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ABSTRACT
Growing evidence showed that alternative splicing (AS) event is significantly related to
tumor occurrence and progress. This studywas performed tomake a systematic analysis
of AS events and constructed a robust prediction model of hepatocellular carcinoma
(HCC). The clinical information and the genes expression profile data of 335 HCC
patients were collected from The Cancer Genome Atlas (TCGA). Information of seven
types AS events were collected from the TCGA SpliceSeq database. Overall survival
(OS) related AS events and splicing factors (SFs) were identified using univariate Cox
regression analysis. The corresponding genes of OS-related AS events were sent for gene
network analysis and functional enrichment analysis. Optimal OS-related AS events
were selected by LASSO regression to construct prediction model using multivariate
Cox regression analysis. Prognostic value of the prediction models were assessed by
receiver operating characteristic (ROC) curve and KaplanMeir survival analysis. The
relationship between the Percent Spliced In (PSI) value of OS-related AS events and
SFs expression were analyzed using Spearman correlation analysis. And the regulation
network was generated by Cytoscape. A total of 34,163 AS events were identified, which
consist of 3,482 OS-related AS events. UBB, UBE2D3, SF3A1 were the hub genes in the
gene network of the top 800 OS-related AS events. The area under the curve (AUC)
of the final prediction model based on seven types OS-related AS events was 0.878,
0.843, 0.821 in 1, 3, 5 years, respectively. Upon multivariate analysis, risk score (All)
served as the risk factor to independently predict OS for HCC patients. SFs HNRNPH3
and HNRNPL were overexpressed in tumor samples and were signifcantly associated
with the OS of HCC patients. The regulation network showed prominent correlation
between the expression of SFs and OS-related AS events in HCC patients. The final
prediction model performs well in predicting the prognosis of HCC patients. And the
findings in this study improve our understanding of the association between AS events
and HCC.
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INTRODUCTION
As the main component of tissues and cells, proteins play a vital role in many life activities.
The diversity of proteins contributes to the functional diversity. Alternative splicing (AS)
is a significant and ubiquitous post-transcriptional regulatory mechanism that enables
eukaryotic cells to generate vast protein diversity based on a limited number of genes
(Baralle & Giudice, 2017). Genome-wide research indicated that up to 95% of human
genes experience some level of AS in physiological processes (Pan et al., 2008; Wang et
al., 2008). Precursor mRNA can be transformed to mature mRNA and further produce
versatile protein by removing introns and selectively including or excluding specific exons
in human multi-exon genes (Kelemen et al., 2013). Recently, growing evidence showed
that AS is significantly related to tumor occurrence, progress and therapeutic resistance,
and AS is involved in the process of invasion and metastasis of cancer cells (Wan et al.,
2019; Oltean & Bates, 2014). Splicing factor (SF) is the executor of AS events and aberrant
expression of SF was associated with oncogenesis process (Dvinge et al., 2016).

Liver cancer ranks the 6th place in terms of global tumor incidence, and it is the
4th leading cause of cancer-related death (Villanueva, 2019). Hepatocellular carcinoma
(HCC), one of the frequently seen primary liver tumors, occupies about 80% of liver
cancers. Worldwide, the highest liver cancer morbidity is reported in Asia and Africa.
About 75% liver cancers take place in Asian areas, among which China accounts for
more than half of the total global cases (McGlynn, Petrick & London, 2015). Although great
progresses have been achieved in diagnosing and treating liver tumor over past few decades,
prognosis for liver tumor remains very poor. Liver cancer has become the secondmost fatal
tumor after pancreatic cancer with a 5-year survival rate of 18% (Jemal et al., 2017). In the
recent years, some studies have reported the crucial significance of AS in HCC occurrence
and development (Yuan et al., 2017; Luo et al., 2017). However, systematic analysis of the
predictive value of AS events in HCC is scarce.

In this study, we collected RNA-seq data, AS events data and corresponding clinical
information of 335 HCC patients from TCGA database. Overall survival (OS) related
AS events and splicing factors (SFs) were identified. Additionally, a reliable prediction
model on the basis of AS events, correlation network between AS events and SFs were
constructed.

