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Tumors escape immune recognition by several mechanisms, and induction of myeloid
derived suppressor cells (MDSC) is thought to play a major role in tumor mediated immune
evasion. MDSC arise from myeloid progenitor cells that do not differentiate into mature den-
dritic cells, granulocytes, or macrophages, and are characterized by the ability to suppress
T cell and natural killer cell function. They are increased in patients with cancer including
renal cell carcinoma (RCC), and their levels have been shown to correlate with prognosis
and overall survival. Multiple methods of inhibiting MDSCs are currently under investiga-
tion. These can broadly be categorized into methods that (a) promote differentiation of
MDSC into mature, non-suppressive cells (all trans retinoic acid, vitamin D), (b) decrease
MDSC levels (sunitinib, gemcitabine, 5-FU, CDDO-Me), or (c) functionally inhibit MDSC
(PDE-5 inhibitors, cyclooxygenase 2 inhibitors). Recently, several pre-clinical tumor mod-
els of combination therapy involving sunitinib plus vaccines and/or adoptive therapy have
shown promise in MDSC inhibition and improved outcomes in the tumor bearing host. Cur-
rent clinical trials are underway in RCC patients to assess not only the impact on clinical
outcome, but how this combination can enhance anti-tumor immunity and reduce immune
suppression. Decreasing immune suppression by MDSC in the cancer host may improve
outcomes and prolong survival in this patient population.
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INTRODUCTION
While several cancer treatments have been shown to illicit anti-
gen specific immune responses, this has not correlated well with
a clinical response and tumor regression. Multiple pre-clinical
models have demonstrated regression of bulky tumors with
immunotherapy, but the clinical response rates of several so called
immunogenic tumors, including melanoma and renal cell car-
cinoma (RCC), remain quite low. It is widely accepted that the
tumor microenvironment is immunosuppressive, both inhibiting
activated immune cells and activating cells with a suppressive
phenotype. Multiple cell types contribute to tumor mediated
immune suppression, including regulatory T cells (Treg), type 2
NKT cells, tumor associated macrophages (TAMs), and myeloid
derived suppressor cells (MDSCs). MDSCs are a heterogeneous
cell population characterized by the ability to suppress T cell and
natural killer (NK) cell function (Gabrilovich and Nagaraj, 2009;
Ostrand-Rosenberg, 2010). They arise from myeloid progenitor
cells that do not differentiate into mature dendritic cells, granulo-
cytes, or macrophages. MDSCs have been shown to be significantly
increased in cancer patients of all stages relative to healthy volun-
teers, with a significant correlation between circulating MDSC,
metastatic burden, and clinical cancer stage (Diaz-Montero et al.,
2009), and therefore offer an exciting new target in cancer therapy.
The goal of this review is to summarize the rationale of thera-
peutic targeting of MDSC numbers and/or function in patients
with cancer. This includes a discussion of MDSC subpopulations,

particularly those in human cancer patients, along with a very
brief description of the mechanisms used by MDSC to suppress T
cell function, as this topic has been extensively reviewed by others
(Gabrilovich et al., 2012). Included is a discussion of the various
approaches used to reduce the number or function of MDSC,along
with a summary of pre-clinical studies that have examined the
impact of combining immunotherapy with approaches to reduce
MDSC as a means to promote anti-tumor T cell immunity and
decrease tumor progression.

