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The suppressors of cytokine signaling (SOCS) family of proteins
are cytokine-inducible inhibitors of Janus kinase (JAK)-signal
transducer and activator of the transcription (STAT) signaling
pathways. Among the family, SOCS1 and SOCS3 potently
suppress cytokine actions by inhibiting JAK kinase activities.
The generation of mice lacking individual SOCS genes has
been instrumental in defining the role of individual SOCS
proteins in specific cytokine pathways in vivo; SOCS1 is an
essential negative regulator of interferon-c (IFNc) and SOCS3 is
an essential negative regulator of leukemia inhibitory factor
(LIF). JAK-STAT3 activating cytokines have exhibited cardio-
protective roles in the heart. The cardiac-specific deletion of
SOCS3 enhances the activation of cardioprotective signaling
pathways, inhibits myocardial apoptosis and fibrosis and
results in the inhibition of left ventricular remodeling after
myocardial infarction (MI). We propose that myocardial SOCS3
is a key determinant of left ventricular remodeling after MI,
and SOCS3 may serve as a novel therapeutic target to prevent
left ventricular remodeling after MI. In this review, we discuss
the signaling pathways mediated by JAK-STAT and SOCS
proteins and their roles in the development of myocardial
injury under stress (e.g., pressure overload, viral infection and
ischemia).

Introduction

Cytokines play essential roles in the control of immunity, cell
growth and differentiation and cell survival.1,2 Some cytokines,
including interleukins (ILs), interferons (IFNs) and hematopoietic
growth factors, activate the Janus kinase (JAK)-signal transducer
and activator of transcription (STAT) pathway.3-5 The binding of
a cytokine to its cell-surface receptor results in receptor
dimerization and the subsequent activation of JAK tyrosine

kinases. The activated JAKs phosphorylate the receptor cytoplas-
mic domains, creating docking sites for SH2-containing signaling
proteins, including STATs. STATs are phosphorylated by JAKs,
then dimerize and subsequently leave the receptor and translocate
to the nucleus, where they activate gene transcription.3-5 The JAK-
STAT pathway can be negatively regulated at several steps
through distinct mechanisms.6-9 The suppressor of cytokine
signaling (SOCS) family of proteins provide one of the major
mechanisms for regulating cytokine signaling.6-9 Negative-feed-
back regulation through SOCS proteins tightly regulates the
duration and intensity of cytokine-induced JAK-STAT signaling
(Fig. 1).6-9

SOCS1 was identified as a JAK-binding and STAT-inducible
inhibitor of cytokine signaling pathways.10-12 Among SOCS
family proteins, SOCS1 and SOCS3 are structurally similar, and
both of them strongly inhibit JAK kinase activity; however, their
expression patterns and gene knockout (KO) phenotypes in mice
are quite different. SOCS3 is induced by a variety of JAK-STAT-
activating cytokines, including IL-6, granulocyte-colony stimu-
lating factor (G-CSF), erythropoietin (EPO), cardiotrophin-1
(CT-1) and leukemia inhibitory factor (LIF).13,14 In contrast,
SOCS1 is strongly induced by IFNc, especially in the lymphoid
tissues.15,16 SOCS3 knockout (SOCS3-KO) mice are embryonic
lethal owing to a placental deficiency that can be rescued with a
LIF receptor null background, suggesting that SOCS3 is an
essential negative regulator of LIF-gp130 signaling.13,14 SOCS1-
KO mice exhibit stunted growth and die within 3 weeks after
birth with systemic inflammation that can be abolished by an
IFNc null background, suggesting that SOCS1 is an essential
negative regulator of IFNc signaling during the neonatal
phase.15,16 Thus, SOCS1 and SOCS3 have essential roles in vivo
roles regulating specific cytokine signaling pathways. To elucidate
the tissue- or cell-specific roles of SOCS1 and SOCS3, we
generated flox mice of SOCS1 and SOCS3.17,18 Using these
genetic mouse lines, we have revealed important roles for SOCS1
and SOCS3 in inflammation,17,19,20 obesity,21 atherosclerosis22

and left ventricular remodeling after myocardial infarction (MI).23

In this review, we will focus on the recent progress of SOCS1 and
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SOCS3 studies regarding cardioprotection against myocardial
injury.

