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Although previous studies identified a similar topography pattern of structural and
functional delineations in human middle temporal gyrus (MTG) using healthy adults,
trajectories of MTG sub-regions across lifespan remain largely unknown. Herein, we
examined gray matter volume (GMV) and resting-state functional connectivity (RSFC)
using datasets from the Nathan Kline Institute (NKI), and aimed to (1) investigate
structural and functional trajectories of MTG sub-regions across the lifespan; and
(2) assess whether these features can be used as biomarkers to predict individual’s
chronological age. As a result, GMV of all MTG sub-regions followed U-shaped
trajectories with extreme age around the sixth decade. The RSFC between MTG
sub-regions and many cortical brain regions showed inversed U-shaped trajectories,
whereas RSFC between MTG sub-regions and sub-cortical regions/cerebellum showed
U-shaped way, with extreme age about 20 years earlier than those of GMV. Moreover,
GMV and RSFC of MTG sub-regions could be served as useful features to predict
individual age with high estimation accuracy. Together, these results not only provided
novel insights into the dynamic process of structural and functional roles of MTG
sub-regions across the lifespan, but also served as useful biomarkers to age prediction.

Keywords: middle temporal gyrus, gray matter volume, resting-state functional connectivity, regression model,
deep learning network

INTRODUCTION

The middle temporal gyrus (MTG) is suggested to be involved in various functions (Giraud et al.,
2004; Sato et al., 2012) with several distinct sub-regions (Sewards, 2011). Recently, a consistent
topography pattern of structural and functional delineations in MTG was identified in our previous
studies (Xu et al., 2015, 2019a), resulting in four distinct clusters, namely, the anterior part of
MTG (aMTG), the middle part of MTG (mMTG), the posterior part of MTG (pMTG), and the
sulcus part of MTG (sMTG). Although structural and functional roles of MTG were decoded
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in the healthy adults (21–25 years), accumulating evidence
of significant age-related effects on structural and functional
patterns of MTG was identified. Previous studies based on
functional MRI (Blumenfeld et al., 2006; Chou et al., 2006)
showed age-related brain activation in left MTG, whereas one
similar study showed no age effect (Moore-Parks et al., 2010).
Using other functional neuroimaging technologies, such as
magnetoencephalography, old adults exhibited both declined
cortical activities and delayed activation in MTG as compared
to younger adults (Lin et al., 2018). Moreover, two graph theory
studies (Cao et al., 2014; Zhao et al., 2015) also showed inversed
U-shaped trajectories of nodal degree and functional connectivity
strength in the MTG across the lifespan (7–85 years). Structurally,
the thickness of left MTG showed a negative relationship with age
(10–60 years) (Raznahan et al., 2010), and the gray matter volume
(GMV) of MTG showed a dramatic decline from 6 to 26 years
(Mu et al., 2017). In addition to healthy individuals, patients with
reading impairment presented a delay in the development of left
MTG in the children group (Luniewska et al., 2019). Moreover,
our recent study revealed specific structural and functional
patterns of MTG sub-regions in children and adults with autism
spectral disorders (Xu et al., 2019b). Together, these studies
provided enough evidence to indicate that the structural and
functional roles of MTG are dynamic processes with remarkable
changes across the lifespan (Fair et al., 2008; Zhao et al., 2015; Li
et al., 2019). Thus, investigating age-related trajectories of MTG
sub-regions across the lifespan is critical and helpful to guide
the interpretation of alterations associated with these regions in
many brain disorders.