A HETEROGENEOUS POPULATION OF MDSCs IS INDUCED BY TUMOR
MEDIATED INFLAMMATION
Two main subsets are described in mouse tumor models,
granulocytic, and monocytic. Granulocytic (G) MDSC are
polymorphonuclear-like and account for 70–80% of the MDSC
population (Movahedi et al., 2008; Youn et al., 2008), whereas
monocytic (M) MDSCs are mononuclear and account for 20–
30% of MDSCs (Youn et al., 2008). Identification of MDSC
subsets in humans is more complex, with multiple populations
defined in solid tumors, but are broadly defined as myeloid cells
expressing CD33, CD11b, and low/negative HLA-DR. In gen-
eral granulocytic and monocytic subsets represent major com-
ponents of human MDSC and there may be subpopulations of
each based on the markers used to define them. Additionally,
MDSC with the phenotype of CD33+HLA-DR−/low that are
linage negative (CD15−, CD14−) have also been well documented
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in cancer patients (Gabrilovich et al., 2012). The granulocytic
subset expresses CD15 and/or CD66 and are typically negative
for CD14 (Serafini et al., 2006a; Gabrilovich and Nagaraj, 2009;
Ostrand-Rosenberg, 2010; Gabrilovich et al., 2012). For some
types of human cancers such as RCC, granulocytic-MDSC with
immunosuppressive activity is the prevalent population in the
blood, although M-MDSC, linage negative (CD15−CD14−), and
other subsets are also present (Zea et al., 2005; Kusmartsev et al.,
2008; van Cruijsen et al., 2008; Rodriguez et al., 2009; Ko et al.,
2010; Walter et al., 2012). Similar findings have been reported in
glioma and bladder cancer patients (Raychaudhuri et al., 2011;
Sippel et al., 2011). While a recent study in murine tumor models
demonstrates that G-MDSC are functionally distinct from neu-
trophils and represent immature neutrophils with suppressive
activity (Youn et al., 2012), the relationship between G-MDSC
and neutrophils is less clear in human cancer patients. Cells with
the phenotype of activated neutrophils have been shown to co-
purify with peripheral blood mononuclear cells (PBMC) and
MDSC during ficoll density centrifugation (Schmielau and Finn,
2001; Zea et al., 2005; Ko et al., 2009; Rodriguez et al., 2009)
and are immunosuppressive, unlike neutrophils from healthy
donors. Additionally, when neutrophils from healthy donors are
activated they display prolonged survival, have reduced density,
and are immunosuppressive, similar to MDSC (Schmielau and
Finn, 2001; Rodriguez et al., 2009; Sippel et al., 2011). More-
over, immature neutrophils (CD66b+CD16−) also co-purify with
PBMC (Brandau et al., 2011), although the suppressive activity
of these cells is not well defined. It seems likely that activated
neutrophils and immature granulocytes (G-MDSC) contribute
to immune suppression in different types of human cancers,
although the specific suppressive and angiogenic activity of these
two cell types requires further study. The monocytic MDSC
population is also present in many different tumor types and
is typically CD14+HLA-DR−/low. In patients with melanoma,
multiple myeloma, prostate, and hepatocellular carcinoma, the
immuosuppressive M-MDSC is a prominent population (Filipazzi
et al., 2007, 2012; Hoechst et al., 2008; Mandruzzato et al., 2009;
Poschke et al., 2010; Vuk-Pavlovic et al., 2010) and is thought to
suppress via the production of arginase, iNOS, and suppressive
cytokines.

Myeloid derived suppressor cells are induced by chronic inflam-
mation, and several tumor-secreted factors have been implicated
in MDSC induction. Prostaglandin E2 induces differentiation of c-
kit+ hematopoietic stem cells into MDSCs, contributing to T cell
immune suppression (Rodriguez et al., 2005; Sinha et al., 2007b).
Interleukin (IL)-6, IL-1β, GM-CSF, and G-CSF, which are found in
the microenvironment of many tumors, have been shown to signif-
icantly increase MDSC accumulation and T cell suppression (Song
et al., 2005; Bunt et al., 2006; Sinha et al., 2008). Furthermore,
IL-1β induced inflammation aids MDSC and macrophage cross-
talk, thus increasing MDSC mediated innate immune suppression
(Bunt et al., 2006). In addition, proteins S100A8/A9, both pro-
inflammatory, induce MDSC accumulation (Sinha et al., 2008).
An autocrine positive feedback loop is created by MDSC secreting
pro-inflammatory factors, including IL-6 and S100A8/A9, thus
further sustaining themselves in the tumor microenvironment
(Sinha et al., 2008; Ostrand-Rosenberg, 2010).

MDSC ARE INCREASED IN PERIPHERAL BLOOD AND TUMOR
PARENCHYMA OF THE TUMOR HOST, AND LEVELS HAVE BEEN SHOWN
TO CORRELATE WITH CLINICAL OUTCOME
Several studies have shown increased MDSC levels in patients
with different histologic tumors (Hoechst et al., 2008; Mova-
hedi et al., 2008; Gabrilovich and Nagaraj, 2009). In a study
of 106 patients with newly diagnosed stage I-IV solid tumors,
circulating MDSC percentages were measured (Lin−/Low, HLA-
DR−, CD33+CD11b+) prior to the start of treatment. Circu-
lating MDSC levels were found to correlate both with clini-
cal stage (p < 0.0001) and metastatic burden (p < 0.01). Inter-
estingly, patients with radiographic evidence of disease pro-
gression had increased levels of circulating MDSC, whereas
patients who responded to treatment had decreased MDSC (Diaz-
Montero et al., 2009). A recent study identified six MDSC phe-
notypes using single multicolor staining: increased percentages of
MDSC2–MDSC6 phenotypes were noted in patients with RCC
compared to healthy donor controls (p < 0.01). Furthermore,
a retrospective analysis found MDSC4 (monocytic; p < 0.001)
and MDSC5 (granulocytic; p= 0.016) were significantly neg-
atively associated with overall survival (Walter et al., 2012).
Recently, increased circulating promyelocyte-like bone marrow
derived CD11b+/CD16−MDSC levels correlated with reduced
survival in breast cancer (p= 0.048) and colorectal cancer patients
(p= 0.025) (Solito et al., 2011). Additionally, increased levels
of HLA-DR Lin1low/− CD33+ CD11b+ MDSC in pancreatic,
esophageal, and gastric cancer was an independent prognostic
factor for survival (p < 0.001) (Gabitass et al., 2011).

