in knee arthroplasty 
to identify prerequisites for the effective use of this novel approach. For this reason, we conducted a systematic review of 
ML algorithms for outcome prediction in knee arthroplasty.
Methods A comprehensive search of PubMed, Medline database and the Cochrane Library was conducted to find ML 
applications for knee arthroplasty. All relevant articles were systematically retrieved and evaluated by an orthopaedic sur‑
geon and a data scientist on the basis of the PRISMA statement. The search strategy yielded 225 articles of which 19 were 
finally assessed as eligible. A modified Coleman Methodology Score (mCMS) was applied to account for a methodological 
evaluation.
Results The studies presented in this review demonstrated fair to good results (AUC median 0.76/range 0.57–0.98), while 
heterogeneous prediction models were analysed: complications (6), costs (4), functional outcome (3), revision (2), postop‑
erative satisfaction (2), surgical technique (1) and biomechanical properties (1) were investigated. The median mCMS was 
65 (range 40–80) points.
Conclusion The prediction of distinct outcomes with ML models applying specific data is already feasible; however, the 
prediction of more complex outcomes is still inaccurate. Registry data on knee arthroplasty have not been fully analysed 
yet so that specific parameters have not been sufficiently evaluated. The inclusion of specific input data as well as the col‑
laboration of orthopaedic surgeons and data scientists are essential prerequisites to fully utilize the capacity of ML in knee 
arthroplasty. Future studies should investigate prospective data with specific and longitudinally recorded parameters.
Level of evidence III.
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Introduction

Artificial intelligence (AI) has already led to tremendous 
advancements in the aviation and automobile industries 
and is now rapidly gaining importance in healthcare [1, 3, 
18]. Machine learning (ML) represents a distinct applica‑
tion of AI which emerged from studies on pattern recog‑
nition and learning theory. ML describes algorithms for 
automatic and incremental function optimization which 
can be used to make predictions by detecting non‑linear 
relationships in large data sets [1]. In a nutshell, ML 
algorithms are able to recognize correlations in data sets 
which subsequently permits predictions based on these 
“learned” patterns. The aspect of “learning” is achieved 
by automated weighting of distinct parameters in the math‑
ematical model [1, 19]. Ever more data are being com‑
piled digitally in healthcare while processing capacities 
are increasing rapidly so that various ML algorithms have 
already been tested in ophthalmology, dermatology, radi‑
ology, and cardiology [3, 5, 6, 18]. Especially in medical 
image analysis, ML algorithms were developed and vali‑
dated which are capable to outperform medical specialists 
[17]. In orthopaedics, the number of published studies on 
machine learning has increased tenfold since 2010 [1]. ML 
has the potential to become a powerful tool for patient‑
specific decision making regarding surgical indications 
and predicting outcomes in orthopaedics. Although the 
application of ML is in a preliminary phase in orthopae‑
dics, several studies report well‑performing ML models 
for gait classification, fracture detection, exoprosthesis 
control, osteoarthritis detection, spine pathology detec‑
tion and bone age assessment [19]. Extensive data are nec‑
essary for well‑performing ML models. In this context, 
knee arthroplasty is highly suitable for ML analysis as 
multiple sources are available: national and international 
registries including follow‑up data, patient characteristics, 
and patient‑reported outcome measures after knee surgery 
from the last 40 years. At the same time, recently intro‑
duced enabling technologies such as navigated and robotic 
surgery offer novel, patient‑specific data sets, and a vast 
amount of imaging data are available in digital form. Fur‑
thermore, various other clinical data may be suitable for 
ML models. Recently, an ML approach using registry and 
healthcare data sets to provide an adjusted payment model 
was demonstrated [23]. Overall, however, literature on ML 
in knee arthroplasty is heterogeneous and scarce.

ML comprises different theoretical approaches and 
represents a tool that must first be adapted for specific 
tasks in a given field such as knee arthroplasty. However, 
no standard approach for implementing ML algorithms 
in orthopaedics has been described nor established yet so 
that the question arises to which extent knee arthroplasty 

currently benefits from ML and which approaches might 
be promising. We hypothesized that successful ML algo‑
rithms in knee arthroplasty depend on arthroplasty‑specific 
data and their reasonable use. Therefore, the collaboration 
between a data scientist and an orthopaedic surgeon is 
of utmost importance. Hence, we aim (1) to investigate 
which predictions are already feasible using ML models 
in knee arthroplasty and (2) to describe prerequisites for 
the effective use of this novel approach. For this reason, 
we conducted a systematic review of ML algorithms for 
outcome prediction in knee arthroplasty.