To date, many studies have been performed to investigate
lifespan trajectory about gray matter (Gennatas et al., 2017; Mu
et al., 2017), white matter (Ziegler et al., 2012; Zhao et al.,
2015), cortical morphology (Sowell et al., 2003; Khundrakpam
et al., 2015), and topography of structural and functional brain
networks (Fair et al., 2008; Betzel et al., 2014; Li et al., 2019),
revealing that the structure and function of the human brain
undergo complex changes across the lifespan. Moreover, several
studies have been performed to characterize age-related effects
on functional connectome (Wang et al., 2012; Cao et al., 2014;
Yang et al., 2014; Jiang et al., 2019) using the same dataset
(NKI sample). For example, Cao et al. (2014) observed that the
human brain functional connectome not only exhibited highly
preserved nonrandom modular organization, but also showed
linearly decreases in modularity, inverted-U–shaped trajectories
of local efficiency, and inverted-U–shaped trajectories of rich
club architecture over the entire age range. Wang et al. (2012)
showed a linear increase in the emotion system and a decrease
in the sensorimotor system during brain development from
childhood to senescence. Yang et al. (2014) observed stronger age
dependence in the spatial pattern of a precuneus dorsal–posterior
cingulate cortex network as compared to the default network.
However, little attention was paid to the lifespan changes of
particular regions at the sub-regional level. Therefore, our
study aimed to investigate the structural and functional lifespan
trajectory of MTG at the sub-regional level in healthy individuals.

Moreover, age prediction is considered to be an important
way to understand brain developmental and degenerative

processes in healthy individuals (Zhao et al., 2019). Many brain
structural and functional features are sensitive to maturational
processes throughout the lifespan, such as cortical thickness
(Khundrakpam et al., 2015; Lewis et al., 2018), GMV (Franke
et al., 2010; Mohajer et al., 2020), resting-state functional
connectivity (RSFC) (Ciesielski et al., 2019; Li et al., 2019),
brain network topography (Cao et al., 2014; Zhao et al., 2015),
as well as multi-modal MRI features (Betzel et al., 2014; Zhao
et al., 2019). However, these studies mainly focused on extracting
different features to increase the accuracy of age prediction
using traditional machine learning techniques (i.e., non-deep
learning algorithms) rather than improving prediction models.
Recently, the Long Short-Term Memory (LSTM) deep learning
model (Hochreiter and Schmidhuber, 1997), an evolution over
the Recurrent Neural Networks (RNN), has been widely adopted
in clinical predictions, such as epileptic seizures (Tsiouris et al.,
2018; Wei et al., 2019), heart failure (Maragatham and Devi,
2019), cancer survival outcomes (Koo et al., 2020), and even
mortality of patients (Xia et al., 2019). This method succeeded
better performance than traditional ways (Tsiouris et al., 2018;
Wei et al., 2019; Xia et al., 2019), suggesting potential applications
to increase the accuracy of age prediction.

In the current study, we aimed to (1) investigate structural and
functional trajectories of MTG sub-regions across the lifespan;
and (2) assess whether these features can be used as biomarkers to
accurately predict an individual’s chronological age. To uncover
these two questions, we used T1 structural and resting-state
fMRI data from the publicly available Nathan Kline Institute-
Rockland Sample (NKI-RS) dataset (7–85 years)1. The GMV and
RSFC patterns of each MTG sub-regions were calculated and
subsequently used to explore their relationship with age using
linear and quadric regression models. Finally, the structural and
functional features of MTG were used as inputs for LSTM to
predict an individual’s chronological age.

MATERIALS AND METHODS

Participants
Data used in this study are publicly available at the International
Neuroimaging Data-sharing Initiative (INDI) (see text footnote
1) from the Nathan Kline Institute (NKI, NY, United States). The
initial dataset included 207 participants. The inclusion criteria
were (1) aged 7–85 years; (2) without any lesions in brain
scans; (3) no problems in semi-structured diagnostic psychiatric
interviews; and (4) normal in psychiatric assessments. We also
excluded participants who were (1) left-handed; (2) missing
demographic data; (3) with bad image integrity and quality on
screening; and (4) only T1 or fMRI images. Finally, 160 subjects
were included in the structural analyses and functional analyses.
These subjects include 25 children and adolescents (10 female
/ 15 male, 22 right / 3 left-handedness, age range of 7–18
years), 48 young adults (22 female / 26 male, 43 right / 5 left-
handedness, age range of 19–30 years), 37 middle-aged adults
(11 female / 26 male, 31 right / 6 left-handedness, age range of