The presence of MDSC in hematological malignancies is not as
well established, but they have been described in patients with mul-
tiple myeloma, Hodgkin’s lymphoma (HL), and non-Hodgkin’s
lymphoma (NHL) (Montero et al., 2012). In the latter two, MDSC
levels were found to correlate with clinical stage, and in NHL
also correlated with faster rates of disease progression and more
aggressive NHL histology (p= 0.01) (Motzer et al., 2002; Mon-
tero et al., 2012). Collectively, these early clinical findings suggest
that accumulation of MDSC levels in cancer patients contributes
to tumor progression, thereby providing a target for improving
immunotherapy.

MDSCs USE VARIOUS MECHANISMS TO SUPPRESS EFFECTIVE
ANTI-TUMOR IMMUNITY
The regulatory function of MDSC in dampening anti-tumor
immunity has been extensively shown in both in vitro and in vivo
studies (Figure 1). MDSC inhibit both antigen specific and non-
specific T cell activation in murine MDSC co-cultures with peptide
activated T cells and murine and human MDSC co-cultures with
anti-CD3 activated T cells (Gabrilovich et al., 2001; Sinha et al.,
2005). Both CD4+ and CD8+ T cells are suppressed, and while
suppression requires cell to cell contact, this can occur by an
MHC restricted or unrestricted mechanism (Nagaraj et al., 2007).
Granulocytic and monocytic MDSC inhibit T cells by depletion
of l-arginine within the tumor microenvironment, thus arrest-
ing T cells in G0–G1 (Rodriguez et al., 2005; Ostrand-Rosenberg,
2010). Similarly, MDSC inhibit T cell activation by sequestering
cystine. This disables T cells from obtaining cysteine, which is
essential for antigen activation, proliferation, and differentiation
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FIGURE 1 | Myeloid derived suppressor cells use multiple mechanisms to dampen anti-tumor immunity.

(Ostrand-Rosenberg, 2010; Srivastava et al., 2010). Reduced CD4+

and CD8+ T cell homing to lymph nodes is effected by MDSC,
resulting in a down-regulation of L-selectin, which normally drives
leukocyte extravasation to areas of inflammation (Hanson et al.,
2009). MDSC have also been shown to impair innate immunity
by their cross-talk with macrophages, which increases MDSC pro-
duction of IL-10 and decreases macrophage production of IL-12,
converting anti-tumor M1 cells into M2 cells that enhance tumor
progression (Sinha et al., 2007a). In a murine B-cell lymphoma
model, MDSC were identified as tolerogenic antigen presenting
cells (APC) capable of antigen uptake and presentation to tumor-
specific Tregs by an arginase dependant mechanism (Serafini et al.,
2008). Interestingly, in vitro and in vivo inhibition of MDSC func-
tion reduced Treg proliferation and tumor-induced tolerance in
antigen specific T cells (Serafini et al., 2008).

DIFFERENT STRATEGIES TO DOWN-REGULATE MDSC
NUMBER AND FUNCTION
Given the phenotypic and functional heterogeneity of MDSCs,
therapeutic approaches that are sufficient to inhibit MDSCs across
a wide spectrum of cancer patients would be a significant addition
to the anti-cancer armamentarium, and several mechanisms are
currently undergoing investigation (Table 1).