Materials and methods

A systematic review of the literature was performed to iden‑
tify machine learning algorithms in knee arthroplasty on the 
basis of the PRISMA statement. Studies meeting the follow‑
ing criteria were included in this review:

• Described methodology of a machine learning algorithm 
for data analysis in health or economic‑related applica‑
tions of knee arthroplasty.

• At least one predicted outcome variable by a supervised 
machine learning algorithm using tabular data.

• Written in English.

In March 2021, a literature search through PubMed, 
Medline database and Cochrane Library was conducted. 
For the systematic search, the following search terms were 
used: “total knee arthroplasty” AND (artificial intelligence 
OR machine learning), “TKA” AND (artificial intelligence 
OR machine learning) from 1990 to 2021. The studies were 
screened and evaluated by an orthopaedic surgeon (I.L.) and 
a data scientist (F.H.) at our institution using the aforemen‑
tioned selection criteria. The results were summarized and 
duplicates were discarded. The selection procedure is pre‑
sented in Fig. 1. All articles were initially screened for rele‑
vance by title and abstract to assess the inclusion criteria. The 
two authors independently performed a careful reading of the 
studies and extracted the data. The following information 
was extracted from each article: author, year of publication, 
study design, follow‑up, number of patients/cases, ML algo‑
rithm, metric, data screening, fine‑tuning, mathematical and 
medical interpretation. For quality assessment, the Coleman 
Methodology criteria, which assess methodology using ten 
different aspects, were modified for the systematic review of 
machine learning algorithms in knee arthroplasty (Table 1). 
A score of 100 indicates that the study largely avoids chance, 
bias and other confounding factors. Hence, the modified 
Coleman Methodology score (mCMS) can be defined as 
excellent (85–100 points), good (70–84 points), fair (50–69 
points), and poor (< 50 points). Both the orthopaedic surgeon 
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Fig. 1  Flow diagram. The initial 
search through the PubMed 
and Medline database as well 
as Cochrane Library resulted in 
225 publications (March 2021). 
After screening the titles and 
abstracts, 200 were excluded 
and 25 remained. After applying 
the exclusion criteria, another 6 
were excluded and 19 remained 
for final investigation

Table 1  Modified Coleman methodology score

Part A—only one score to be given for each of the seven sections

1. Study size—number of patients (N) 2. Mean follow-up
N > 500 10  > 5 years 10
N 100–500 7  1–5 years 5
N 20–100 4  < 1 year, not stated, or unclear 0
N < 20 or not stated 0
4. Type of study
 Multiple‑outcome variables 10 Prospective cohort study 15
 Single‑outcome variable 5 Retrospective cohort study 10

Experimental data set 5
5. Number of input variables 6. Description of ML-approach
 > 25 5  Technique stated with necessary details to repeat 10
10—25 3  Technique named without elaboration 5
 < 10 or unclear 0  Not stated or unclear 0
7. Fine-tuning of ML-model
 Yes 5
 No 0

Part B—scores may be given for each option in each of the 
three sections if applicable

1. Metrics 2. Data screening
 Suitable metrics 5  Data processing elaborated and stated 5
 More than one metric stated 5  Data source stated 5
 External dataset for final evaluation 5

3. Mathematical and medical discussion
 Metrics stated and elaborated in medical context 5
 Metrics statistically elaborated 5
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and the data scientist scored the included studies giving a 
total mCMS between 0 and 100. In the event of divergent 
results, the data were double‑checked and a consensus was 
reached. The level of evidence is level III.

Statistical analysis

Continuous data were reported as median values with the 
respective range. All analyses were performed using the sta‑
tistical software IBM SPSS Statistics (version 22.0, Armonk, 
NY, IBM Corp.).

Results

Selection and methodical characteristics

The initial search resulted in 255 references and 19 arti‑
cles met the inclusion criteria (Fig. 1). Articles from the 
years 2018 to 2021 were included. All 19 included studies 
addressed total knee arthroplasty (TKA). Fifteen articles 
were retrospective study designs, one study evaluated retro‑
spective and prospective data and one further study analysed 
prospective data only. Two studies analysed an ML approach 
for outcome prediction using an experimental data set. The 
data set volume consisting of patients or cases ranged from 
24 to 1,049,160 with a median of 86. The median follow‑up 
time was 4.0 (1–18) years. The data sources were indicated 
in all studies. 11 of 19 studies derived their data exclusively 
from their local or regional healthcare management system. 
Three of 19 studies obtained their data from two adminis‑
trative databases (National Inpatient Sample administra‑
tive database, New York Statewide Planning and Research 
Cooperative System administrative database). One study 
complemented their local database with data from a national 
registry (Korean Society of Nephrology registry). One study 
derived all their data from a national registry (Danish Knee 
Arthroplasty Registry). Another study evaluated data gen‑
erated by a mobile application. All studies specified a data 
screening. The studies included a median of 13.5 (8;52) input 
parameters in their analysis. Fifteen different ML algorithms 
were described and four studies applied multiple approaches 
with different algorithms. Random Forest (RF) was applied 
in five studies, Gradient Boosting in three studies, LASSO 
in three studies, and Artificial Neural Network (ANN) in 
two studies, respectively. All other algorithms were applied 
once. 18 studies presented an outcome metric. With 16 of 19 
studies, the area under the curve (AUC) was reported most 
frequently. 13 of these 16 studies reported AUCs with poor 
to fair results (< 0.8). In total, seven studies indicated a task‑
specific fine‑tuning of the algorithm, including methodology 
such as data pre‑processing, loss weighting or hyperparam‑
eter search. Three studies demonstrated an interpretation of 