Structure and Function of SOCS Proteins

The SOCS proteins comprise a family of eight intracellular
proteins: cytokine-inducible SH2 protein (CIS), and SOCS1–
SOCS7. Each SOCS family protein is characterized structurally
by a central SH2 domain, an N-terminal domain of variable
length and sequence, and a C-terminal 40-amino-acid conserved
module known as the SOCS box (Fig. 2).24-26 The SOCS box
functions to recruit an E3 ubiquitin ligase complex consisting of
the adaptor proteins elongins B and C, Rbx2 and the scaffold
protein Cullin-5. In general, the SOCS box-containing proteins
are thought to act as substrate-recognition modules to mediate
the polyubiquitination and subsequent degradation of substrate
proteins by the 26S proteasome.27,28 The central SH2 domain
determines the target of each SOCS protein. The SH2 domain of
SOCS1 specifically binds to the tyrosine residue 1007 (Y1007)
in the activation loop of JAK2, whose phosphorylation is
essential for the activation of JAK2 kinase activity.29 The SH2
domains of CIS, SOCS2 and SOCS3 bind to phosphorylated
tyrosine residues on activated cytokine receptors.9,30 SOCS3
binds to gp130-related cytokine receptors, including the

phosphorylated Tyr757 residue of gp130, and Tyr985 of the
leptin receptor.31-33

Functionally, among the family, SOCS1 and SOCS3 nega-
tively regulate the JAK-STAT pathway by inhibiting JAK kinase

Figure 1. Negative-feedback regulation through SOCS tightly regulates the duration and intensity of cytokine-induced JAK-STAT signaling. The binding
of cytokines to their receptors mediates oligomerization of the receptors, which in turn induces JAK kinase activation. The activated JAK kinases
phosphorylate the cytokine receptors, leading to the recruitment and subsequent activation of STAT family proteins. The activated STAT proteins
translocate into the nucleus and activate transcription of a range of cytokine-responsive genes, including SOCS genes. SOCS1 directly binds to JAK and
SOCS3 binds to JAK through cytokine receptors to inhibit JAK kinase activity. These result in the shutoff of cytokine-mediated STAT activation and the
subsequent transcription of cytokine-responsive genes.

Figure 2. All of the eight SOCS family members have a central SH2
domain, an N-terminal domain of variable length and a 40-amino-acid
motif at the carboxyl terminus that is known as the SOCS box. In SOCS1
and SOCS3, a kinase inhibitory region (K) adjacent to the SH2 domain
that is required for high-affinity binding to JAKs and the inhibition of JAK
kinase activity has also been defined.
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activity. We identified a kinase inhibitory region (KIR) composed
of 12 amino acids in the N-terminal domain of SOCS1 and
SOCS3 that are required for the inhibition of JAK signaling and
kinase activity.29,31 We previously proposed that the KIR of SOCS1
and SOCS3 functioned as a pseudosubstrate for JAK kinase.29,31

Recently, Babon et al. reported the novel inhibition mechanism of
SOCS3 by employing nuclear magnetic resonance and classical
enzyme kinetics.34,35 They showed that SOCS3 binds to the surface
of the JAK2 kinase domain, which contains a conserved three-
residue GQM motif on the JAKs and induces a conformational
change in the catalytic pocket, which blocks the transfer of a
phosphate group to the substrate.34,35 This information will provide
clues to develop novel types of JAK inhibitors.