PROMOTING DIFFERENTIATION OF MDSC INTO MATURE,
NON-SUPPRESSIVE CELLS (ATRA, VIT D3)
Promoting differentiation of suppressive MDSC into mature, non-
suppressive cells has been studied in pre-clinical and clinical cancer
models, the rationale being that conversion of MDSC may enhance
anti-tumor immune responses. Increased production of reactive
oxygen species (ROS) is a functional characteristic of MDSC, and

all trans retinoic acid (ATRA), a derivative of vitamin A, has
been shown to induce MDSC differentiation by a glutathione
synthase dependant mechanism (Nefedova et al., 2007). While
ATRA induced differentiation of MDSC into myeloid dendritic
cells in vitro (Gabrilovich et al., 2001), administration in vivo
increased MDSC differentiation and enhanced CD4+ and CD8+

T cell antigen specific immune responses, but did not decrease
tumor burden (Gabrilovich and Nagaraj, 2009). More promising
results were obtained by combining ATRA with antigen specific
peptide vaccines. In two different tumor models, treatment with
ATRA and peptide vaccines significantly prolonged the anti-tumor
treatment effect, making this molecule a promising candidate as
an adjunct to cancer immunotherapy (Gabrilovich et al., 2001).
The effect of ATRA on MDSC in cancer patients was recently elu-
cidated: 18 patients with metastatic renal cell carcinoma (mRCC)
who were shown to have elevated MDSC levels were treated with
ATRA. This significantly reduced the number of MDSC in patients
with a high plasma concentration of ATRA (>150 ng/mL), but not
in patients with lower ATRA concentrations (<135 ng/mL) (Mirza
et al., 2006). Interestingly, the effect of ATRA was abrogated in
patients who also received subcutaneous IL-2 (Mirza et al., 2006).

In a phase IB study, treatment with oral Vit D3 in patients with
HNSCC was shown to reduce the number of immune suppressive
CD34+ cells (CD11b+CD33+CD14−HLA-DR−), increase HLA-
DR expression, and increase plasma IL-12 and IFN-gamma levels
in vitro, which would favor an anti-tumor Th1 immune response
(Lathers et al., 2004; Ugel et al., 2009).

DECREASING MDSC LEVELS (SUNITINIB, GEMCITABINE, 5-FU)
Sunitinib is an oral receptor tyrosine kinase inhibitor that targets
signaling by PDGFRs, VEGFRs, and c-kit, and was approved by
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Table 1 | Summary of mechanisms of anti-MDSC agents and key study findings.

Mechanism of action Agent Study finding Reference

Promoting MDSC

differentiation

ATRA Induced MDSC differentiation into myeloid DC in mice/humans. Improved T cell

response

Gabrilovich et al.

(2001)

High plasma concentrations of ATRA correlated with reduced MDSC levels Mirza et al. (2006)

Vit D3 HNSCC pts treated with oral VitD3 had decreased MDSC Lathers et al. (2004),

Ugel et al. (2009)

Decreasing MDSC

levels

Sunitinib Treatment in RCC pts decreased MDSC (monocytic and linage negative subsets)

and increased myeloid DC in patients experiencing tumor regression

van Cruijsen et al.

(2008)

Treatment in RCC pts decreased MDSC and Treg levels, improved T cell function

(IFNY production)

Finke et al. (2008),

Ko et al. (2009)

In mouse model (MCA 26) sunitinib reduced MDSC levels in tumor and also Tregs Ozao-Choy et al.

(2009)Synergized with immunotherapy to reduce tumor size

Reduced PDL-1 expression

In B16 Ova mouse model sunitinib reduced MDSC and Teg in tumor Bose et al. (2010)

Reduced levels of immunosuppressive co-stimulatory molecules and

chemokines involved in MDSC and Treg trafficking

Synergy with vaccine to boost T cell anti-tumor response

Sunitinib reduced the viability of granulocytic-MDSC in tumor bearing mice and

reduced the proliferation of monocytic MDSC

Ko et al. (2010)

Axitinib Reduced MDSC, Treg, and enhanced T cell response in tumor bearing mice Bose et al. (2010)

Gemcitabine Decreased splenic MDSC, improved CD8 and NK cell anti-tumor activity in 5

murine lung cancer models Reduces number ex vivo and then they show

apoptosis of splenocytes in vivo

Suzuki et al. (2005)

Early treatment in a murine mammary carcinoma model decreased MDSC, which

correlated with tumor growth inhibition

Le et al. (2009)

5-FU Treatment decreased splenic and intra tumor MDSC, did not affect T, B, NK, or

dendritic cells. 5-FU triggers MDSC apoptosis

Vincent et al. (2010)

Docetaxel Reduced MDSC in spleen; increased CTL response; and polarized MDSC to M1

phenotype

Kodumudi et al.