metrics and outcomes from a mathematical as well as a medi‑
cal point of view. The mCMS was calculated for each of the 
studies reviewed. The median mCMS of all studies was 65 
points, ranging from 40 to 80 points. There was no signifi‑
cant relationship between methodology scores and metrics. 
However, only 6 out of 19 studies had a good mCMS (> 70 
points). Of these six studies, five studies yielded fair to good 
results [AUC > 0.7/mean squared error (MSE) < 0.3], with 
the exception of one study with an AUC of 0.56–0.6. Meth‑
odological deficiencies were the lack of prospective stud‑
ies, missing necessary details to repeat the ML model, no 
fine‑tuning of the ML model and modest elaborations of the 
metrics in the mathematical and medical context. All further 
results are summarized in Tables 2, 3 and 4.

Prediction of complications

Six studies evaluated ML algorithms predicting complica‑
tions after the implantation of TKA [9, 12, 14, 16, 20, 23]. 
Three studies focused on the prediction of the length of 
stay [16, 20, 23]. Of these three studies, Gradient Boosting, 
Naive Bayes and an ANN were applied, resulting in a mean 
AUC of 0.78 (0.74; 0.83). They evaluated 8, 13 and 14 input 
variables, respectively. A single study evaluated a Gradient 
Boosting with 18 input variables for the prediction of end‑
stage renal disease after TKA, resulting in an AUC of 0.89 
[14]. Another study analysed a Gradient Boosting with eight 
input variables for the prediction of postoperative blood 
transfusions after TKA, resulting in an AUC of 0.88 [9]. A 
further study evaluated a Stochastic Gradient Boosting with 
39 input variables for the prediction of postoperative opioid 
prescriptions after TKA, resulting in an AUC of 0.76 [12].

Prediction of costs

Four studies evaluated ML algorithms predicting the costs 
related to the implantation of TKA [8, 10, 20, 23]. Three 
studies evaluated the inpatient costs using MLP, DenseNet, 
Naive Bayes and an ANN with 13, 8 and 11 input variables, 
respectively. This resulted in a mean AUC of 0.79 (0.74; 
0.81) [11, 20, 23]. Another study evaluated a Logic Forest 
algorithm with 11 input variables for the prediction of the 
most expensive 5% of health care users in the year following 
elective surgery (super‑utiliser) [8]. TKA comprised 50% 
of 1,049,160 analysed surgeries. No metric was specified.

Prediction of functional outcome

Three studies evaluated ML algorithms predicting the func‑
tional outcome after the implantation of TKA [7, 13, 21]. 
One study prospectively evaluated a logistic regression and 
least absolute shrinkage and selection operator (LASSO) with 
28 input variables for the prediction of the Knee Injury and 
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Table 2  Outcome variables and characteristics of the included studies

Prediction Author Year Study design Patient/case volume Follow‑up (yrs) Outcome variable

Complications
Jo et al 2020 Retrospective 1686 6 Blood transfusion after 

TKA
Katakam et al. 2020 Retrospective 12,542 18 Prolonged postoperative 

opioid prescriptions after 
TKA

Ko et al. 2018 Retrospective 5757 7 End‑stage renal disease 
after TKA

Li et al. 2020 Retrospective 1826 1 Length of stay
Navarro et al. 2019 Retrospective 141,446 7 Length of stay & inpatient 

costs
Ramkumar, Karnuta 

et al.
2019 Retrospective 175,042 4 Length of stay & inpatient 

costs
Costs

Navarro et al. 2019 Retrospective 141,446 7 Length of stay & inpatient 
costs

Ramkumar, Karnuta 
et al.