MATERIALS AND METHODS
TCGA-based data collection
The genes expression profile data as well as the clinical information of HCC patients
had been collected from TCGA (https://cancergenome.nih.gov/). Information of
seven types AS events were collected from the TCGA SpliceSeq database (https:
//bioinformatics.mdanderson.org/TCGASpliceSeq/), including alternate acceptor site
(AA), alternate promoter (AP), alternate donor site (AD), alternate terminator (AT),
exon skip (ES), mutually exclusive exons (ME), and retained intron (RI). Due to defining
perioperative mortality as death that occurs within 30 days of surgery may underestimate
‘true’ mortality among patients undergoing hepatic resection (Mayo et al., 2011). We only
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included patients with a survival time more than 90 days, finally, 335 HCC patients were
selected in this study. The Percent Spliced In (PSI) value, rating from 0 to 1 which is used
to quantify AS events in general. To generate a reliable set of AS events, we applied a series
of stringent filters (Percentage of samples with PSI value ≥75%, standard deviation of PSI
value >0.1 and average PSI value > 0.05).

Every AS event was assigned a unique identifier by combining the gene symbol, the ID
number in the SpliceSeq database and splicing type. For instance, in the identifier term
‘‘CSAD-21952-ES’’, the gene symbol is CSAD, ID number is 21,952 and splicing type is ES.

Identification of overall survival related AS events, functional
enrichment analysis and gene network construction
We identified overall survival (OS) related AS events using univariate Cox regression
analysis with a P value <0.05. Upset plot which is similar to a Venn diagram, was
introduced to depict the intersections between the seven types of AS events in HCC
(Khan & Mathelier, 2017). The corresponding genes of OS-related AS events were sent for
functional enrichment analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways with P value <0.05 and false discovery rate (FDR) <0.05
were considered significantly. The top significant pathways in KEGG and GO were showed
with bar plots. Gene network analysis was performed by inputting the corresponding genes
of 800 most significant OS-related AS events to Cytoscape and Reactome FI (version 3.7.1),
further, hub genes were selected at the same time.

Construction of the prediction model based on AS events
Least absolute shrinkage and selection operator (LASSO) regression is suitable for the
reduction of high-dimensional data to avoid model overfitting (Sauerbrei, Royston &
Binder, 2007). When we performed LASSO regression, some variables were eliminated
through penalty rules and potential predictors with non-zero coefficients were finally
leaved (Gao, Kwan & Shi, 2010). We determined the penalty parameter lambda by the
cross-validation using the glmnet package. The optimal lambda value corresponding to
the minimum value of the cross-validation error mean was identified to determine the
potential OS-related AS events (Tibshirani, 1997). We selected the optimal OS-related AS
events in each type respectively with nonzero coefficients in the LASSO regression, and
constructed the prediction models by using multivariate Cox regression analysis. The final
prediction model (all types) was constructed by combing seven types of AS events also
selected via LASSO regression.

The prediction model was established according to risk score, and the risk score was
calculated by the PSI value of each AS events and the corresponding regression coefficient
(lnHR) generated from multivariate Cox regression analysis. The formula is as follows:
Riskscore=

∑n
i PSIi∗βi, where β is the regression coefficient.

Prognostic value evaluation of the prediction model
The HCC patients were divided into low and high risk groups according to the median
value of the risk score and Kaplan–Meier survival analysis was performed to compare
the OS rate between the two groups within five years. The p-values were computed using
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Figure 1 Flow chart of the study design.
Full-size DOI: 10.7717/peerj.8245/fig-1

log-rank test. Furthermore, ROC curves of 1, 3, 5 years were generated to compare the
predictive accuracy of each prediction model.

Construction of the regulation network between SFs and AS events
SF data was obtained from the SpliceAid2 database (http://www.introni.it/splicing.html).
The association of SF expression with OS was analyzed using univariate Cox regression. The
relationship between the PSI value of OS-related AS events and SF expression were analyzed
using Spearman correlation analysis. Regulation network was generated by Cytoscape and
Reactome FI (version 3.7.1).

Statistical analysis
The R software 3.5.0 was utilized for all statistical analysis. A P value <0.05 was deemed to
be of statistical significance.