(2010)

Inhibiting MDSC

function

CDDO-Me In a murine model, decreased MDSC inhibitory function and decreased tumor

growth. In RCC patients, completely abrogated MDSC inhibitory function in vitro

Nagaraj et al. (2010)

In mice, did not affect number of MDSC in spleen, but eliminated suppressive

activity of MDSC on CD8+ T cells in vitro

Inhibiting MDSC

function

PDE-5 inhibitor In mice, treatment down regulated ARG1 and NOS2, abrogated suppressive

pathways. In isolated cells from cancer patients, restored T cell proliferation

Serafini et al. (2006b)

In melanoma patients, treatment decreased MDSC levels and weakened

suppressive function

Umansky and Sevko

(2012)

Sildafenil increased survival of tumor bearing mice by a CD8+ T cell dependant

mechanism. Decreased MDSC number and immunosuppressive function

Meyer et al. (2011)

COX-2 inhibitor In a murine glioma model, treatment inhibited PGE-2 production and delayed

glioma development. MDSC were decreased in bone marrow and within the

tumor, CCL2 chemokine was decreased also

Fujita et al. (2011)

In ovarian cancer pts, decreased MDSC levels in ascites correlated with CXCL12

and PGE-2 inhibition

Obermajer et al.

(2011)

Nitro aspirin Increased the number and function of tumor Ag-specific T lymphocytes in vitro

and in vivo by decreasing ARG and NOS activity in CD11+ B lymphocytes

De Santo et al.

(2005)
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the FDA for the treatment of advanced RCC in 2007, following a
phase III trial that demonstrated improved overall and progression
free survival (Motzer et al., 2009). It is currently front line ther-
apy for patients with metastatic RCC. In patients with advanced
RCC, after 4 weeks of sunitinib treatment, a generalized decrease
in myeloid frequencies was observed (van Cruijsen et al., 2008).
Increased levels of myeloid DC subsets were noted relative to other
myeloid subsets in patients experiencing tumor regression, and
high levels of CD1c/BDCA-1(+) MDSC were predictive of tumor
regression and improved progression free survival (van Cruijsen
et al., 2008), suggesting that sunitinib may play an immunomod-
ulatory role in the tumor bearing host. In RCC patients, one cycle
of treatment with sunitinib significantly increased the percentage
of IFN-gamma producing T cells, reduced IL-4 production, and
diminished type 2 bias (Finke et al., 2008). This augmented T cell
response was associated with decreased MDSC levels, including a
reduction in the dominant population, granulocytic-MDSC (Ko
et al., 2009). The increase in type-1 response may be partly related
to modulation of Treg cells: mRCC patients were found to have
a significantly higher number of Treg than healthy controls, and
while an inverse correlation between the increase in type-1 and
a decrease in the percentage of Treg was noted, the reduction in
Treg after treatment did not reach statistical significance (Finke
et al., 2008). Additional studies in a mouse tumor model (4T1)
indicate that sunitinib treatment may function by reducing the
expansion of monocytic MDSC while inducing apoptosis in the
granulocytic-MDSC subset (Ko et al., 2010). In an advanced tumor
murine model, sunitinib treatment decreased both MDSC and Treg

levels, in addition to reducing suppressive function of MDSCs and
improving tumor-specific T cell function (Ozao-Choy et al., 2009).
Treatment with sunitinib also resulted in reduced expression of
IL-10, transforming growth factor-beta, and Foxp3, but increased
expression of IFN-gamma, skewing the immune response toward
a Th1 phenotype, and increased cytotoxic T lymphocyte (CTL)
responses in isolated tumor infiltrating lymphocytes (TILs). Per-
haps most importantly, the expression of negative co-stimulatory
molecules was widely dampened: CTLA4 and PD-1 were decreased
in CD4+ and CD8+ T cells, and PDL-1 expression on MDSC and
plasmacytoid dendritic cells was also significantly decreased by
sunitinib treatment (Ozao-Choy et al., 2009).

STAT3 plays a central role in MDSC function, promoting tumor
invasion, and angiogenesis. There is some evidence that sunitinib
may act through a STAT3 associated mechanism. In a murine kid-
ney cancer model (RENCA), sunitinib inhibited STAT3 activity in
tumor associated MDSCs, and was found to reduce the expression
of several STAT3 regulated pro-angiogenic genes (Kujawski et al.,
2008; Xin et al., 2009).