1http://fcon_1000.projects.nitrc.org/indi/pro/nki.html#LastRelease
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31–45 years), 22 older adults (7 female / 15 male, 20 right / 2
left-handedness, age range of 46–60 years), and 28 elders (12
female / 16 male, 24 right / 4 left-handedness, age range of 61–
85 years). This information is given in Supplementary Table 1.
Informed consent was obtained from all subjects, and the study
was approved by the NKI institutional review board (Nooner
et al., 2012). Moreover, this study was performed in accordance
with the Declaration of Helsinki.

MRI Acquisition
Magnetic resonance imaging scanning was performed
using a Siemens 3.0 T Trio Tim MRI scanner. During
scanning, subjects were told to keep their eyes closed, relax
their minds, and to not move. T1 images were obtained
using the magnetization-prepared rapid gradient echo
(MPRAGE) sequence: time repetition (TR) / time echo
(TE) = 2,500 / 3.5 ms, inversion time = 1,200 ms, flip angle
(FA) = 8◦, field of view (FOV) = 256 mm × 256 mm,
voxel size = 1.0 mm × 1.0 mm × 1.0 mm, and number of
slices = 192. Resting-state fMRI scans were collected using
an echo-planar imaging (EPI) sequence: TR / TE = 2500
/ 30 ms, FA = 80◦, FOV = 216 mm × 216 mm, voxel
size = 3.0 mm × 3.0 mm × 3.0 mm, number of slices = 38,
and 260 volumes.

Image Preprocessing
The T1 images were preprocessed using a toolbox for Data
Processing & Analysis for Brain Imaging (DPABI)2. First, the
quality of each image was visually checked and 30 subjects were
excluded for really bad quality. Then, the remaining T1 images
were segmented into gray matter, white matter, and cerebrospinal
fluid, and transformed to a standard Montreal Neurological
Institute space. Next, these images were modulated to preserve
regional volume information. Finally, the modulated gray matter
images were smoothed with a Gaussian kernel of 6 mm full-width
at half maximum and used in the following analyses.

The resting-state fMRI data were also preprocessed using
DPABI. The main steps included the following: (1) removing
the first 10 volumes; (2) slice timing; (3) realigning (subjects
with head motion exceeding 3 mm in any dimension or 3◦ of
angular motion were removed, and 20 subjects were excluded);
(4) spatially normalizing; (5) resampling to a voxel size of
3 mm × 3 mm × 3 mm; (6) smoothing using a Gaussian kernel
of 6 mm full-width at half maximum; (7) removing linear and
quadratic trends; (8) regressing out head motion effects using the
Friston 24-parameter model (Satterthwaite et al., 2013), as well
as the white matter, cerebrospinal fluid, and global signals; (9)
temporal band-pass filtering (0.01–0.1 Hz); and (10) “scrubbed”
two-time points before and one time point after bad images,
whose frame displacement (FD) > 0.5 (Power et al., 2012).

Definition of Middle Temporal Gyrus
Sub-Regions
The MTG sub-regions were obtained from our previous
results (Xu et al., 2019a), which were defined as the overlap

2http://rfmri.org/dpabi

between functional and anatomical parcellation results of MTG
(Supplementary Figure 1). All the MTG sub-regions were then
resampled to 1.5 mm× 1.5 mm× 1.5 mm for structural analyses
and 3 mm× 3 mm× 3 mm for RSFC analyses.

Calculations of Structural and Functional
Indexes
Structurally, the GMV was defined as the mean value of each
MTG sub-region in the modulated and smoothed gray matter
map. The analysis of covariance (ANCOVA) was performed to
identify between-group differences. The significant levels were set
at P < 0.05 with Bonferroni correction.