2019 Retrospective 175,042 4 Length of stay & inpatient 
costs

Hyer et al. 2020 Retrospective 1,049,160 4 Super‑utilizers = top 
5%of health care users, 
responsible for 40% to 
55%of all health care 
costs for TKA

Karnuta et al. 2019 Retrospective 295,605 7 Inpatient procedural cost 
of Lower Extremity 
Arthroplasty

Functional outcome
Harris et al. 2020 Prospective 637 1 Knee Injury and Osteoar‑

thritis Outcome Score 
(KOOS) after TKA

Kluge et al. 2020 Retrospective 24 – Spatio‑temporal gait 
parameters after TKA

Pua et al. 2021 Retrospective 4026 4 Walk time <  = 15 min on 
six months postopera‑
tively after TKA

Revision
El‑Galaly et al. 2020 Retrospective 31,274 3 Revision within 2 years 

after TKA
Shohat et al. 2020 Retrospective 1174 12 Revision after irrigation 

and debridement for PJI 
in THA and TKA

Postoperative satisfaction
Farooq et al. 2020 Retrospective

Prospective
1325 5 Likert 5‑point scale after 

TKA
Kunze et al. 2018 Retrospective 430 2 Satisfaction—binary out‑

come 2 years after TKA
Surgical technique

Verstraete et al. 2020 Experimental 479 1 Optimal balanced TKA
Biomechanical properties

Rexwinkle et al. 2018 Experimental 6 – Articular cartilage biome‑
chanics
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Osteoarthritis Outcome Score (KOOS) one year after TKA, 
resulting in an AUC of 0.71 to 0.76 [7]. Another study ana‑
lysed a decision tree with eight preoperative input variables 
provided by a gait sensor for the prediction of gait param‑
eters after TKA, yielding an accuracy of 0.89 [13]. A further 
study evaluated four different ML approaches (XGBoost, RF, 
LASSO and SuperLearner) with 25 input variables for the 
prediction of severe walking limitation after TKA. XGBoost 
yielded the most promising results with an AUC of 0.7 [21].

Prediction of revisions

Two studies evaluated ML algorithms predicting revisions 
after the implantation of TKA [2, 25]. The first study evalu‑
ated four different ML approaches (LASSO, RF, Gradient 
Boosting, ANN) with 26 input variables for the prediction 
of revisions within two years after primary TKA, resulting 

in an AUC of 0.56–0.6 [2]. The second study analysed an 
RF with 52 input variables for the prediction of revision 
after irrigation and debridement for PJI in TKA, yielding an 
AUC of 0.74 [25].

Prediction of postoperative satisfaction

Two studies evaluated ML algorithms predicting the post‑
operative satisfaction after the implantation of TKA [4, 15]. 
The first study evaluated a TreeNet with 15 input variables 
for the prediction of postoperative satisfaction after TKA 
with minimum 1‑year follow‑up using a 5‑point Likert scale. 
This approach resulted in an AUC of 0.81 [4]. The second 
study analysed an RF with 15 input variables for the predic‑
tion of postoperative satisfaction 2 years after TKA using a 
binary outcome. This approach yielded an AUC of 0.77 [15].

Table 3  Description of machine learning approaches of the included studies

Author Year Patient/case 
volume

Algorithm Metric Data screening Fine tuning Mathm. + medi‑
cal interpreta‑
tion

Modified 
Coleman 
Score

El‑Galaly et al. 2020 31,274 LASSO, RF, 
Gradient Boost‑
ing, NN

AUC 0.57–0.6 Yes Yes Not specified 80

Farooq et al. 2020 1325 TreeNet AUC 0.81 Yes Not specified Not specified 63
Harris et al. 2020 637 Logistic regres‑

sion, LASSO
AUC 0.71–0.76 Yes Not specified Not specified 70

Hyer et al. 2020 1,049,160 Logic Forest Not specified Yes Not specified Not specified 58
Jo et al. 2020 1686 Gradient boost‑

ing
AUC 0.88 Yes Not specified Not specified 60

Karnuta et al. 2019 295,605 MLP, DenseNet AUC 0.81 Yes Yes Not specified 78
Katakam et al. 2020 12,542 Stochastic gradi‑

ent boosting
AUC 0.76 Yes Not specified Not specified 65

Kluge et al. 2020 24 Decision tree Accuracy 0.89 Yes Not specified Not specified 49
Ko et al. 2018 5757 Gradient boost‑

ing
AUC 0.89 Yes Yes Not specified 70

Kunze et al. 2018 430 RF AUC 0.77 Yes Not specified Not specified 58
Li et al. 2020 1826 XGBoost AUC 0.74 Yes Not specified Not specified 58
Navarro et al. 2019 141,446 Naive Bayes AUC 0.74–0.78 Yes Not specified Not specified 60
Navarro et al. 2019 141,446 Logistic regres‑

sion
AUC 0.73–0.75 Yes Yes Not specified 75

Pua et al. 2021 4026 XGBoost, RF, 
LASSO, Super‑
Learner

AUC 0.7 Yes Not specified Not specified 68

Ramkumar, Hae‑
berle et al.