RESULTS
Overview of AS events in HCC cohort
A flowchart of our study design is showed in Fig. 1. We detected a total of 34,163 AS events
in 8985 genes in 335 HCC patients, comprised of 12,327 ES events in 5,343 genes, 8087
AT events in 3,532 genes, 6,352 AP events in 2,566 genes, 2,666 AA events in 1,937 genes,
2,331 AD events in 1,663 genes, 2,263 RI events in 1,561 genes and 137 ME events in 135
genes (Table 1). We can find that one single gene undergoes up to six types of AS events
from the UpSet plot (Fig. 2A). In addition, ES was the most common among seven types
of AS events.
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Table 1 Overview of total AS events and OS-related AS events.

Type Total AS events OS-related AS events

AS events Genes AS events Genes

AA 2666 1937 217 203
AD 2331 1663 231 205
AP 6352 2566 643 411
AT 8087 3532 887 534
ES 12327 5343 1264 988
ME 137 135 16 16
RI 2263 1561 224 196
ALL 34163 8985 3482 2203

Figure 2 Overview of AS events in HCC patients. (A) Upset plot of the intersections between the seven
types of AS events. (B) Volcano plot of OS-related AS events (red dot) and OS-irrelated AS events (blue
dot). (C) Upset plot of the intersections between the seven types of OS-related AS events.

Full-size DOI: 10.7717/peerj.8245/fig-2

The OS-related AS events of HCC
A total of 3,482 OS-related AS events in 2,203 genes were detected using univariate Cox
analysis, including 1,264 ES events in 988 genes, 887 AT events in 534 genes, 643 AP events
in 411 genes, 217 AA events in 203 genes, 231 AD events in 205 genes, 224 RI events in
196 genes and 16 ME events in 16 genes (Table 1). A volcano plot of these AS events was
provided in Fig. 2B. With the display of UpSet plot, one single gene could have up to
four types OS-related AS events (Fig. 2C). The top 20 significant OS-related AS events (if
available) for each AS type were showed by bubble plots in Figs. 3A–3G. Obviously, most
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Figure 3 Bubble plots of OS-related AS events in HCC patients. (A–F) The top 20 significant OS-related
AS events for AA, AD, AP, AT, ES and RI. (G) 16 OS-related AS events for ME.

Full-size DOI: 10.7717/peerj.8245/fig-3

of AS events in ES were favorable prognostic elements. However, most of these AS events
in RI, AA and AD were adverse prognostic elements.

We established a gene interaction network by sending the corresponding genes of the
top 800 most significant OS-related AS events to Cytoscape. The results indicated that
UBB, UBE2D3, SF3A1 were the hub genes of this gene network (Fig. 4A). Furthermore,
2,203 genes from 3,482 OS-related AS events were used for KEGG and GO enrichment
analysis to explore the pathways and biological functions of the OS-related AS genes. The
top 10 significant terms of GO enrichment analysis were presented in Fig. 4B. Such as
spliceosomal complex, adherens junction in cellular component (CC); damaged DNA
binding, cell adhesion molecule binding in molecular function (MF); protein targeting,
actin cytoskeleton reorganization in biological process (BP). A total of nine KEGGpathways
were identified, such as base excision repair, pyruvate metabolism and PPAR signaling
pathway (Fig. 4C).

Construction of the prediction model for HCC patients
We used LASSO regression to select the top 10 optimal OS-related AS events (if available)
and then construct the prediction model (Fig. 5). Three OS-related AS events were selected
for ES; four OS-related AS events for ME; five OS-related AS events for AP and AT; six
OS-related AS events for AA, AD and RI; nine OS-related AS events for the final prediction
model (Table 2). Risk scores were computed according to the selected AS events, and HCC
patients were divided into low and high risk groups on the basis of the median value of risk
scores. The distribution of survival status in low and high risk groups, risk score curves
and the PSI value heat map of the AS events for eight prediction models were visualized in
Fig. 6. The results of Kaplan–Meier survival analysis showed that all of the eight prediction
models possess significant ability to predict the prognosis of HCC patients between low and
high risk group (Fig. 7). However, according the results of ROC curves, the final prediction
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Figure 4 Gene interaction network and functional enrichment analysis. (A) Gene interaction network
of the top 800 most significant OS-related AS events. (B) The top 10 significant terms of GO enrichment
analysis (BP/CC/MF). (C) Nine terms of KEGG enrichment analysis.