The RSFC was defined as the Pearson correlation coefficients
between the mean time series of each MTG sub-region and that
of each voxel in the rest of the brain, respectively. Then, all
correlation coefficients were converted to z values using Fisher’s z
transformation to improve normality.

Age Effects on Regional Gray Matter
Volume
To determine how age affects GMV of MTG sub-regions, both
linear and quadric regression models were used controlling for
covariates of gender and handedness. The significant level was set
at p < 0.05/8 = 0.00625. The models for GMV can be expressed
with the following equations:

Y = β0 + β1 × age + β2 × gender + β3 ×

handedness (linear);

Y = β0 + β1 × age + β2 × age2
+ β3 × gender+

β4 × handedness (quadric).

Then, Akaike’s information criterion (AIC) was used to
determine the best-fitting model. The extreme age along the
quadric trajectory is important to the investigation of timing
differences in maturation or degeneration across the lifespan,
and could be calculated using age = -β1/2β2. The fitted GMV
was defined as the residual of GMV regressed out gender,
handedness, and age.

Age Effects on Resting-State Functional
Connectivity
To explore the corresponding quadric relationship between
age and RSFC of MTG sub-regions, we performed correlation
analyses in the DPABI using age2 as an independent variable, and
gender, handedness, age, and FD as covariates. The significance
level was determined using the Gaussian random field corrections
with a voxel-level threshold of p < 0.001 and a cluster-level
threshold of p < 0.05.

For the regions which showed a significant quadric
relationship with age, we calculated their mean RSFC and
performed quadric regression models controlling for covariates
of gender, handedness, and FD. The model can be expressed by:
Y = β0+ β1 × age+ β2 × age2

+ β3 × gender+ β4 × handedness
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FIGURE 1 | Quadratic relationships between gray matter volume (GMV) of middle temporal gyrus (MTG) sub-regions and age across lifespan. The GMV was fitted by
controlling for gender and handedness. The analysis of covariance (ANCOVA) was performed to explore group differences (∗ represents significant difference).

+ β5 × FD. The significant level was set at p < 0.05/15 = 0.003.
The extreme age was also calculated using Age = -β1/2β2. The
fitted RSFC was defined as the residual of RSFC regressed out the
gender, handedness, age, and FD.

Long Short-Term Memory Network to
Predict Individual Age
We adopted a commonly used LSTM network (Tsiouris et al.,
2018; Liu and Gong, 2019; Supplementary Figure 2) to predict
individual age using 23 features, including GMV of all MTG
sub-regions and all RSFC listed in Table 1. All features are
standardized to 0–1 and served as inputs for a simple 4-layer
LSTM network with 40 hidden units. Each hidden unit has self-
memory and was fully connected. Especially, it is composed
of an input gate i, an output gate h, and a forgetting gate f,
which were defined by the equations in the right bottom of
Figure 2, respectively. The output layer was composed of a
sigmoid function. In the initial model, the batch size was set to
10, and the training rate was set to 0.006 for the Adaptive Moment
Estimation (Adam) optimizer, which used the Root-Mean-Square

Error (RMSE =
√

1
m

∑m
i = 1 (yi − yˆi)

2
, m = 1, 2n) as loss

function. Moreover, we used leave-one-out cross-validations
to evaluate the model by 1,000 times. To assess prediction
accuracy, the Pearson correlation coefficient and the Mean
Absolute Error (MAE) between the actual and predicted ages
were calculated. The LSTM networks were built using Keras 2.2.4
upon Tensorflow 1.12.0 backend in Python 3.6.

RESULTS

Age Effects on Regional Gray Matter
Volume
Controlling for effects of gender and handedness, the fitted GMV
of all MTG sub-regions exhibited U-shaped trajectories with
troughs nearly 60 years (Figure 1).

