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ABSTRACT

Objective: The electronic health record is a rising resource for quantifying medical practice, discovering the ad-

verse effects of drugs, and studying comparative effectiveness. One of the challenges of applying these meth-

ods to health care data is the high dimensionality of the health record. Methods to discover the effects of drugs

in health data must account for tens of thousands of potentially relevant confounders. Our goal in this work is

to reduce the dimensionality of the health data with the aim of accelerating the application of retrospective co-

hort studies to this data.

Materials and methods: Here, we develop indication embeddings, a way to reduce the dimensionality of health

data while capturing information relevant to treatment decisions. We evaluate these embeddings using external

data on drug indications. Then, we use the embeddings as a substitute for medical history to match patients

and develop evaluation metrics for these matches.

Results: We demonstrate that these embeddings recover the therapeutic uses of drugs. We use embeddings as

an informative representation of relationships between drugs, between health history events and drug prescrip-

tions, and between patients at a particular time in their health history. We show that using embeddings to

match cohorts improves the balance of the cohorts, even in terms of poorly measured risk factors like smoking.

Discussion and conclusion: Unlike other embeddings inspired by word2vec, indication embeddings are specifi-

cally designed to capture the medical history leading to the prescription of a new drug. For retrospective cohort

studies, our low-dimensional representation helps in finding comparator drugs and constructing comparator

cohorts.
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LAY SUMMARY

Large electronic health records data have the potential to complement randomized trials for estimating drug efficacy and drug side effects.

One major design for performing this analysis, the cohort study, compares the health outcomes in people exposed to the drug against that in a

similar cohort of people who never were exposed. However, one of these cohorts may be older, sicker, or otherwise at greater risk of certain

health outcomes, regardless of their drug use; these differences can confound effect estimates. Cohort studies typically rely on medical experts

to curate confounding health factors that influence exposure or outcome. This reliance is a limitation of cohort studies. This study instead

extracts such medical knowledge from the health data. Using a neural network model, we create numerical summaries of the patient health
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state that results in drug prescription. These summaries compress patient history into a small encoding, much like a barcode. We use these

encodings to implement cohort studies, and we show that the resulting cohorts are better matched for potential confounders, such as smoking

status, as compared to standard methods.

INTRODUCTION

The electronic health record (EHR) is an increasingly complete re-

cord of human health and medical practice. Recent studies have

used the EHR to evaluate variation in drug treatment decisions,1,2

identify symptoms related to diseases,3,4 and to annotate the medical

conditions for which drugs are prescribed, known as the indications

for a drug.5,6 One major area of research repurposes EHR data to

uncovers adverse effects among people taking a drug, or perform

comparative effectiveness studies, using the cohort study design as a

way to complement randomized trials.7–9 Comparative cohort stud-

ies typically compare health outcomes in a cohort of treated people

against some comparison cohort. But in order to create unbiased ef-

fect estimates, cohort studies require crafting comparator cohorts

that appropriately adjust for confounding variables.10,11

To adjust for all measurable sources of confounding, researchers

must confront the high dimensionality of the health record: there are

tens of thousands of International Classification of Diseases (ICD)

codes specifying particular diagnoses, and thousands of common

drugs, alongside other medical events such as procedures and tests.

Propensity score methods adjust for multiple confounders by esti-

mating the effect of these confounders on treatment assignment. Re-

cent studies have proposed propensity score methods suitable for

high-dimensional data, including large-scale regularized estimation,

and automatic determination of relevant confounders.8,12–14 Coars-

ened exact matching (CEM)15 is another way to create comparable

cohorts, but it requires experts to select a few important variables

for matching, and it is not well suited to the context of sparse, high-

dimensional data.

The most straightforward way to code such discrete data for

use in an algorithm like propensity score matching results in a

high-dimensional vector that is sparse, such as a one-hot (dummy

variable) vector for each ICD code or drug (Figure 1A). Further-

more, these vectors lack information: the sparse, high-

dimensional vector that represents a diagnosis for diabetes will be

no nearer to the vector for insulin, than to the vector for acne. To

address the high dimensionality of medical codes, a number of

studies have explored alternative lower-dimensional representa-

tions of health data.