While some chemotherapeutic agents, such as doxorubicin and
cyclophosphamide, have been shown to increase MDSC levels in
peripheral blood (Suzuki et al., 2005), gemcitabine, a cytidine
nucleoside analog, has been shown to decrease splenic MDSC in
murine models of five advanced lung cancer cell lines (Suzuki
et al., 2005). Interestingly, no significant reduction was noted in
CD4+ T cells, CD8+ T cells or B cells, and an increase in the anti-
tumor activity of CD8+ T cells and activated NK cells was noted,
making this a promising MDSC targeting agent. Furthermore, at
specific time points after treatment, gemcitabine was shown to

selectively induce MDSC apoptosis (Suzuki et al., 2005). In a more
recent study, BALB/c mice inoculated with 4T1 mammary car-
cinoma were treated with repeated gemcitabine starting within
1 week after inoculation, or treated once after 20–25 days (Le et al.,
2009). Early treatment with gemcitabine significantly decreased
the proportion of MDSC in the spleen, and this correlated with a
decrease in tumor growth (Le et al., 2009). While a single dose of
gemcitabine in mice with large tumors did inhibit MDSC accumu-
lation, this did not affect tumor burden. This study also suggests
selective inhibition of MDSC, as gemcitabine treatment of tumor
bearing mice restored CD8+ T cell immune function (Le et al.,
2009).

5-FU, a pyrimidine analog, is another chemotherapeutic agent
that has shown selective anti-MDSC activity. Treatment of tumor
bearing mice with 5-FU led to a major decrease in splenic MDSC
and MDSC within the tumor parenchyma, with no significant
effect on T cells, B cells, NK cells, or dendritic cells (Vincent et al.,
2010). Compared to gemcitabine, 5-FU showed more efficacy in
MDSC depletion and induction of MDSC apoptotic cell death,
both in vitro and in vivo (Vincent et al., 2010). Furthermore, 5-FU
mediated elimination of MDSC increased IFN-gamma production
by tumor-specific CD8+ T cells infiltrating the tumor, promot-
ing T cell-dependent anti-tumor responses in vivo (Vincent et al.,
2010).

FUNCTIONAL INHIBITION OF MDSC (PDE-5 INHIBITORS, COX-2
INHIBITORS, CDDO-Me)
PDE-5 inhibitors are currently widely used for the treatment of
erectile dysfunction and pulmonary hypertension. Recently, mul-
tiple studies have elucidated their potential as anti-MDSC agents
in cancer treatment. In vitro, PDE-5 inhibitors have been shown to
have pro-apoptotic activity on chronic lymphocytic leukemia and
colon carcinoma (Ugel et al., 2009). Experiments in immune defi-
cient mice have clearly shown that this drugs’ anti-tumor effects
are immune mediated. In multiple murine tumor models, several
PDE-5 inhibitors were shown to synergize with adoptive cell ther-
apy, delaying tumor growth (Serafini et al., 2006b). Furthermore,
mice treated with PDE-5 inhibitor had increased CD8+ T cell intra
tumor infiltration, and these lymphocytes up-regulated CD69
and CD25 (markers of activation) and secreted IL-2 (Serafini
et al., 2006b). Most importantly, MDSC suppressive pathways were
dampened: ARG1 and NOS2 were down regulated, in addition to
IL-4-Rα expression (Serafini et al., 2006b). This strategy was also
shown to be effective in cancer patients: in PBMC isolated from
patients with head and neck cancer or multiple myeloma, PDE-5
inhibitors restored T cell proliferation (Serafini et al., 2006b).

More recently, studies have assessed the role of PDE-5 in
melanoma. MDSC were found to be increased in melanoma
lesions, and their accumulation was associated with a strong TCR
ζ-chain down-regulation in T cells (Umansky and Sevko, 2012).
Treatment with PDE-5 inhibitor resulted in decreased MDSC
levels and partial restoration of ζ-chain expression in T cells, result-
ing in attenuated immunosuppressive function and significantly
increased survival of tumor bearing mice, by a CD8+ T cell depen-
dant mechanism (Meyer et al., 2011; Umansky and Sevko, 2012).
These studies suggest that PDE-5 may be of benefit if used in
conjunction with melanoma targeted immunotherapies.
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The enzyme cyclooxygenase 2 (COX-2) plays a role in the pro-
duction of PGE-2, which induces expansion of MDSC (Sinha
et al., 2007b). In a murine glioma model, treatment with COX-
2 inhibitors inhibited systemic PGE-2 production and delayed
glioma development (Fujita et al., 2011). CCL2, an MDSC-
attracting chemokine, was reduced in the tumor microenviron-
ment, and MDSC were decreased both in the bone marrow and
the tumor microenvironment (Fujita et al., 2011). Furthermore,
increased levels of CTLs were noted in the tumor microenviron-
ment (Fujita et al., 2011). These results were not observed in
glioma-bearing COX-2 and CCL2 deficient mice (Fujita et al.,
2011).