Age Effects on Resting-State Functional
Connectivity
Resting-state functional connectivity between MTG sub-regions
and most cortical brain regions showed inversed quadric
relationships with age, but RSFC between MTG sub-regions and
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FIGURE 2 | (A) Brain regions which showed a quadratic relationship between resting-state functional connectivity (RSFC) of MTG sub-regions and age across
lifespan. (B) Quadratic relationships between RSFC of MTG sub-regions and age across lifespan. Abbreviations of brain regions are listed in Table 1.

sub-cortical brain regions/cerebellum showed the opposite way
(Figure 2A and Table 1).

Further quadric regression models showed significantly
U-shaped or inverse U-shaped trajectories between fitted RSFC
of MTG sub-regions and age with extreme age nearly 40 years
(Figure 2B). Especially, RSFC between aMTG.L and left
medial frontal gyrus (MFG.L)/ right vermis (VER.R) exhibited
U-shaped trajectories with age. RSFC between mMTG.L and
right operculum part of inferior frontal gyrus (operFG.R) showed
inversed U-shaped trajectory with age. RSFC between sMTG.L

and left anterior cingulate cortex (ACC.L)/ left putamen (PUT.L)/
right amygdala (AMG.R) showed U-shaped trajectories, whereas
RSFC between sMTG.L and left post-central gyrus (PostCG.L)/
right post-central gyrus (PostCG.R) showed inverse way.

Resting-state functional connectivity between aMTG.R and
right pole part of temporal gyrus (pSTG.R) exhibited U-shaped
trajectory with age. RSFC between pMTG.R and left caudate
(CAU.L)/ right superior temporal gyrus (STG.R) showed
U-shaped trajectories with age. RSFC between sMTG.R and
ACC.L /right pallidum (PAL.R) showed U-shaped trajectories,
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TABLE 1 | Brain regions that showed a quadratic relationship between RSFC of MTG sub-regions and age.

Seed regions Brain regions Abbreviations Cluster size Peak coordinates Peak intensity

aMTG.L Left medial frontal gyrus MFG.L 112 (−18, 21, −6) 0.36222

Right vermis VER.R 111 (6, −45, −3) 0.3867

mMTG.L Right operculum part of inferior frontal gyrus operIFG.R 89 (36, 12, 27) −0.3259

sMTG.L Left anterior cingulate cortex ACC.L 82 (−12, 30, −9) 0.3710

Right amygdala AMG.R 310 (27, −6, −15) 0.3778

Left putamen PUT.L 292 (−27, 0, −9) 0.3893

Right postcentral gyrus PostCG.R 249 (36, −15, 36) −0.3649

Left postcentral gyrus PostCG.L 296 (−39, −12, 33) −0.3757

aMTG.R Right pole part of superior temporal gyrus pSTG.R 54 (42, 18, −24) 0.3443

pMTG.R Right superior temporal gyrus STG.R 46 (51, −21, 0) 0.3521

Left caudate CAU.L 52 (−15, 9, 12) 0.3522

sMTG.R Right pallidum PAL.R 211 (21, −6, −6) 0.3769

Left anterior cingulate cortex ACC.L 150 (−9, 33, 0) 0.3408

Left precentral gyrus PreCG.L 1038 (−36, −18, 51) −0.4014

Right precentral gyrus PreCG.R 516 (60, −9, 45) −0.3964

FIGURE 3 | Maturation ages of RSFC and GMV in the MTG sub-regions.

whereas RSFC between sMTG.R and left precentral gyrus
(PreCG.L)/ right precentral gyrus (PreCG.R) showed inverse way.

Maturation Age
We also calculated the extreme age and identified that the
maturation ages of RSFC in all MTG sub-regions were nearly
20 years earlier than those of GMV (Figure 3).

Age Predictions
When all 23 features (Figure 4A) were combined as input for
the LSTM network to predict individual age, a high estimation
accuracy was obtained (MAE = 3.89, r = 0.95, p = 9.13 × 10−64)
between predicted versus actual ages (Figure 4B).