In particular, Miotto et al16 proposed autoencoders to create

dense vector summaries of patient health that predicted disease inci-

dence. Choi et al17 adapted the Word2Vec method to medical histo-

ries. This method, originally popularized for representing natural

language18 transforms the high-dimensional sparse representation of

a word to a low-dimensional vector such that words that are used

together have closer vectors. These representations have shown suc-

cess in the task of phenotyping patient cohorts.19,20 Thus, embed-

dings have become a popular way to represent disease, but so far,

have not been used to contribute to the cohort study literature.

In this work, we apply the ideas of medical embeddings to the

problem of summarizing patient health state at the time of a new-

drug prescription in order to adjust for confounding. We describe a

new strategy to create embeddings that represent the relationship be-

tween medical history and the first prescription of a drug, in order

to better control for confounding health factors. Relevant medical

history could include diseases that are indications for prescription of

a drug, or drugs that act to ameliorate the side effects of other drugs

(such as potassium supplements for diuretic prescriptions), or proce-

dures that require the prescription of a drug (such as colonoscopy

preparations). By creating these embeddings, we aim to capture not

just patient state, but the variation in the patient state that leads to

drug prescription.

We then assess how well our embeddings recapitulate de facto

drug indications. While databases such as Unified Medical Language

System (UMLS)21 and Medication Indication Resource (MEDI)22

codify well-established uses for drugs, these may not reflect off-label

uses and changes in medical practice. Our method provides a data-

driven way to identify such prescription choices. But rather than

simply classifying approved indications, we identify a richer context

for medication use.

Finally, we explore the application to the important task of

constructing comparator cohorts for observational cohort studies.

The first step in constructing such cohorts typically involves pick-

ing a comparable drug to the drug of interest. We assess the use of

drug embeddings to identify the most comparable drugs: that is,

the drugs given to patients with the most similar health back-

grounds. The second step in constructing cohorts is to select a

control set of people taking the comparator drug who are roughly

similar to the treated group. Since the embeddings represent medi-

cal events leading up to drug prescription, we explore the use of

embeddings to summarize the health status of each patient.

Patients with the most similar health status embeddings should

not only have a similar likelihood of being prescribed the drug of

interest, but they may also be prescribed that drug for the same

reason.

Our embeddings create a representation of medical history cen-

tered on provider treatment choices. We expect that our approach

will enable researchers to more rapidly conduct cohort studies and

discover the characteristics of medical practice.

METHODS

All methods described below were applied to the Marketscan IBM

claims data set, which contains National Drug Code (NDC)-coded

outpatient prescriptions, ICD-9 coded medical diagnoses, and Cur-

rent Procedural Terminology (CPT) or Healthcare Common Proce-

dure Coding System (HCPCS) procedures, each time-stamped for

150 million privately insured people in the USA. We match NDC

codes to drug generic names using the MarketScan RED BOOKTM

Supplement (includes variables related to drug prescription), a table

that relates each NDC code to a number of drug characteristics, in-

cluding drug generic name. Drug dosage, duration of supply, cost,

and route of administration were not used in this study. Because of

the switch from ICD-9 to ICD-10 in 2015, data from before 2015

were used for most of the analysis, but separately, ICD-10 embed-

dings were created using data from October 2015 onward. For the

pre-2015 data, we generated embeddings for CPT/HCPCS, ICD-9,

and NDC codes appearing in over 100 patients, for a total of 30 282

codes with embeddings. Code to create most figures, tables, and sta-

tistics is available at https://github.com/RDMelamed/indication-

embeddings.
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Generation of indication embeddings
To create the indication embeddings, we adapt the method discussed

in Mikolov.18 In that approach, each word in a sentence can be a la-

bel, and a randomly chosen context window size (number of words

before and after) around the label word is chosen. Each word in the

window forms a context for the label. Skip-grams, which are pairs

of (context, label) are the input to the learning procedure, which

then creates embeddings that maximize the likelihood of this data.