SOCS and Cardiac Hypertrophy

The common receptor component of the IL-6 family of cytokines,
gp130, has been demonstrated to play an important role in cardiac
hypertrophy.36-39 The gp130 cytokines (e.g., CT-1 and LIF) are
potent inducers of cardiomyocyte hypertrophy.39-42 SOCS1 and
SOCS3 are not expressed in steady-state of myocardium. Gp130
cytokines rapidly (within 30 min) and strongly induce SOCS3 but
not SOCS1 mRNA in cardiomyocytes.43 SOCS1 is induced by
IFNc but not by gp130 cytokines in cardiomyocytes.43 Thus,
gp130 cytokines specifically induce SOCS3, while IFNc induces
SOCS1 in cardiomyocytes. SOCS3 is markedly induced not only
during the acute response phase, but also during the hypertrophic
response phase after pressure overload; this late-phase SOCS3
induction is closely correlated with embryonic gene activation,
including atrial natriuretic factor (ANF) and brain natriuretic
peptide (BNP), suggesting that cardiac gp130-STAT3 signaling is
precisely controlled by SOCS3.43 Adenovirus-mediated gene
transfer of SOCS3 to cardiomyocytes markedly suppressed the
LIF-induced hypertrophic response.43 Gp130 downstream signal-
ing pathways, STAT3, extracellular-signal-regulated kinases 1 and 2
(ERK1/2), and AKT activation, which are coinduced by LIF
stimulation, were completely suppressed by SOCS3 overexpression.
Thus, during the progression of cardiac hypertrophy, SOCS3
participates in a negative feedback loop that switches off the gp130-
STAT3 signaling pathway. In fact, left ventricular hypertrophy after
acute pressure overload was significantly increased in cardiac-
specific SOCS3-knockout mice (SOCS3-CKO).44 Activation of
STAT3, AKT and ERK1/2 were also increased in SOCS3-CKO
hearts after pressure overload.44 However, echocardiography
unexpectedly revealed that cardiac function was significantly
decreased, with left ventricular chamber dilation in SOCS3-CKO
mice compared with control mice after pressure overload.44

Cardiac-specific gp130 knockout mice display rapid-onset dilated
cardiomyopathy and massive myocyte apoptosis during pressure
overload.45 Therefore, the delicate balance between the activation of
gp130 signaling and the induction of its negative feedback
regulator, SOCS3, might be important to maintenance of cardiac
function during pressure overload.

SOCS1 expression is not induced after acute pressure
overload.43 However, SOCS1 expression is induced in the
myocardium during chronic pressure overload.46 Adeno-associated

virus (AAV)-mediated overexpression of SOCS1 markedly
worsened cardiac remodeling and function after chronic pressure
overload,46 suggesting that SOCS1 may be involved in the
mechanism of maladaptive hypertrophy and failure in response to
chronic pressure overload.

SOCS and Viral Myocarditis

Enteroviral infection, including coxsackievirus B3 (CVB3) infec-
tion, is a common cause of acute myocarditis, which can lead to
heart failure, arrhythmias, and death.47,48 Both a direct viral
cytopathic effect and activation of the host cellular immune
response play an important role in enteroviral-mediated myocardial
injury. Viral infection induces the expression of JAK-STAT-
activating cytokines (e.g., IFN-a/β and IFN-c), gp130-related
cytokines (e.g., CT-1 and IL-6) and IL-10 at the early stages of
myocarditis.49-51 STAT1 and STAT3 are strongly activated three
days after CVB3 infection.52 SOCS1 and SOCS3 are also strongly
expressed at a similar time as the activation of STATs, indicating
activation of the JAK-STAT-SOCS circuit at this early time point of
CVB3 infection in the heart.52 Because SOCS1 induction has been
correlated with the induction of IFNc-inducible genes, including
interferon regulatory factor 1 (IRF1) and Fc-gamma receptor 1
(FccRI), it is likely that SOCS1 is induced in myocardium during
viral myocarditis through IFNc-STAT1 signal activation.52 To
understand the in vivo significance of the SOCS1 expression in the
cardiac myocyte, transgenic mice that express SOCS1 under the
direction of the a-myosin heavy chain promoter were infected with
CVB3. Cardiac myocyte-specific transgenic expression of SOCS1
inhibited enterovirus-induced activation of the JAK-STAT path-
way, with accompanying increases in viral replication, cardiomyo-
pathy and mortality in CVB3-infected mice.52