Full-size DOI: 10.7717/peerj.8245/fig-4

model exhibited the most powerful predictive efficiency than other models established by
one single AS type with the maximum AUCs of 0.878, 0.843, 0.821 in 1, 3, 5 years ROC
curves (Fig. 8).

Moreover, we assessed the prognostic value of risk score and other clinicopathological
characteristics using univariate andmultivariate Cox regression analysis. Univariate analysis
suggested that advanced clinical stage (HR = 2.053, 95% CI [1.553–2.714], p< 0.001),
high T classification (HR = 1.962, 95% CI [1.515–2.542], p< 0.001) and high risk score
(All) (HR = 1.105, 95% CI [1.076–1.135], p< 0.001) were associated with poor prognosis
(Fig. 9A). Upon multivariate analysis, risk score (All) (HR= 1.101, 95% CI [1.069–1.135],
p< 0.001) served as the risk factor to independently predict OS for HCC patients (Fig. 9B).
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Figure 5 Selection of the optimal AS-related events used for construction of the final prediction model
by LASSO regression. (A) Selection of optimal parameter (lambda) in the LASSO model, dotted vertical
lines were drawn at the optimal values. (B) LASSO coefficient profiles of the nine OS-related AS events
with nonzero coefficients determined by the optimal lambda.

Full-size DOI: 10.7717/peerj.8245/fig-5

The regulation network of SFs and OS-related AS events
SF is the executor of AS events and aberrant expression of SF was related to oncogenesis
process. A total of 71 SFs data were collected from the SpliceAid2 database (http:
//www.introni.it/splicing.html). We identified 21 SFs associated with OS of HCC patients
using univariate analysis. Then Spearman correlation analysis was performed to determine
the correlation between the PSI value of OS-related AS events and SF expression. The
significant correlations (|R|≥0.6, p< 0.001) were selected to construct the regulation
network (Fig. 10A). The regulation network consists of 29 OS-related AS events, of which
16 were adverse AS events (red dots) and 13 were favorable AS events (green dots),
were significantly correlated with the 13 SFs (blue dots). We can find that all of the SFs
were correlated with multiple AS events and played opposite roles in regulating different
AS events. Similarly, a part of the AS events could be regulated by different SFs. This
phenomenon partly explains that the same transcript can produce multiple different
splicing events. In addition, we can detect that the adverse AS events were positively
correlated with SF expression (red lines), whereas the favorable AS events were negatively
correlated with SF expression (green lines).

The top four most significant correlations between SFs and OS-related AS events (|R|
≥0.7) are shown in Figs. 10D, 10E, 10H and 10I. The top two counterpart SFs were
HNRNPL and HNRNPH3, and the expression of HNRNPL and HNRNPH3 in tumor
sample were significantly higher than adjacent normal sample (Figs. 10B and 10F). HCC
patients were classified into low and high risk groups according to the median value of the
two SFs expression. Also, Kaplan–Meier survival analysis showed statistical difference in
survival time between the two groups (Figs. 10C and 10G).
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Table 2 Information of AS events used for construction of prediction model.

Type ID Coef HR 95% Lower 95%Up P value

SWI5-87732-AA 3.44 31.34 4.32 227.57 0.00066043
MFSD10-68617-AA 5.53 251.81 4.79 13244.14 0.006246456
FDPS-8074-AA 1.72 5.58 0.96 32.52 0.055702088
FUOM-13553-AA 4.50 89.61 2.18 3689.99 0.017794651
ZFAND6-32171-AA −18.97 5.79e−9 1.84e−14 1.83e−3 0.003324932

AA

ABCG5-53407-AA 1.45 4.24 1.54 11.67 0.005133725
CCDC90B-18085-AD 2.73 15.27 2.46 94.69 0.003404273
FAXDC2-74229-AD 3.72 41.20 1.74 973.72 0.021200397
C1orf159-13-AD −2.02 0.13 0.04 0.42 0.000547079
BSCL2-16408-AD 6.33 560.69 9.32 33724.29 0.002462146
TXNDC17-38768-AD 12.15 1.89e+5 8.72 4.12e+9 0.017081663