For our application, we create a number of changes to this proce-

dure (Figure 1B, Supplementary Figure S1). Only new-drug prescrip-

tions are labels, and recent events (ICD-9 codes, drug prescriptions,

or procedures) preceding a new-drug prescription are context for the

new drug. Therefore, unlike in Word2Vec, there is an asymmetry be-

tween context and label. In another difference, medical data, unlike

text data, has the element of time: we are more interested in events

that happen soon before a prescription. Mikolov et al. implemented

this idea by selecting words in randomly chosen windows up to 10

words around the training word. To adapt this idea to the medical

setting, our context window is based on selecting a random number

of weeks before prescription, by drawing from half-normal distribu-

tion with a standard deviation of 40 weeks. As well, some patients

have more data than other patients, which can result in very sick

and densely observed patients dominating the distribution of skip-

grams. So, when patients have multiple events in a 2-month period,

we randomly select one of these events rather than creating a skip-

gram pair for each event. As in many word2vec implementations,

this sampling is weighted to downsample the most frequent codes.

This weighting prevents the skip-grams from being dominated by

extremely common routine codes. To explore possible effects of de-

sign decisions such as the size of the context window, the down-

sampling of common codes, and the choice of a 2-month window,

we create embeddings for a variety of settings of these parameters,

showing no major effect on the results described below (Supplemen-

tary Table S1). In addition to the ICD-9 embeddings, we create a

separate embedding for the portion of our data from October 2015

through the end of 2016, which includes ICD-10 codes. The ICD-10

embedding is not used in the primary results of this article, as most

of our data are encoded in ICD-9, but this embedding is made avail-

able as a resource, as ICD-10 is the new standard.

Given the set of skip-grams generated above, we train a simple

neural network to create embeddings that best predict the new-drug

labels, using the standard word2vec setup (Figure 1B). For the pair

of history event h (procedure, drug, or diagnosis) and new

prescription, d, the current indication embedding for the history

event, Hh, is retrieved, and passes through a dropout layer to create

a noisy version of the embedding, ~hh. Then, we use a softmax output

layer, that has a vector of parameters U, for each possible new pre-

scription that can follow a history event. We use Keras with Tensor-

Flow to maximize the softmax function p djhð Þ ¼ expð~hh �UdÞP
j2drugs

expðHh �UjÞ

with respect to the parameters H and U. As usual, this proceeds by

maximizing the negative log of this function, with a regularization

penalty (L2 regularization). We use the usual method of cross-

validated hyperparameter selection to select embedding size, L2 reg-

ularization parameter, dropout rate, and learning rate, resulting in

creating 50-dimensional embedding vectors. The vectors H comprise

the indication embeddings, which are finally normalized by dividing

by the L2 norm so that all embeddings have a norm of 1.

Visualizations of embeddings
For Figures 2A and 6, the UMAP package from https://umap-learn.

readthedocs.io/ is used to map each 50-dimensional embedding vec-

tor to a two-dimensional space. For Figures 2B and 4, the embed-

ding vectors for each code in a CCS category, disease category, or

drug category are averaged together, after filtering out codes that

appeared in fewer than 20 000 individual patients. For Supplemen-

tary Figure S2, the disease embeddings closest to any antidepressant

are clustered hierarchically. Because many disease groups are similar

(ie, Attention Deficit Hyperactivity Disorder and Learning Disor-

der), Figure 4 is a simplified version of Supplementary Figure S2

showing selected diseases with known clinical relevance to one or

more of these drugs.

Evaluation of embedding vectors
We use the dot product (cosine distance) between a drug’s embed-

ding and an ICD-9 code’s embedding vector as a measure of dis-

tance: close drugs and diagnoses imply similar health context. To

evaluate the quality of our embedding vectors, we ask whether the

closest drugs to an ICD-9 code are the therapies associated with that

ICD-9 code (and vice versa), as recorded in MEDI.22 We use MEDI

as our gold-standard for true therapeutic uses. The 10 912 reported

therapeutic relationships in the MEDI High Precision Set that over-

lap with the drugs and ICD-9 codes in our data form our gold-

standard positive examples, and 752 812 relationships between the

same drugs and ICD-9 codes, where the relationship does not appear

in any MEDI database, comprise our negative examples. Then, we

Figure 1. (A) Illustration of the transformation of embeddings. Coded data can be computed on by representing each code as a one-hot vector with tens of thou-

sands of dimensions. Embeddings allow us to represent the code as a small dense vector of under 100 dimensions. (B) Outline of skip-gram creation and simpli-