DISCUSSION

In the current study, we (1) examined GMV and RSFC of
each MTG sub-region; (2) performed both linear and quadric
regression models to investigate structural and functional

trajectories of MTG sub-regions across the lifespan, as well
as ANCOVA to examine between-group differences; and (3)
adopted LSTM to assess whether these features can be used
to accurately predict an individual’s chronological age. As a
result, we identified that GMV of all MTG sub-regions showed
U-shaped trajectories with extreme age around the sixth decade,
whereas RSFC between MTG sub-regions and most cortical
brain regions showed inversed U-shaped trajectories, but RSFC
between MTG sub-regions and sub-cortical regions/cerebellum
showed U-shaped way. Further prediction models indicated
that GMV and RSFC of MTG sub-regions could be served
as biomarkers to predict individual age with extremely high
estimation accuracy.

Structurally, we identified that GMV of all MTG sub-regions
showed U-shaped trajectories with troughs around the sixth
decade, suggesting a nonlinear decline between 7 and 60 years
and a slight increase after that. These trajectories were similar
to one previous study, which reported significant U-shaped
trajectories across 7–85 years in whole-brain total GMV (Sowell
et al., 2003), as well as gray matter density in dorsal frontal
and parietal association cortices. Moreover, some developmental
neuroimaging studies also supported our results by showing
modest decreases in GMV in almost all cortical regions during
adolescence (Sowell et al., 2004; Brain Development Cooperative
Group, 2012; Gennatas et al., 2017), which is considered to be
generally attributed to a combination of synaptic pruning of
exuberant connections and increasing myelination, two essential
aspects of cortical development (Stiles and Jernigan, 2010).
However, different brain structures showed unique trajectories
across the lifespan. For example, the basal ganglia generally follow
linear decreases of volume over the age of 4–18 years (Brain
Development Cooperative Group, 2012), 8–30 years (Ostby et al.,
2009), 18–94 years (Fjell et al., 2013), as well as in a longitudinal
study over the age of 22 years (Tamnes et al., 2013), whereas
hippocampus indicates an inverted U exponential volumetric
trajectory from childhood to puberty, peaking at a later age than
the basal ganglia (Wierenga et al., 2014). Moreover, an entire
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FIGURE 4 | Prediction results based on features from MTG sub-regions using LSTM. (A) Features are used to predict an individual’s age in the LSTM network. The
scatter plot depicts actual age versus predicted age by all features. (B) Pearson correlation analyses between the actual and predicted ages are performed to
evaluate the prediction accuracy. Abbreviations of brain regions are listed in Table 1.

lifespan study reported that the absolute global GMV follows a
complex trajectory with four phases: (1) rapid increase from 0 to
8–10 years, (2) rapid decrease until 40 years, (3) a plateau from
40 to 80 years, and (4) a rapid decrease after 80 years (Coupe
et al., 2017). The rapid decrease from 8 to 40 years is similar
to the trajectory of MTG sub-regions to some extent. However,
this cannot be used as direct evidence to support our results
for the following two reasons: (1) trajectory of maturational and
aging effects varied considerably over the brain cortex, with an
earlier maturation of sensory, motor, and limbic regions relative
to association regions (Sowell et al., 2003; Gogtay et al., 2004;
Shaw et al., 2008); and (2) the gray matter reductions were
markedly greater than the subcortical changes (Sullivan et al.,
2011; Tamnes et al., 2013). Anyway, our results of U-shaped
trajectories of MTG sub-regions extended their findings and
offered detailed information for MTG maturations at the sub-
regional level, which might be helpful to guide interpretation of
alterations associated with these regions in many brain disorders.