2019 175,042 ANN AUC 0.76–0.83 Yes Not specified Not specified 45

Ramkumar, Kar‑
nuta et al.

2019 175,042 ANN MSE 0.21, 0.18 Yes Yes Yes 78

Shohat et al. 2020 1174 RF AUC 0.74 Yes Yes Yes 68
Verstraete et al. 2020 479 RF, linear sup‑

port vector 
machine, ANN

AUC 0.75–0.98 Yes Yes Yes 67

Rexwinkle et al. 2018 6 ANN MSE 0.18 Not specified Yes Not specified 40
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Table 4  Input variables of the included studies

Author Year Number of 
input variables 
(n)

Input variables Data sources

El‑Galaly et al. 2020 26 Sex, age, weight, height, BMI. observation 
year, revisions, Indications for TKA, Prior 
knee procedures, CCS, AKSS, coronal 
alignment, ap instability, mediolateral 
instability, walking distance, walking 
ability, stair‑walking ability, need for a 
walking aid, choice of implant constraint, 
patella resurfacing, additional compo‑
nents, choice of fixation, use of intraopera‑
tive navigation, use of tourniquet, hospital 
knee volume, geographical region

Danish Knee Arthroplasty Registry

Farooq et al. 2020 15 Age, BMI, LOS, FU, generation, sex, ASA, 
surgeon, type of implant, PCL adressed, 
Depression, Inflammatory condition, pre‑
operative narcotic use, Lumbar spine pain/
surgery/disease, Tourniquet

Local database

Harris et al. 2020 28 Age, BMI, sex, race/ethnicity, marital status, 
education, employment status, CHF, Val‑
vular disease, Peripheral vascular disease, 
Hypertension, Neurological disorders, CP, 
DM, Hypothyroidism, Renal failure, Liver 
disease, solid tumour without metastasis, 
Rheumatoid arthritis, weight loss, fluid 
and electrolyte disorders, deficiency 
anaemia, alcohol use disorder, drug use 
disorder, depression, AUDIT‑C, PHQ, 
KOOS

Local database

Hyer et al. 2020 12 Age, sex, race, type of surgery, CCS, 
Elixhauser comorbidity score, Centers for 
Medicare & Medicaid Services–Hierarchi‑
cal Condition Category, LOS, morbidity, 
readmission, mortality

Medicare inpatient and outpatient Standard 
Analytic Files

Jo et al. 2020 8 Tranexamic acid, Unilateral, Staged bilat‑
eral, Simultaneous bilateral, Platelet count, 
Age at surgery, Body weight, Hb

Local database

Karnuta et al. 2019 11 Age group, gender, ethnicity, race, APR‑
SOL, APR‑ROM, Healthcare Research 
and Quality Clinical Classifications Soft‑
ware diagnosis code, type of admission, 
type of stay, discharge disposition, LOS

New York State‑wide Planning and Research 
Cooperative

System (SPARCS) administrative database

Katakam et al. 2020 39 Age, sex, race, ethnicity, marital status, dis‑
position, Hb, WBC, platelets, creatinine, 
insurance status, neighborhood (zip code) 
characteristics, angiotensin converting 
enzyme inhibitor, angiotensin ii receptor 
blocker, antidepressant, beta‑2‑agonist, 
beta‑blocker, benzodiazepine, gabapen‑
tin, immunosuppressant, NSAID, opioid, 
anti‑psychotics, tobacco use, alcohol 
abuse, drug abuse, diabetes, renal failure, 
depression, psychoses, CHF, myocardial 
infarction, peripheral vascular disease, 
cerebrovascular accident, CP, arrhythmias, 
valvular disease, malignancy, liver disease

Local database

Kluge et al. 2020 8 Produced by the gait sensor: three‑axis 
accelerometer, three‑axis gyroscope, heel 
strike and toe off

Local database
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Table 4  (continued)

Author Year Number of 
input variables 
(n)

Input variables Data sources

Ko et al. 2018 18 Age, sex, BMI, ASA, type of anaesthesia, 
DM, types of surgery (unilateral, staged 
bilateral and simultaneous bilateral TKA), 
Blood urea nitrogen, creatinine, Hb, 
platelets, GFR, NSAID, antithrombotics, 
RAAS, diuretics, tranexamic acid