fied neural network to create indication embeddings. Patient history is parsed into skip-grams, which are pairs of a new drug, and a medical code that preceded

that drug. Each skip-gram is fed into the neural network, which over many skip-gram examples, is trained on an auxiliary task of using the embedding vectors to

predict which drug will follow an observed medical code.
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can create a ROC curve for the performance of the embedding

vector distance for predicting indication relationships. We compare

performance against a baseline method: co-occurrence of drug with

the ICD-9 code preceding the drug. Our baseline co-occurrence

method uses two-by-two contingency tables for the co-occurrence of

drug and ICD-9 codes. Comparing the observed number of co-

occurrences to the number expected given the marginal rates of drug

and diagnosis yields the relative reporting ratio; pairs of drug and di-

agnosis with the highest relative reporting ratio are expected to have

therapeutic relationships. We also report the performance if the ra-

tios are adjusted using the Gamma-Poisson Shrinker method,23 an

empirical Bayes approach which has been used to mitigate the influ-

ence of low counts in these two-by-two tables.

As another measure of the quality of the embeddings, we

adapted a score from Choi et al17 to quantify for each pair of a drug

and an ICD-9 code indication, what percent of the nearest embed-

ding neighbors of that ICD-9 code share that same drug indication:

tope ¼ 1
N�K

P
d2drugs

P
i2ICDd

P
j21:K I½neighborði; jÞ 2 ICDd�

Where:

• ICDd refers to the set of all ICD-9 codes where drug d is indi-

cated
• neighbor i; jð Þ refers to ICD-9 code that is the jth nearest embed-

ding neighbor to ICD-9 code i
• K is a selected number of nearest neighbors to use (we use K ¼

20)
• N is the total number of drug-indication pairs.

A similar measure frace, asks: for what percent of the

drug-indication pairs, do the K-nearest neighbors include another

indication for the same drug: frace ¼ 1
N

P
d2drugs

P
i2ICDd

I½
P

j21:K

I neighbor i; jð Þ 2 ICDd½ � > 0�:

Creating propensity scores to assess the comparability

of drugs
Given a set of patients treated with either a drug of interest or a

comparator drug, we aim to create a propensity score that models

the probability of receiving treatment, as opposed to comparator.

This amounts to a large-scale logistic regression to model p(treated

¼ 1 j medical history, demographics). We used elastic-net regression

from scikit-learn to fit the model and estimate the propensity score,

with regularization parameter tuning with cross validation. In the

logistic regression model, we include the following as predictors:

• Gender
• Age, year, number of prescriptions, diagnoses, and procedures

preceding treatment. These are modeled using B-splines with

knots placed based on the quantiles of the distribution of these

values in the treated population, using the patsy package.
• Indicator variables for presence or absence of each drug, pre-

scription, or procedure in a patient’s medical history. Since more

recent events would be expected to be more relevant for predict-

ing prescription, we experimented with various features to repre-

sent these events. By assessing the performance of the resulting

classifiers, we settled on representing each event with an indica-

tor variable for if the event is recorded in the previous month be-

fore prescription; in the previous year; or ever in patient history.

Implementation and analysis of patient matching
For each cohort study we implement, we construct initial candidate

populations for matching consisting of incident users of one of a

pair of drugs (ie, new users of either bupropion or escitalopram;

patients who use both drugs are removed from the cohort study).

We summarize patients using a weighted average of the embedding

vectors corresponding to codes that appear in their history in the

time before treatment. Each code is weighted using an exponential

decay so that more recent codes count more, and the weights are

normalized to sum to 1. This creates a 50-dimensional health sum-

mary vector for each patient. This method was chosen because it

maximized the accuracy of predicting treatment, but other methods

of encoding patient history had similar results. Then, we employ a

two-step matching scheme that uses CEM to bin patients, then uses

Mahalanobis matching to match patients within bins based on their

health summary vectors. For the CEM step, we create coarsened pa-

tient bins, defined as gender; calendar year of prescription; age in

bins of 0–5, 6–10, 11–15, 16–25, 26–40, 41–55, 55–70; and number

of unique drugs prescribed to that person (divided into percentiles).