In a recent study, it was shown that PGE-2 attracts MDSC into
the ascites microenvironment of ovarian cancer patients by induc-
ing expression of functional CXCR4 in cancer-associated MDSCs,
and plays a role in the production of its ligand CXCL12, thus
ensuring MDSC migration (Obermajer et al., 2011). Frequen-
cies of MDSCs closely correlated with CXCL12 and PGE-2 levels
in ascitic fluid, and inhibition of COX-2 or PGE-2 receptors in
MDSCs suppressed CXCR4 expression, and thus MDSC respon-
siveness to CXCL12 or ovarian cancer ascites (Obermajer et al.,
2011). These studies provide a rationale for targeting COX-2 in
cancer therapy.

CDDO-Me belongs to a class of relatively new compounds
called synthetic triterpenoids, and has been shown to be a potent
activator of the transcription factor NFR2, which up-regulates sev-
eral antioxidant genes (Nagaraj et al., 2010). In vitro, CDDO-Me
completely abrogated MDSC immunosuppressive activity from
tumor bearing mice (Nagaraj et al., 2010), which is not surprising
given that up-regulation of ROS is an essential function of MDSC.
Treatment of mice with this agent did not decrease the proportion
of splenic MDSC, but did eliminate MDSC suppressive activity,
and decreased tumor growth (Nagaraj et al., 2010). Furthermore,
CDDO-Me completely abrogated the inhibitory effect of MDSC
in vitro in samples isolated from RCC patients (Nagaraj et al.,
2010).

COMBINATION THERAPY: TARGETING MDSC AS AN ADJUVANT TO
VACCINES AND IMMUNOTHERAPY
Current studies are focused on strategies that combine approaches
to reduce MDSCs as an adjuvant to different forms of
immunotherapy. As previously discussed, gemcitabine has been
shown to reduce splenic MDSC levels in tumor bearing mice
(Suzuki et al., 2005). In this same study, combining gemcitabine
with IFN-beta markedly enhanced anti-tumor efficacy (Suzuki
et al., 2005). In a HER-2/neu tumor model, treatment with
gemcitabine, HER-2/neu vaccine and anti-glucocorticoid tumor
necrosis factor receptor related protein (GITR) mAbs showed
potent therapeutic anti-tumor immunity, in addition to protec-
tion against pre-existing tumors (Ko et al., 2007). Given that
Her-2/neu is a self antigen with poor immunogenicity, this study
suggests that when given with antigen specific immunotherapy,
gemcitabine combinational therapy may be more effective than
either treatment alone (Table 2).

Several studies have shown that tumor-directed radiation ther-
apy increases the effectiveness of several forms of immunotherapy
(Kao et al., 2011). While the exact mechanism has yet to be
elucidated, this may be due to increased uptake of tumor antigen by

APCs within the irradiated field. In a recent mouse glioma model,
addition of sunitinib to low-dose radiotherapy only modestly
improved survival (D’Amico et al., 2012). Combining sunitinib
with high dose radiation therapy resulted in fatal toxicities, though
each treatment was well tolerated alone, thus limiting the feasi-
bility of this combination (D’Amico et al., 2012). Unfortunately,
success with the combination of sunitinib and radiation has been
on a case by case basis, with no clinical series to date assessing the
potential synergy of this combination (Dallas et al., 2012; Venton
et al., 2012).

In patients with RCC, mutation the VHL tumor suppres-
sor gene results in overproduction of vascular endothelial
growth factor (VEGF). Athymic nude mice that were inocu-
lated with human RCC cells were found to have VEGF recep-
tor 1 (VEGFR1)/CD11b myeloid cells in the peripheral blood
(Kusmartsev et al., 2008). Treatment with Avastin (humanized
anti-VEGF-1 mAb) resulted in significantly reduced numbers
of circulating VEGFR1+ MDSC, suggesting that elimination of
VEGFR1+ cells may restore immunocompetence (Kusmartsev
et al., 2008). However, treatment of metastatic RCC patients
with bevacizumab either alone or combined with interleukin-2
did not reduce MDSC levels in the peripheral blood (Rodriguez
et al., 2009). The difference in MDSC modulation between
these two studies may be related to the timing of antibody
administration, since RCC patients had advanced disease while
mice were treated with antibody during early stages of tumor
development.