AD

RPL13-392312-AD 3.25 25.81 3.24 205.55 0.002134468
KANK1-85710-AP −1.12 0.33 0.16 0.68 0.003039732
NUDT6-70521-AP −1.40 0.25 0.09 0.71 0.009102069
S100A13-7731-AP 1.33 3.76 0.93 15.27 0.063560786
MAEA-68467-AP −11.36 1.16e−5 1.41e−8 0.01 0.000914974

AP

MXI1-13079-AP −1.25 0.29 0.09 0.89 0.030826651
JUP-40930-AT −4.18 0.02 8.21e−4 0.29 0.005110540
TSPAN31-22724-AT −5.98 2.52e−3 9.11e−5 0.07 0.000412724
ZNF706-84737-AT 9.10 8974.41 116.68 690281.40 3.99e−5
NEIL3-71227-AT 1.45 4.26 1.78 10.19 0.001109076

AT

EPS15L1-48154-AT 5.79 327.41 15.76 6803.41 0.000183173
CRELD1-63291-ES −13.64 1.19e−6 5.85e−10 2.44e−3 0.000452970
CSAD-21952-ES −3.21 0.04 0.01 0.19 4.24e−5ES

IRF3-50995-ES −2.62 0.07 0.03 0.20 6.14e−7
SLC39A14-140283-ME −1.96 0.14 0.04 0.45 0.001037644
H2AFY-96931-ME 3.18 24.02 2.71 211.85 0.004205834
CYP4F3-48101-ME −4.59 0.01 2.74e−4 0.37 0.012551164

ME

MTFR1L-1211-ME −2.30 0.10 0.03 0.38 0.000662517
VPS28-85600-RI 6.06 429.08 5.62 32758.26 0.006135308
NUDT22-16590-RI 2.69 14.79 3.18 68.86 0.000599344
NAA60-33527-RI −1.87 0.15 0.04 0.65 0.010841633
MOGAT3-81047-RI 5.24 188.66 5.22 6812.78 0.004190482
SNX5-58749-RI −3.94 0.02 3.24e−3 0.12 1.70e−5

RI

UBB-39434-RI 44.68 2.54e+19 2.40e+10 2.69e+28 2.50e−5
CSAD-21952-ES −2.15 0.12 0.02 0.58 0.008527832
NUDT22-16590-RI 2.26 9.58 2.24 40.90 0.00228534
TSPAN31-22724-AT −6.17 2.08e−3 4.74e−5 0.09 0.001376182
CCDC90B-18085-AD 1.53 4.62 0.68 31.15 0.116422196

(continued on next page)
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Table 2 (continued)

Type ID Coef HR 95% Lower 95%Up P value

IRF3-50994-ES −1.71 0.18 0.03 1.02 0.053074975
ZNF706-84737-AT 8.94 7608.05 76.67 754961.11 0.000138991
KANK1-85710-AP −0.80 0.45 0.22 0.94 0.033403
PGAP3-40670-ES −6.81 1.11e−3 4.06e−7 3.02 0.091751791

ALL

NAA60-33527-RI −2.27 0.10 0.03 0.41 0.001319454

Figure 6 Analysis of the prediction models in HCC patients.HCC patients were divided into low and
high risk groups on the basis of the median value of risk scores. (A–D, M–P) The risk score curves for AA,
AD, AP, AT, ES, RI, ME events and all types of AS events. (E–H, Q–T) Survival status and survival times of
HCC patients ranked by risk score for AA, AD, AP, AT, ES, RI, ME events and all types of AS events. (I–L,
U–X) The PSI value heatmap of the AS events for AA, AD, AP, AT, ES, RI, ME events and all types of AS
events. Color from blue to red indicates the increasing PSI score of corresponding AS event from low to
high.

Full-size DOI: 10.7717/peerj.8245/fig-6

DISCUSSION
AS is a significant regulatory process for generating protein isoforms with a variety of
functional characteristics. Abnormality of AS events are closely associated with tumor
occurrence, development and metastasis (Oltean & Bates, 2014; Liu & Cheng, 2013;
Spaethling et al., 2016). In recent decades, with the rapid development of high-throughput
sequencing technology, the potential significance of AS events in malignant tumor has
achieved great advancement. However, there are few studies focus on the systematic
analysis of AS events in HCC patients.