The CEM has a dual purpose: it ensures we are not creating entirely

inappropriate matches (ie, matching children to seniors); and it

reduces the number of possible matches for each treated person,

making the Mahalanobis matching computationally feasible. Then,

we use the sklearn package to perform one-to-one matching of

Figure 2. Indication embedding overview. (A) Each point is one event (prescription, diagnosis code, or procedure code), visualized with UMAP. Selected related

sets of events are highlighted. Circles are ICD-9 codes, þ symbols are medications, and triangles are procedures. (B) We create groupings of disease codes (black

labels) and drug codes (red labels). For each pair of such groupings, we measure the average distance between codes, creating a symmetric distance matrix

(color scale).
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treated patients to comparator patients, based on the Mahalanobis

distance between their summary vectors. To compare the Mahala-

nobis matching against propensity score matching, we use the pro-

pensity scores calculated as in the previous section and perform

nearest neighbor matching on the propensity score values, again

matching within CEM bins.

Then, we analyze how similar matched pairs are in terms of

smoking. There is an ICD-9 code for smoking, but we expect that it

only represents some of the information related to smoking status.

Therefore, we estimate the probability of smoking by fitting a simple

logistic regression model trained to predict whether a person has an

ICD-9 code for smoking (code 305.1), given the person’s entire

health history, as described in the previous section (removing ICD-9

code 305.1). The top predictors, as expected, include codes for lung

diseases and smoking cessation therapies. We use each person’s pre-

dicted probability of smoking to evaluate the matching. Note that

the same information (including the code for smoking) is provided

for training the propensity score function; however, this does not

guarantee that propensity score matching will match people for the

probability of smoking. Then, we calculate the correlation between

paired patients from the two matching schemes.

RESULTS

Overview of indication embeddings
We apply the method outlined in Figure 1 and Supplementary Figure

S1 to create a skip-gram set and to learn embeddings. This method

yields two types of embeddings: indication embeddings, which sig-

nify the health context for a treatment choice; and new-drug (inci-

dent drug) embeddings, which represent the treatment choices given

in those contexts. The indication embeddings create a unique vector

for each possible event in the health history, comprising 3014 com-

mon drugs, 13 090 ICD-9 codes, and 14 187 CPT codes. Figure 2A

shows the UMAP24 placement of all such events, which puts codes

with the most similar indication embeddings near each other. Some

selected medical events are highlighted. For example, myocardial in-

farction (MI), medications related to MI, and procedure codes for

coronary bypass graft, are all located near each other. Similarly, in a

visualization of the new-drug embeddings, drugs from the same

REDBOOK therapeutic group appear near each other. This implies

that the presence of codes for drugs, diagnoses, and procedures all

hold information about patient health. In Figure 2B, we group codes

into the Clinical Classification Software category, for diagnoses, and

REDBOOK therapeutic group, for drugs, and then calculate the av-

erage indication embedding distance between codes in a pair of

groups. For example, at the top, gastrointestinal drugs are near the

gastrointestinal system diagnosis codes; at the bottom, respiratory

systems diseases are near respiratory tract agents.

Using indication embeddings to predict drug

therapeutic uses
Our embeddings were created to summarize the relationship be-

tween events in the health history, and treatment choices. A differ-

ent, but related, task, is the prediction of the approved uses of drugs.

Similar to Li and Xiao,6 we use MEDI as our gold standard, as it is

based on human-curated databases. We examine whether embed-

ding distance between a drug and an ICD-9 code is a good predictor

of whether that drug and ICD-9 code have an indication relation-

ship. For comparison, we use the relative reporting ratio: how much

more frequently an ICD-9 code is observed before drug prescription,

versus the rate expected, and a stabilized version known as the

Gamma-Poisson Shrinker. The ROC AUC is 0.82 for the embed-

dings, and 0.80 for both of the disproportionality methods (area un-

der the precision recall curve is 0.151 and 0.150, respectively); this

is a similar improvement in AUC over disproportionality methods to

what Li and Xiao were able to achieve with their method. We also

calculate the AUC for predicting the indications for each of 649

drugs and, conversely, for predicting the drugs indicated for each of

1181 diagnosis codes. Grouping these AUC values by REDBOOK

therapeutic group, and per Clinical Classification System (CCS)

class (Figure 3) shows that there is variation in the ability of embed-

dings to predict MEDI relationships. This is expected as some drugs,

such as common vaccines, are not strongly tied to any particular di-

agnosis, and some categories of health conditions, such as congenital

anomalies, are not associated with particular drugs.