Recent animal models have suggested that inhibiting MDSC
and thus reversing immune suppression with sunitinib, a tyro-
sine kinase inhibitor, may be an effective adjunctive treatment
to immune-based cancer therapies (Ozao-Choy et al., 2009; Bose
et al., 2010; Kujawski et al., 2010). However, in a phase III trial,
combining the TroVAax (MVA-5T4) vaccine with either sunitinib,
IL-2, or IFN-α in RCC patients did not enhance survival relative
to sunitinib alone (or IL-2 or IFN-α alone) (Amato et al., 2010).
Interestingly, the lack of synergy between vaccine and sunitinib in
this trial may be related to the sequence of vaccine and sunitinib
administration. In an MC38-CEA murine tumor model, treatment
with sunitinib followed by vaccine was most effective compared
to the reverse order, suggesting that in some tumor models the
sequencing of sunitinib and vaccine is important (Farsaci et al.,
2012). Further studies are needed to assess the role of combin-
ing sunitinib with immunotherapy in t he clinical setting. Indeed,
two company supported clinical trials are underway to test the
efficacy and immune modulating activity of combining sunitinib
with vaccines in metastatic RCC patients (Argos Therapeutics and
Immatics Biotechnologies).

CONCLUSION
Immune evasion is a hallmark of cancer, and MDSC play a
central role in tumor mediated immunosuppression. MDSC are
increased in the tumor bearing host, and MDSC levels have
been shown to correlate with disease stage and survival. Multi-
ple studies show that targeting MDSC leads to an improvement
in anti-tumor immunity, specifically recovery of CD8+ T cell
anti-tumor activity, resulting in tumor suppression, and multi-
ple modes of targeting MDSC are in clinical development. For
example, administration of ATRA to patients with metastatic RCC
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Table 2 | Summary of combination therapies targeting MDSC and key study findings.

Agents Study finding Reference

ATRA+ antigen specific peptide

vaccine

In two different murine tumor models, significantly prolonged the anti-tumor

treatment effect

Gabrilovich et al. (2001)

Gemcitabine+ IFN-b Significantly increased anti-tumor activity in a murine tumor model Suzuki et al. (2005)

Gemcitabine+HER-2/neu

vaccine+ anti-GITR mAb

Potent therapeutic anti-tumor immunity in a murine tumor model Ko et al. (2007)

Sunitinib+ low-dose radiotherapy Modestly improved survival in a mouse glioma model

Sunitinib with high dose radiation resulted in fatal toxicities

D’Amico et al. (2012)

Sunitinib+DC based vaccine Combination Rx had superior anti-tumor effect than either Rx alone in a murine

melanoma model and enhanced anti-tumorT cell response and reduced MDSC/Treg

Bose et al. (2010)

Sunitinib+ adoptive T cell therapy In murine melanoma and RCC models Kujawski et al. (2010)

Inhibited Stat3 in DC and T cells

Reduced conversion of T cells to Tregs

Increased CD8+ T cell infiltration and activation at the tumor site

Inhibited primary tumor growth

Sunitinib+ IL-12+4-1BB activation Significantly improved long-term survival rate of large tumor bearing mice in liver

and lung tumor models, promoted T cell response and reduced MDSC levels

Ozao-Choy et al. (2009)

Sunitinib+CEA vaccine In a murine colon cancer model: continuous sunitinib followed by vaccine

increased tumor infiltration of Ag-specific T lymphocytes

Reduced tumor volumes

Farsaci et al. (2012)

Increased survival

Decreased Treg

Decreased MDSC

Bevacizumab± IL-2 Did not reduce MDSC levels in the peripheral blood Rodriguez et al. (2009)

Phase III trial, TroVAax (MVA-5T4)

vaccine+ sunitinib, IL-2, or IFN-a

In RCC pts did not enhance survival relative to sunitinib, IL-2, or IFN-a alone Amato et al. (2010)

increased MDSC differentiation and enhanced CD4+ and CD8+ T
cell antigen specific immune responses (Gabrilovich and Nagaraj,
2009). In another study, treatment with oral Vit D3 in patients with
HNSCC reduced the number of immune suppressive CD34+ cells
and skewed immune system toward an anti-tumor Th1 immune

response (Lathers et al., 2004; Ugel et al., 2009). However, while
multiple studies have shown effective antigen specific immu-
nity, this has not correlated with improved survival: reduction
in immune suppression by MDSC may improve outcomes using
cancer vaccines and other forms of immunotherapy.
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