Local database, Korean Society of Nephrol‑
ogy registry

Kunze et al. 2018 15 Age, BMI, gender, preoperative opioid use, 
smoking history, DM, drug allergies, num‑
ber of comorbid conditions, fibromyalgia/
depression status, prior ipsilateral knee 
procedure not including a TKA, degree 
of flexion contracture of the operative 
knee, degree of knee flexion, preoperative 
patient‑reported health state, KKS, KKS‑F

Local database

Li et al. 2020 14 Age, race, gender, BMI, Hb, operation dura‑
tion, history of smoking, DM, cerebrovas‑
cular accident, ischaemic heart disease, 
CHF, ASA, type of anaesthesia, creatinine

Local database

Navarro et al. 2019 8 Age group, CCS, ethnicity, gender, patient 
disposition, type of admission, APR‑SOL, 
APR‑ROM

New York State‑wide Planning and Research 
Cooperative

System (SPARCS) administrative database
PUA ET AL. 2021 25 Age, weight, height, BMI, race, sex, 

contralateral knee pain, hypertension, 
dyslipidemia, DM, adult recon specialist, 
caregiver available, education Level, gait 
aids, knee pain, depression, Anxiety, dif‑
ficulty when climbing down stairs

Local database

Ramkumar, Haeberle et al. 2019 6 Step count, range of motion, KOOS, visual 
analogue scale, opioid consumption, home 
exercise program compliance

Mobile application database

Ramkumar, Karnuta et al. 2019 13 Age, gender, ethnicity, race, type of admis‑
sion, APR‑ROM, APR‑SOL, number 
of associated chronic conditions and 
diagnoses, comorbidity status, whether 
the admission was on a weekend, hospital 
type, income quartile of the patient, trans‑
ferred from an outside hospital

The OrthoMiDaS (Orthopedic Minimal Data 
Set) Episode of Care

(OME) database, National
Inpatient Sample (NIS) administrative 

database

Rexwinkle et al. 2018 12 Histological (cartilage structure, chondro‑
cytes, proteoglycans, collagen, tidemark), 
mechanical (compressive stress relaxa‑
tion), microbiological (tissue modulus, 
collagen fibre strength, tissue perme‑
ability) and proteomic (PIIANP, NO, and 
MMP‑13)

Local database
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Prediction of optimal surgical technique

A single study evaluated the numerical data created in the 
surgical process to assess balance and alignment during 
TKA [26]. The authors suggested a decision process for an 
ideally balanced TKA. Three different ML approaches (RF, 
Support Vector Machine, ANN) were applied and resulted 
in AUCs of 0.75–0.81.

Discussion

The most important finding of the present review is that 
outcome prediction using ML models applying arthroplasty‑
specific data has already been successfully performed. 
Although ML applications for knee arthroplasty only 
gained particular popularity in the past years with all arti‑
cles included in this review being from 2018 or more recent, 
several studies already demonstrated the high potential of 
ML. Exact study questions with well‑described complica‑
tions like renal failure or postoperative blood transfusions 
can already be particularly well‑predicted [9, 14]. However, 
more complex and general predictions like revisions, which 
can have a variety of different causes, are more difficult to 

estimate [2]. Interestingly, registry data on knee arthroplasty 
were only scantly evaluated for ML analysis. In data science 
theory, the sheer quantity of patients and input parameters 
is of crucial importance. Registries include vast information 
with patient‑related data and potentially specific patterns 
that are suitable for ML analyses. However, most studies 
(13/19) relied on local databases and only six studies applied 
registry data—including only two different medical regis‑
tries. Multiple national registries on knee arthroplasty are 
being administered that contain relevant information from 
the last decades on this topic. Future studies for ML in knee 
arthroplasty should definitely investigate the amounts of data 
within knee arthroplasty registries.

A further finding of this review is that we could not dem‑
onstrate a correlation between the amount of input param‑
eters or patients and the outcome metrics. From a data sci‑
ence perspective, the tabular form of clinical information 
is not well suited for ML analysis as it requires a tremen‑
dous amount of patients and various parameters to generate 
complex data sets. Six studies included more than 100,000 
patients; however, ML is proficient to process substantially 
larger amounts of data. Image data contain a higher infor‑
mation density and is, therefore, more commonly applied 
to ML applications. However, the low data volume is only 

Table 4  (continued)

Author Year Number of 
input variables 
(n)

Input variables Data sources

Shohat et al. 2020 52 Timing in days (Acute postoperative/
Acute haematogenous), age, sex, BMI, 
Smoking, Alcohol, Joint, Hypertension, 
Ischaemic heart disease, Heart failure, 
Oral anticoagulants, DM, CP, renal failure, 
malignancy, Liver cirrhosis, Rheumatoid 
arthritis, Immunosuppression, Index 
surgery was a revision, Index surgery used 
cemented prosthesis, indication for arthro‑
plasty (osteoarthritis, rheumatoid arthritis, 
fracture, malignancy), wound leakage, 
skin necrosis, skin infection, fistula, fever, 
C‑reactive protein, WBC, Positive blood 
cultures, Exchange of mobile component, 
MSSA, MRSA, Staphylococcus epider‑
midis, Streptococcus spp, Enterococcus 
spp, Escherichia coli, Enterobacter spp, 
Pseudomonas spp, Proteus spp, Candida 
spp, Polymicrobial