Comparing the embeddings against previously published embed-

dings from Choi et al17 a study that did not focus on relating indica-

tions to treatments, our embeddings are substantially better at

representing diagnoses in terms of their relationship to treatments.

This is shown in Table 1, where we quantify for pairs of a drug and

ICD-9 code indication, what fraction of nearest embedding neigh-

bors of an ICD-9 code share that same drug indication (details in

Methods).

Although the results are promising, more interesting is the ability

to detect subtleties of the context in which drugs are prescribed.

Supplementary Figure S2 shows the variation in the embedding dis-

tance between antidepressants and their most associated diagnoses.

To simplify visualization, we select medical conditions representa-

tive of the variety of medical uses of antidepressants in Figure 4.

Antidepressants include drugs with a range of mechanisms of action,

and they are prescribed for diverse reasons. Most have side effects

that can influence the prescription choice. For instance, tricyclic

antidepressants (TCAs) are no longer the standard of care as a first-

line treatment for depression (while selective serotonin reuptake

inhibitors [SSRI], serotonin-norepinephrine reuptake inhibitors

[SNRI], mirtazapine, and bupropion are preferred25). TCAs can be a

second-line depression treatment, but another common use is for

chronic pain.26 This is reflected by the closer embeddings distance of

these antidepressants to neuropathy and spine diseases, as well as Ir-

ritable Bowel Syndrome. Pediatric neuropsychiatric diseases are

closest to fluvoxamine, while mirtazapine is closest among antide-

pressants to neurodegenerative diseases of the elderly, which are of-

ten associated with depression. Indeed, mirtazapine is a widely used

in populations with dementia.27 This shows how the embeddings

represent the complex medical context in which drugs are pre-

scribed.

New-drug embeddings point to appropriate comparator

drugs
We now turn to the application of the embeddings for drug safety

studies, in particular, cohort studies. These study designs typically

compare outcomes in the pool of new users of a drug of interest,

against the people who took a comparator drug. Selecting an appro-

priate comparator drug is the first step toward removing differences

between the exposed and comparator cohorts that can confound the

results of cohort studies. Typically, a medical expert selects the best

comparator, but here we assess the performance of embeddings for

this task. Drugs that are most comparable should be given in the

most similar medical contexts, such as two drugs for the same condi-

tion. This is exactly the information that we have shown above is
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captured in our embeddings. Therefore, we evaluate whether drugs

with closer new-drug embeddings are more comparable. We evalu-

ate the comparability of a pair of drugs as the comparability be-

tween two cohorts of patients that are defined by that pair of drugs.

The first of these cohorts comprises patients who received the treat-

ment, and the second cohort contains patients on the comparator

drug. The comparability of these cohorts can be assessed using the

performance of a classifier to predict whether each person in the co-

Figure 3. We calculate an area under the ROC for each drug, and for each ICD-9 code. Then we group the AUC results by drug category or ICD code category.

Left: Distribution of these ROC values per REDBOOK therapeutic group. Right: Per ICD-9 codes in each CCS grouping.

Figure 4. The dot-products between drug vectors (columns) and groups of diagnosis codes (rows) for some diagnoses most related to the antidepressants. Medi-

cal conditions representative of the diversity of uses of antidepressants have been selected to demonstrate variation in the dot product. Antidepressants are col-

ored by class: TCA are blue; SSRI red; SNRI green; other black.