Functionally, we also identified that RSFC between MTG sub-
regions and cortical brain regions showed inversed U-shaped
trajectories, but RSFC between MTG sub-regions and sub-
cortical regions/cerebellum showed U-shaped way. These results
were supported by previous findings of the rewiring and pruning
of subcortical–cortical connectivity accompanied by increased
cortico-cortical connectivity during development (Supekar et al.,
2009), as well as increased correlation strength of subcortical–
cortical connectivity but decreased cortico-cortical connectivity
during aging (Tomasi and Volkow, 2012). Moreover, these results
were also similar to one previous study based on fMRI, which
showed inverse U-shaped trajectories between regional nodal
properties for cortical regions (e.g., MTG.L, PreCG.L) and age (7–
85 years) but U-shaped way for subcortical regions (e.g., HIP.L)

(Cao et al., 2014). Interestingly, the maturation ages of RSFC were
about 20 years earlier than those of GMV, with about 40 years.
On one hand, this aligns well with the finding of age-related
U-shaped trajectory of the normalized rich-club coefficient, as
well as functional connectivity strength and proportions, with
maturation age of approximately 40 years (Cao et al., 2014).
On the other hand, our results further supported the suggestion
that development and degeneration of structural and functional
connectivity is not synchronous (Horn et al., 2014).

To our knowledge, it is the first illustration that LSTM
networks can be used to effectively estimate chronological age
based on MRI features although it has been widely adopted
in other clinical predictions (Wei et al., 2019; Koo et al.,
2020). As expected, our trained LSTM model showed relatively
higher accuracy in age prediction with a correlation between
chronological and predicted age of r = 0.95 (MEA = 3.89,
p = 9.13 × 10−64). This performance was superior to most
previous studies using traditional machine learning methods,
such as support vector regression (Wang et al., 2012; Erus et al.,
2015; Zhao et al., 2015), least absolute shrinkage and selection
operator (Varikuti et al., 2018), kernel regression methods
(Franke et al., 2012), ridge regression model (Zhao et al., 2019),
and elastic net penalized linear regression model (Khundrakpam
et al., 2015; Lewis et al., 2018), among which the best performance
was r = 0.93. Other deep learning methods using convolutional
neural network based on the gray matter (Wang et al., 2019) and
raw imaging data (Cole et al., 2017) resulted in slightly worse
performances of MAE = 4.45, and MAE = 4.16, respectively, in
age predictions. Comparable to our results, a neuroanatomical
model, including 231 variables derived from multiple imaging
modalities, resulted in a correlation of r = 0.961 between
chronological and predicted age and a mean prediction error
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across all ages of just 1.03 years (Brown et al., 2012). However,
this study included typically developing individuals between 3
and 20 years rather than across lifespan (7–85 years) and more
variables as compared to ours. Moreover, our results indicated
that GMV and RSFC of MTG sub-regions could be served as
biomarkers to predict individual age. Similar to our results, many
previous studies confirmed that the whole-brain GMV (Cole
et al., 2017; Varikuti et al., 2018; Wang et al., 2019) and RSFC
(Wang et al., 2012), as well as multi-modal MRI features (Franke
et al., 2012), were sensitive to age predictions. However, these
features were based on the whole-brain level. Our results further
extended previous studies by identifying features to particular
brain regions at the sub-regional level.

Several limitations should be addressed. First, only GMV and
RSFC were examined in the current study, additional future
studies using other neuroimaging techniques, such as diffusion
tensor imaging, to evaluate the lifespan trajectory of white matter
fibers originated from MTG sub-regions are warranted. Second,
no behavioral variables were included to measure cognitive
and language abilities, which were two important functions
associated with MTG (Whitney et al., 2011). Thus, brain behavior
associations are missing, weakening the interpretation of our
results. Finally, we only included participants from 7 to 85 years
of age, investigating earlier developmental changes during
infancy and early childhood is also significantly important.

CONCLUSION

We identified specific trajectories for GMV and RSFC of MTG
sub-regions across the lifespan. These results not only offered
detailed information for MTG maturations and degeneration
at the sub-regional level but also might be helpful to guide
the interpretation of alterations associated with these regions
in many brain disorders. Finally, LSTM networks based on
GMV and RSFC of MTG sub-regions can accurately predict
chronological age in healthy individuals. This can be achieved
using features of particular brain regions, substantially reducing
computation complexity to extract features from the whole-
brain level.
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