Local database

Verstraete et al. 2020 8 Intraoperative load and alignment readings 
by surgical navigation and smart tibial trial 
components

Local database

BMI Body Mass Index, ASA American Society of Anesthesiologist Physical Status, CCS Charlson comorbidity score, AKSS American Knee 
Society Score, LOS length of stay, FU Follow‑up, PCL posterior cruciate ligament, CHF congestive heart failure, CP Chronic pulmonary dis‑
ease, DM Diabetes mellitus, AUDIT-C Alcohol Use Disorders Identification Test Consumption, PHQ Patient Health Questionnaire, KOOS Knee 
Injury and Osteoarthritis Outcome Score, Hb Haemoglobin, APR-SOL All Patient Refined severity of illness, APR-ROM All Patient Refined risk 
of mortality, WBC white blood cells, KSS Knee Society Score, KSS-F KSS‑Function
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in part an explanation for poor outcomes as several studies 
yielded very accurate predictions, especially in confined, 
local data sets.

While the quantity of data remains critical to allow 
for repeating patterns, the data quality is likewise of high 
importance for ML algorithms: ML can only reveal patterns 
that can actually be derived from the data. While Karnuta 
et al. fed their algorithm with tabular data from 295,605 
total knee arthroplasty and total hip arthroplasty patients, 
Rexwinkle et al. retrieved tissue samples from only 6 oste‑
oarthritis patients in order to apply biomarker analysis as 
well as biomechanical testing [10, 24]. The latter study was 
based on much fewer cases, still the complexity of the study 
and specificity of the data allowed for ML application with 
promising results. We therefore assume that the inclusion of 
specific parameters is of paramount importance, especially 
if tabular data are applied for ML analysis.

Just as specific data are relevant, a multitude of irrelevant 
parameters may negatively impact the performance of ML 
models. Although an increased data width with the use of 
all accessible parameters may be beneficial in theory, such 
randomness may rather hinder the full potential of the ML 
algorithm within the limited scope of tabular data used so 
far for ML in knee arthroplasty. Especially in studies with a 
low proportion of subject‑specific parameters, the input of 
parameters, which were chosen simply because they were 
available, may be overrated and confounding. Hence, the 
selection of data for ML applications is anything but trivial. 
In this review, only four studies included subject‑specific 
parameters such as the administration of tranexamic acid for 
the prediction of postoperative blood transfusion after TKA. 
Therefore, further studies to investigate arthroplasty‑specific 
parameters are encouraged.

Identifying and applying such specific parameters in knee 
arthroplasty is difficult, though. Currently, the parameter 
selection of ML approaches in orthopaedics is based on (1) 
known risk factors and clinical experience and (2)—to a sig‑
nificant part—on the accessibility of parameters in existing 
databases. Therefore, most studies apply administrative data 
including basic patient demographics. However, the data 
architectures of local healthcare management systems and 
registries were not constructed for ML evaluations. These 
data sources do not necessarily contain fully detailed and 
prospectively linked patient data, which, however, would 
be essential for predictions. In addition, most studies were 
retrospective so that the data architecture for the ML analysis 
had to be constructed post hoc. Hence, data screening and 
processing are inevitable if existing data sources should be 
utilized.

This retrospective approach requires the substantive dis‑
cussion of the parameters to assure inclusion of relevant 
and exclusion misleading information, as well as the mere 
technical evaluation of the data with regard to incorrect 