Table 1. Comparison of indication embeddings to Choi embed-

dings

Tope Frace

Melamed 0.83 0.25

Choi 0.70 0.19
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hort study received the treatment or the comparator drug.28 The eas-

ier it is to distinguish these two cohorts, the less comparable they

are. Thus, we fit the propensity score, p(treated j medical history), a

classifier that summarizes the probability of each person getting the

treatment of interest. In very comparable cohorts, the propensity to

be treated, given a particular medical history, should be similar to

the propensity to get the comparator drug, which would result in a

low area under the curve (AUC) for the receiver operating character-

istic (ROC) curve for the propensity score model. Conversely, less

comparable cohorts are easily separated and have a high AUC. Fig-

ure 5 shows that closer distance between embeddings vectors is asso-

ciated with lower AUC, which indicates that drugs with closer

embeddings indeed are more appropriate comparator drugs for a

given treatment. Our embeddings, then, can be used to suggest the

most appropriate comparator drug among a number of choices,

even in the complex case of neuropsychiatric drugs with multiple

indications, and they even have the potential to allow automatic se-

lection of comparators.

Using embeddings to match patients in a cohort study
Choosing appropriate comparator drugs is only the first step in re-

moving confounding differences between cohorts. This is typically

followed by further adjustments, such as propensity score matching

or propensity score weighting. Weighting can result in extreme val-

ues if very incomparable patients are included. Matching patients

again forces researchers to confront the high dimensionality of the

health care record. Exact matching of health histories is impossible.

One alternative is CEM,15 but that method requires that researchers

choose only a few important variables to match on, and it is not eas-

ily extended to the high-dimensional setting. In contrast, propensity

score matching reduces the high-dimensional health history to a sin-

gle dimension: the propensity for treatment, which is the probability

of treatment given health history. This reduction can result in loss of

valuable information regarding patient state, resulting in matching

dissimilar people.29 Mahalanobis matching instead pairs patients

based on their distance, given a vector of patient characteristics; but

this matching, like CEM, does not extend to the setting of sparse

uninformatively coded data. Therefore, we experiment with a new

matching method. We summarize each patient’s health status as a

weighted average of their embedding vectors. Then, we perform a

two-step matching strategy that first, matches patients on coarsened

versions of age, year, and number of prescriptions, as well as gender,

then second, within these matched bins of patients, performs Maha-

lanobis matching on the lower-dimensional health summary vectors.

An example of the difficulty of patient matching in observational

cohort studies can be found in a comparison of two common antide-

pressants: bupropion and escitalopram. In a study estimating the ef-

fect of bupropion on some outcomes, each person taking bupropion

could be matched to a person taking escitalopram using the propen-

sity score. Each drug has a side effect risks and contraindications

that can influence treatment choice and thus propensity for treat-

ment assignment. In addition, bupropion is approved not only for

depressive disorders, but also for smoking cessation. Since smoking

can cause a number of downstream effects on health, it is desirable

to match bupropion-users who are smokers to escitalopram users

who are smokers. In Figure 6, we show the UMAP visualization of

the health summary vectors for a set of people on bupropion versus

escitalopram, within one coarsened bin. We also include people tak-

ing varenicline, a smoking cessation drug, for comparison. Since var-

enicline users presumably smoke, people nearer to the varenicline

population should be more likely to be smokers. Naturally, the

Mahalanobis matching on health summary vectors (Figure 6B)

results in points from closer parts of the plot being matched. Thus, it

appears bupropion-takers who are similar to the varenicline popula-

tion are matched to escitalopram-takers who are also similar to the

Figure 5. We compare the embedding similarity (x-axes) against the AUC of the propensity scores (y-axes) for finding comparator drugs for olanzapine, left, an

antipsychotic (Spearman correlation ¼ �0.58) and carbamazepine, right, an anticonvulsant (Spearman correlation ¼ �0.49). Lower AUC indicates that our pro-

pensity model is less successful in separating treatment and comparator drug patients, suggesting the patients are more similar.

428 JAMIA Open, 2020, Vol. 3, No. 3



varenicline population (ie, smokers). To see whether this results in

smokers being matched with other smokers, we create a simple score

to summarize probability of smoking in each patient (see Methods)