Like SOCS1, SOCS3 overexpression in the transgenic cardiac
myocyte has a marked effect on the susceptibility of the heart to
CVB3 infection.53 SOCS3 overexpression does not inhibit IFN-
receptor signaling or the IFN antiviral effect in isolated cardiomyo-
cytes,53 suggesting that the gp130 signaling pathway regulated by
SOCS3 might be centrally involved in the prevention of CVB3-
induced myocardial injury. We demonstrated that cardiac-specific
knockout of gp130 increases susceptibility to CVB3.53 Because
expression of the SOCS transgenes or deletion of the gp130 gene
were limited to cardiac myocytes without expression in immune cells,
these results clearly demonstrate a crucial role for innate immune
mechanisms that can be affected by SOCS within the cardiac
myocyte.We demonstrated that inhibition of SOCS1 and SOCS3 in
the cardiac myocyte through adeno-associated virus (AAV)-mediated
expression of a dominant-negative SOCS1 increased the myocyte
resistance to the acute cardiac injury caused by CVB3 infection in
vivo, indicating that strategies aimed at inhibiting SOCS1 and
SOCS3 could potentiate the intrinsic antiviral actions of cytokines
that stimulate the JAK-STAT pathway.52

SOCS and Myocardial Infarction

Left ventricular remodeling depresses cardiac performance,
contributes to the development of heart failure and is an

236 JAK-STAT Volume 1 Issue 4



independent determinant of morbidity and mortality after MI.54,55

The administration of cytokines such as G-CSF, EPO, IL-11 and
LIF was recently demonstrated to prevent the development of left
ventricular remodeling after MI in animals.56-60 These cytokines
activate the JAK-STAT pathways, which has a protective roles in
the development of left ventricular remodeling after MI.38,61,62 We
showed that cardiac-specific deletion of SOCS3 prevents left
ventricular remodeling after MI.23 Although the initial infarct size
after coronary occlusion was comparable between SOCS3-CKO
and control mice, the infarct size 14 d after MI was remarkably
inhibited in SOCS3-CKO mice, indicating that the progression of
left ventricular remodeling after MI was prevented in SOCS3-
CKO hearts.23 Multiple JAK-STAT-activating cytokines, includ-
ing LIF, G-CSF, IL-11, IL-6 and SOCS3, were strongly expressed
in the heart after MI, demonstrating the presence of a cytokine-
rich microenvironment in the ischemic myocardium.23 The
duration and intensity of multiple cardioprotective signaling
pathways including STAT3, AKT and ERK1/2, were enhanced in
SOCS3-CKO hearts. Cardiac-specific SOCS3 deletion inhibited
myocardial apoptosis and fibrosis, and also augmented the
expression of antioxidants, including manganese superoxide
dismutase and heme oxygenase-1.23 Myocardial SOCS3 may be
a key molecule in the development of left ventricular remodeling
after MI.

Wegrzyn et al. demonstrated a novel function of serine-
phosphorylated STAT3 in mitochondrial homeostasis.63 They
reported that serine-phosphorylated STAT3 was present in the
mitochondria of primary tissues including the heart, and that the
activities of complexes I and II of the electron transport chain
were significantly decreased in STAT3-deficient cells.63 We have
shown that the release of cytochrome c from mitochondria to the
cytosol was prevented in the heart of SOCS3-CKO mice after
MI.23 Both tyrosine-phosphorylated STAT3 and serine-phos-
phorylated STAT3 were enhanced in SOCS3-CKO hearts after
MI. Furthermore, mitochondrial transcription factor A (TFAM)
(an essential molecule for the transcription and replication of
mitochondrial DNA)64 and proliferator-activated receptor gamma
coactivator 1 (PGC-1) (an important regulator of mitochondrial
biology in the heart)65 were transiently upregulated after MI, and
their expression was enhanced in SOCS3-CKO hearts.23 Since
STAT3 is present not only in the mitochondria but also in the
cytosol, enhancement of STAT3 phosphorylation by cardiac-
specific deletion of SOCS3 may prevent myocardial apoptosis
through both the mitochondrial pathway and cytosolic/nuclear
signal transduction after MI.66