Then we screened OS-related AS events and OS-related SFs in HCC patients via the
analysis of TCGA and SpliceAid2 database. A total of 3,482 OS-related AS events in 2,203
genes and 21 OS-related SFs were detected using univariate Cox analysis, which shows
that AS events are ubiquitous in HCC patients and limited SFs can regulate massive
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Figure 7 Kaplan-Meier plots of the eight prediction models constructed with AS events for HCC pa-
tients. (A–H) Kaplan-Meier plots of prediction models constructed with AA, AD, AP, AT, ES, RI, ME
events and all types of AS events.

Full-size DOI: 10.7717/peerj.8245/fig-7

Figure 8 ROC curves of the eight prediction models for risk prediction in 1 year, 3 years and 5 years.
ROC curves in 1 year (A–H), 3 years (I–P) and 5 years (Q–X) for AA, AD, AP, AT, ES, ME, RI models and
the final model (All).

Full-size DOI: 10.7717/peerj.8245/fig-8

AS. The gene interaction network was established using Cytoscape based on the top 800
OS-related AS events, and UBB, UBE2D3, SF3A1 were identified as the hub genes of this
gene network. Ubiquitin is a small and highly conserved protein expressed in all eukaryotic
cells. Over expression of ubiquitin B (UBB) was reported in non-small cell lung cancer
and cervical cancer, UBB may serve as a potential therapy and prevention target (Tang et
al., 2015; Tian et al., 2013). Nevertheless, the relationship between HCC and UBB is not
clear. Ubiquitin-conjugating enzyme E2D3 (UBE2D3) is a member of the E2 family, which
is involved in the ubiquitin proteasome pathway to regulate the basic activities of cells,
such as DNA damage response, cell cycle control, apoptosis, and tumorgenesis. A previous
study demonstrated that UBE2D3 plays a significant role in the development of esophageal
cancer (Guan et al., 2015). SF3A1 is a critical spliceosome gene which participated in
normal splicing events and spliceosome assembly (Chen et al., 2015). SF3A1 has been
reported to be related to susceptibility of breast cancer and lung cancer (Hu et al., 2011;

Yang et al. (2019), PeerJ, DOI 10.7717/peerj.8245 11/19

https://peerj.com
https://doi.org/10.7717/peerj.8245/fig-7
https://doi.org/10.7717/peerj.8245/fig-8
http://dx.doi.org/10.7717/peerj.8245


Figure 9 Forest plots of Cox regression analysis of clinicopathological characteristics and risk score
(All). (A) Univariate analysis, (B) multivariate analysis.

Full-size DOI: 10.7717/peerj.8245/fig-9

Michailidou et al., 2013). And the mutation of SF3A1 were involved in some cancers,
including esophageal adenocarcinoma, osteosarcomas, ovarian carcinoma and gastric
cancer (Chen et al., 2015). Additionally, KEGG and GO enrichment analysis were
performed and we found that these genes were closely associated with spliceosomal
complex, cell adhesion molecule binding, actin cytoskeleton reorganization, base excision
repair, etc. From the above mentioned, UBB, UBE2D3 and SF3A1 as the hub genes in this
gene interaction network and may be potential targets for the prevention and treatment of
HCC in the future.

In the recent years, with the fast development of high-throughput sequencing, massive
potential prognosis biomarkers or therapy targets of tumor were emerging, such as mRNA,
miRNA, lncRNA, and methylation (Zhao et al., 2018; Ji et al., 2018; Cai et al., 2019; Wu et
al., 2017). However, the focus of these studies is limited to the transcriptome-level analysis.
The prognostic value of AS events has a great potential for development. Tremblay et al.
(2016) firstly investigated differential AS events between HCC sample and normal liver
sample based on TCGA database, and they provided an overview of misregulated AS
events in different types of HCC (e.g., HBV-related HCC, HCV-related HCC, HBV&HCV-
associated HCC and virus-free HCC). But they did not explore the association between the
AS events and the prognosis of HCC patients. Subsequently, some researchers identified
OS-related AS events to establish a prediction model in HCC patients (Chen et al., 2019;
Zhu et al., 2019). However, Chen et al. reported that the AUC of ROC curve for the final
prediction model constructed with 10 AS events was only 0.752. Zhu et al. constructed the
final prediction model with up to 33 AS events, but the AUC of ROC curve was only 0.806.
In this study, the final prediction model exhibited the most powerful predictive efficiency
than other models established by one single AS type with the maximum AUCs of 0.878,
0.843, 0.821 in 1, 3, 5 years ROC curves. And our final prediction model was constructed
with only nine OS-related AS events.