and calculate how similar this score is between matched patient

pairs, using Spearman correlation. The correlation is 0.55 for the

Mahalanobis matched pairs and 0.31 for the propensity-matched

pairs. This shows that Mahalanobis matching on health summary

vectors improves matching on specific health risk factors. To dem-

onstrate that this effect is more general, we construct a number of

matchings between pairs of antidepressants, and perform the same

evaluation to estimate how well matched these patient sets are on a

number of different disease conditions (Figure 6C). Matching on

embedding vectors consistently results in matched pairs with a more

similar health status, across a number of health conditions. Such a

matching can create more comparable cohorts, which can then be

used with traditional methods in cohort studies to estimate the

effects of drugs.30

DISCUSSION AND CONCLUSION

We have shown that indication embeddings form representations of

medical events that reflect the complexity of health care. While the

indication embeddings work well for predicting known drug indica-

tions, their true utility is in their ability to summarize the health sta-

tus of a patient implied by the presence of a given code in a medical

history. The decision to prescribe a medication is a complex consid-

eration of personal history, tolerability of side effects, and variation

in severity of the disease, making such a representation desirable.

The motivation for creating these embeddings is to accelerate dis-

covery in drug safety cohort studies. Cohort study design currently

heavily relies on clinician knowledge, but since these embeddings

are trained on data that results from similar knowledge, they are a

way to describe these considerations in a computable form. We

show how the embeddings can identify comparable drugs and sug-

gest more comparable matched populations. These results show

how these embeddings can complement the cohort study literature

and could be used in combination with other methods to perform

drug safety and comparative effectiveness studies. A related area of

future work will use these embeddings to implement observational

versions of randomized controlled trials to examine the consistency

of results.

Our approach has a number of limitations related to the design

choices. In our embedding construction, each medical event occur-

ring in a patient’s history is treated as unrelated to other medical

events; an alternative design would instead combine patient history

in order to predict the drug, given a combination of medical events.

As well, we do not incorporate information on drug dose, route of

administration, or duration, but the only initiation of drug use. We

chose our approach specifically to untangle the relationship between

each event in medical history and exposure to a treatment. Other

limitations include the drawbacks of claims data, which is not ideal

for research purposes: some diseases have better coverage in terms

of codes available than others.

These embeddings are available for public reuse at https://figshare.

com/projects/Using_indication_embeddings_to_represent_patient_health_

for_drug_safety_studies/67532 and have applications beyond the ones

described in this article. Because this study focused on applying embed-

dings to improve cohort studies performed on retrospective data, which

is largely encoded in ICD-9 in this case, we have focused this work on

ICD-9 but have also generated embeddings including ICD-10 for future

use. Previous embeddings have focused on modeling disease onset but

our focus on modeling health state leading to drug prescription makes

these results unique. While we have focused our analysis of the embed-

dings on the relationships between drugs and diseases, these embeddings

also relate to symptoms induced by diseases and procedures associated

with drugs. Therefore, our embeddings could be used to discover these

associations. As Marketscan aggregates data from many health systems,

it should represent the standard of care across the United States. Then,

the indication embeddings can also be incorporated into analyses on

other US health data sets which have the same standard codes, but

smaller patient sizes, as a way to share information learned on a large

national data set. In another area of future work, comparing the embed-

dings trained on medical data from different health systems will allow

comparison of medical decisions. Other types of embeddings may be of

interest for future work, such as embeddings trained on the time after

Figure 6. Visualization of the matching of bupropion to escitalopram patients. Each point is one person on bupropion, escitalopram, or varenicline, using a UMAP

visualization of people’s health summary vectors. The location of the yellow points shows that the varenicline-takers cluster in the upper right, so people who are

on the bottom/left probably are not in need of smoking cessation. The same points are shown in A and B. (A) Lines connect 23 pairs matched by propensity score

matching. (B) Lines connect 23 pairs using Mahalanobis matching on health summary vectors. In the Mahalanobis matching (B), bupropion-takers in the smoking

area are more likely to be matched with escitalopram-takers in the smoking area. (C) We estimate for each patient taking any of nine antidepressants the probabil-

ity that they have each of six health conditions. Then, we perform a number of matching experiments (different marker shapes). For each set of matched patients,

we calculate how correlated matched pairs of patients are in terms of each disease presence measure, under the propensity matching scheme (x-axis) and Mana-

lanobis matching scheme (y-axis). Dashed line indicates identical correlations.
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drug prescription, which may relate to side effects of drugs. In addition,

embeddings that incorporate information about drug mechanisms, using

resources such as UMLS, could be incorporated to integrate molecular

understanding of a drug with clinical usage.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.
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