SOCS Confers Cytokine Resistance

Resistance to cytokines limits their intrinsic efficacy. The
effectiveness of IFN therapy has been demonstrated for a wide
variety of tumor cells. However, some patients are resistant to IFN
therapy.67 We reported that SOCS1 and SOCS3 are highly
expressed without cytokine stimulation and that cytokine-induced
JAK-STAT activation is markedly reduced in IFN-resistant
leukemia cell lines, suggesting that reduced activation of JAK by
aberrant induction of SOCS1 or SOCS3 might be a mechanism

underlying IFN resistance.68 Leptin is an adipocyte-derived
hormone that is centrally involved in energy homeostasis.69

Resistance to leptin is a feature of most cases of obesity human
and rodents.69 We and another group demonstrated that SOCS3
deficiency in the brain elevates leptin sensitivity, and that leptin
confers resistance to diet-induced obesity.21,70 Similarly, we
demonstrated that the induction of SOCS1 or SOCS3 by
pretreatment with CT-1 in vivo confers resistance to subsequent
CT-1 administration.71 These findings indicate that SOCS1 and
SOCS3 expression confers resistance to cytokines action. SOCS1
and SOCS3 induction is an important mechanism underlying the
cytokine resistance. In other words, SOCS1 and SOCS3 are
promising therapeutic targets for cytokine resistance in the
context of diseases.

While JAK-STAT-activating cytokines, including EPO and
G-CSF, improved left ventricular remodeling and function after
MI in animals,56-60 the effect of cytokines on left ventricular
remodeling and function in these patients remains controversial.
The first phase II trial showed that intravenous bolus of EPO did
not reduce infarct size in patients with MI.72 The timing of the
treatment is considered important to obtain the most beneficial
effects of cytokine therapy in MI patients.73 SOCS3 is markedly
induced not only by ischemia, but also by administered cytokine
itself during MI. Therefore, ischemia-induced SOCS3 may reduce
the effect of cytokine therapy in patients with MI, suggesting that
SOCS3 confers cytokine resistance in human. In fact we
demonstrated that myocardial-specific SOCS3 deletion enhances
multiple cardioprotective signaling pathways and ameliorates left
ventricular remodeling after MI.23 Small-molecule antagonists of
SOCS3 or tissue-specific vector delivery of SOCS3 inhibitor
during left ventricular remodeling after MI may prove to be a
clinically valuable strategies to enhance the protective effect of
JAK-STAT-activating cytokines. We propose that SOCS3 may
serve as a novel therapeutic target to prevent left ventricular
remodeling in patients with MI.

Concluding Remarks

During the past decade, since the discovery of the SOCS family
proteins, we have extended our understanding of the structure and
function of these proteins. SOCS proteins have been revealed as
key negative regulators of cytokine and growth factor signaling.
The generation of mice lacking individual SOCS genes has been
instrumental in defining the role of individual SOCS proteins in
specific cytokine pathways. Furthermore, tissue-specific SOCS
knockout mice have revealed the important roles of SOCS
proteins in the pathogenesis of diseases.

SOCS molecules positively and negatively regulate macrophage
and dendritic-cell activation and are essential for T-cell
development and differentiation. Given that immune-mediated
inflammation is substantially involved in the pathogenesis of
myocardial diseases (e.g., MI or heart failure), SOCS molecules
within leukocytes remain to be elucidated in the context of
myocardial diseases pathogenesis.

In the heart, JAK-STAT3-activating cytokines have cardiopro-
tective roles through anti-apoptosis, inhibition of mitochondrial
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damage and oxidative stress, anti-inflammation, and angiogenesis
(Fig. 3). Because SOCS1 and SOCS3 are potent suppressors of
the JAK-STAT3 signaling pathway, the strategy of SOCS
inhibition has several merits for cardioprotection. We must
develop a carrier (e.g., nanoparticle) that is capable of delivering a
SOCS3-antagonizing small molecule or siRNA into myocardium
in vivo.
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