SF plays a significant role in the regulation of AS events, which affects the selection
of exons and splicing sites by identifying and combining to cis-regulatory elements of
pre-mRNA. Aberrant expression of SF was related to oncogenesis process. The regulation
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Figure 10 Regulation network of SFs and OS-related AS events. (A) Correlation network between the
expression of OS-related SFs and the PSI values of OS-related AS events. The expression of OS-related
SFs (blue dots) were positively (red line) or negatively (green line) correlated with the PSI values of OS-
related AS events. The favorable AS events are showed by green dots while adverse AS events are showed
by red dots. (B, F) Expression of HNRNPL and HNRNPH3 in tumor sample (red dots) and adjacent nor-
mal sample (blue dots). (C, G) Kaplan-Meier plots of HNRNPL and HNRNPH3, HCC patients were di-
vided into low (blue curve) and high risk (red curve) groups according to the median value of the two SFs
expression. (D, E) Correlation analysis between the expression of HNRNPL and the PSI values of RTN4-
53582-AP, RTN4-53584-AP. (H, I) Correlation analysis between the expression of HNRNPH3 and the PSI
values of PCCB-66900-AT, PCCB-66901-AT.

Full-size DOI: 10.7717/peerj.8245/fig-10

network was constructed to show the correlation between the PSI value of OS-related
AS events and SF expression. The top two SFs were HNRNPL and HNRNPH3 identified
according to the correlation coefficient (|R| ≥0.7). Compared to adjacent normal sample,
the expression of HNRNPL and HNRNPH3 were higher in tumor sample. And patients
with higher expression of HNRNPL and HNRNPH3 had more dismal prognosis. From the
regulation network, we found that the adverse AS events were positively correlated with the
expression of HNRNPL and HNRNPH3, whereas the favorable AS events were negatively
correlated with the expression of HNRNPL and HNRNPH3, which was consistent with the
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results of survival analysis. HNRNPL and HNRNPH3 are members of HNRNPs family.
HNRNPs directly modulate the AS of a group of RNAs and serve as multifunctional
RNA-binding proteins for mRNA stabilization, transportation and translation (Fei et
al., 2017). Aberrant expression of HNRNPL and its RNA target are closely associated
with the proliferation, invasion and metastasis of tumor cells (Kedzierska & Piekielko-
Witkowska, 2017; Geuens, Bouhy & Timmerman, 2016). A recent study have demonstrated
that HNRNPL was highly expressed in HCC samples and down-regulation of HNRNPL
expression can significantly inhibit the proliferation andmigration of liver cancer cells (Yau
et al., 2013), which was in accordance with our results. However, to the best knowledge of
us, there is no research report the actual regulatory mechanism between the two prognostic
SFs and OS-related AS events, and further elucidation with in vivo or vitro experiments is
urgently needed.

Although the findings in the present study improves our understanding of the association
between AS events and HCC, some limitations existed in this study. First, this study was
conducted based on the data obtained from one public database with a relatively small
sample size. Second, due to the lack of external data, we did not make a cohort verification
for the prediction model. Third, we did not perform a functional experiment and could not
clearly elucidate the underlying mechanism between AS events and SFs in HCC patients.
It is essential to carry out functional experiments and clinical trials with a large sample size
of HCC patients to confirm the findings of this study in the future.

CONCLUSIONS
In summary, we performed a systematic analysis of AS events in HCC and constructed
prediction models based on OS-related AS events with well performance in predicting the
prognosis of HCC patients. The AS events used for the construction of the final prediction
model may be themost significant AS events in exploring the latentmechanism in initiation
and development of HCC, have a great potential for clinical application as therapeutic
and preventive targets of HCC patients. Furthermore, we established a regulation network
between SFs and OS-related AS events. Although the findings in the present study improve
our understanding of the association between AS events and HCC to some extent. In
vitro/vivo function experiments are also urgently needed in the future to understand the
mechanism between AS events and SFs in the HCC patients.
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