inputs and missing data points. Further steps for enhanc‑
ing the data set, such as data cleaning or completing a data 
set are recommended from a data science perspective. This 
data processing requires extensive human assessment and 
the coherent thinking of a medical professional and data 
scientist to identify relevant and applicable information. It 
has to be performed mostly by hand, which makes it time‑
consuming and futile. The work related to data screening and 
processing is not to be neglected: it dramatically slows down 
the potential progress that can be made using ML in knee 
arthroplasty. To avoid such an extensive data processing, we 
assume that prospective databases with an appropriate data 
architecture for ML analysis have to be established in the 
long term. Currently, we are unaware of a comprehensive 
and completed data integration of knee joint‑specific data 
for AI applications. Besides the already discussed impor‑
tance of the quality and amount of input data, the ML model 
itself has a significant impact on the outcome prediction. 
ML does not describe a single specific algorithm, but rather 
contains a variety of approaches which have to be modified 
to the addressed issue and data set. A wide range of algo‑
rithms was used in the studies discussed in this review. The 
most popular algorithm was an RF, which is closely related 
to decision trees and XGBoost. This may be attributed to 
the considerable easy implementation, application and sta‑
ble results over different kinds of data sets. However, more 
sophisticated algorithms have been developed exploiting the 
potential of today’s data as well as hardware even more. 
With a considerable amount of data, even deep learning 
algorithms can be feasible. Ramkumar et al. demonstrated 
how to use an ANN for, e.g. length of stay prediction of 
175,042 TKA cases using 15 preoperative variables [22]. 
To achieve the best results, the focus of most studies relied 
on testing various machine learning algorithms and picking 
the one with the highest metric value as final algorithm. 
However, an exclusive measurement of performance using 
only one metric can be misleading so that several metrics 
depending on the task at hand need to be examined. Metrics 
which weigh false‑positive and false‑negative predictions, 
such as sensitivity, specificity or Dice Score, are often more 
meaningful. Furthermore, prediction models based on ML 
algorithms are not explanatory models [7]. Therefore, the 
outcome metrics need to be elaborated to understand its use 
in the medical context. In this review, 16 of 19 studies did 
not extensively discuss the results in the mathematical or in 
the medical setting. For future investigations, we consider 
the cooperative analysis by a medical professional and a data 
scientist of ML models in knee arthroplasty as mandatory.

Only few studies managed to increase the performance of 
their ML models through regularization or random search 
of hyperparameters in order to obtain more meaningful 
results [2]. For deep learning algorithms, it is very com‑
mon to apply multiple techniques to boost performance, 
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i.e. regularization and data augmentation, loss weighting, 
hyperparameter search or data simulation. In machine learn‑
ing, these techniques are used not as frequently while still 
being possible most of the time. A hyperparameter search 
for instance contains significant potential and is easily appli‑
cable with today’s hardware capacity. Another underrated 
example for performance increase are methods to tackle 
class imbalance such as loss weighting. While a hyperpa‑
rameter search was applied once [2], none of the reviewed 
studies indicated the use of any kind of loss weighting. From 
data science perspective, numerous modifications of the ML 
models in knee arthroplasty have not been implemented and 
tested yet. Especially for limited data sets, fine‑tuning of ML 
models is crucial to avoid overfitting. Figure 2 depicts an 
overview of the development of an ML model in knee joint 
surgery based on this discussion. This review has several 
limitations. All studies on ML in knee arthroplasty were not 
presumed to be included. Numerous studies from the field 
of medical informatics examined big data that included data 
sets related to knee arthroplasty. However, we evaluated spe‑
cific studies which focused on outcome prediction in knee 
arthroplasty from the medical perspective. This may have 
disregarded other studies using promising ML approaches in 
orthopaedics with other purposes. Especially imaging data 
are suitable for ML models, but those are mostly utilized 
in ML models for diagnostic applications. We deliberately 
did not evaluate ML algorithms using imaging data for that 
reason.

Conclusion

In conclusion, the prediction of distinct outcomes with ML 
models applying specific data is already feasible in knee 
arthroplasty. However, the prediction of more complex and 
general outcomes is still inaccurate. Currently, the benefits 
for the clinical application may be small, but—from a data 
science perspective—the possibilities are not yet being fully 
utilized. To date, specific parameters of knee arthroplasty 
have not been adequately evaluated and large data volumes 
gathered in registries have not been fully considered nor 
analysed. The inclusion of specific input data as well as the 
collaborative development, modification and evaluation of 
ML models and its data by an orthopaedic surgeon and data 
scientist are essential prerequisites to fully utilize the capac‑
ity of ML in knee arthroplasty. Predictions suitable for clini‑
cal application must be built on solid data structures. We 
consider that a data architecture specifically for ML with 
prospective data is necessary to allow for more accurate and 
complex predictions. Future studies should, therefore, neces‑
sarily examine large‑scale data with specific and longitudi‑
nally recorded parameters.
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Fig. 2  Overview of the development of a ML model in knee surgery. 
After defining the problem statement, the algorithm development 
consists of three main pillars: a data, b algorithm, c results. In step 
a, the dataset has to be established and prepared in a manner that it 
is qualitatively and quantitatively feasible for ML algorithms. In step 

b, an algorithm has to be chosen or developed and fine‑tuned for the 
specific problem at hand. In step c, the results have to be evaluated by 
a computer scientist in collaboration with an orthopaedic surgeon. If 
the results are not yet satisfying, steps b and c can be iterated several 
times
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