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Two related hyperinflammatory syndromes are
distinguished following infection of humans with
hantaviruses: haemorrhagic fever with renal syn-
drome (HFRS) seen in Eurasia and hantavirus
pulmonary syndrome (HPS) seen in the Americas.
Fatality rates are high, up to 10% for HFRS and
around 35%–40% for HPS. Puumala virus (PUUV)
is the most common HFRS-causing hantavirus in
Europe. Here, we describe recent insights into the
generation of innate and adaptive cell-mediated
immune responses following clinical infection with
PUUV. First described are studies demonstrating a
marked redistribution of peripheral blood mononu-
clear phagocytes (MNP) to the airways, a process
that may underlie local immune activation at the

site of primary infection. We then describe obser-
vations of an excessive natural killer (NK) cell
activation and the persistence of highly elevated
numbers of NK cells in peripheral blood following
PUUV infection. A similar vigorous CD8 Tcell
response is also described, though Tcell responses
decline with viraemia. Like MNPs, many NK cells
and CD8 T cells also localize to the lung upon acute
PUUV infection. Following this, findings demon-
strating the ability of hantaviruses, including
PUUV, to cause apoptosis resistance in infected
target cells, are described. These observations, and
associated inflammatory cytokine responses, may
provide new insights into HFRS and HPS disease
pathogenesis. Based on similarities between
inflammatory responses in severe hantavirus infec-
tions and other hyperinflammatory disease syn-
dromes, we speculate whether some therapeutic
interventions that have been successful in the
latter conditions may also be applicable in severe
hantavirus infections.
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Introduction

Hantaviruses (also referred to as orthohan-
taviruses) are zoonotic viruses that belong to the
Bunyavirales order. The distribution of different
hantavirus strains depends on the geographic
location of each strains’ specific natural host [1].
Transmission of pathogenic hantaviruses to
humans occurs predominantly through the

inhalation of dust from virus-contaminated rodent
excreta (Fig. 1). In infected humans, hantaviruses
mainly target vascular endothelial cells, but they
also infect epithelial cells, mononuclear phago-
cytes (MNP), follicular dendritic cells (DC) and
likely also other types of cells [2–5]. Although
hantaviruses affect several cellular functions,
infection with hantaviruses is not cytopathic per
se [6, 7].
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In a global perspective, hantaviruses cause two
related hyperinflammatory syndromes: haemor-
rhagic fever with renal syndrome (HFRS), mainly
caused by the Hantaan, Seoul, Dobrava and
Puumala (PUUV) viruses; and hantavirus pul-
monary syndrome (HPS), mainly caused by the
Andes and Sin Nombre viruses. HFRS is the
primary hantavirus-induced disease syndrome in
Eurasia whilst HPS dominates in the Americas [8].
Many aspects of HFRS and HPS are shared
between the two diseases, and the pathogenesis
is likely similar even if there are some differences in
organ manifestations and, importantly, in severity.
Infection leads to an excessive immune activation
including massive cytokine responses and activa-
tion of cytotoxic lymphocytes [9–14]. Patients also
show increased infiltration of immune cells in
organs [13, 15–18]. Together, these responses
likely contribute to the pathological responses

observed following infection. In more detail, early
disease manifests with flu-like symptoms and
affection of specific organs and later on, in severe
cases, symptoms such as hypotension, acute
shock, vascular leakage, kidney failure and lung
failure [1, 2, 4, 19]. Reported case-fatality rates are
up to 10% for HFRS and around 35%–40% for HPS
[1, 2, 19] (Fig. 1). There is no specific curative
treatment or FDA-approved preventive vaccine for
either HFRS or HPS.

The most common causative agent of HFRS in
Europe is PUUV, carried by the bank vole (Clethri-
onomys glareolus) [19]. PUUV is widespread across
large parts of the continent and causes regular
outbreaks when the bank vole population peaks
[20]. Annually, more than 10 000 individuals are
diagnosed with HFRS and numbers are increasing
[19]. This increase may relate in part to increased

HFRS

HPS
35–40% fatality

up to 10% fatality

Hantavirus transmission
and disease

Fig. 1 Transmission of pathogenic hantaviruses including Puumala virus (PUUV) to humans occurs predominantly through
the inhalation of dust containing virus-contaminated rodent excreta (illustrated in the upper part of the Figure). In a global
perspective, two main hyperinflammatory clinical syndromes can be distinguished following infection with different species
of hantaviruses: haemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). HFRS is the
predominant hantavirus-induced disease syndrome in Eurasia whilst HPS dominates in the Americas. Many aspects of
HFRS and HPS are shared between the two diseases, and the pathogenesis is likely similar even if there are some
differences in organ manifestations and, importantly, in severity (illustrated in the lower part of the Figure). In the present
review, we discuss recent insights into the innate and adaptive cell-mediated immune responses to human PUUV infection.
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awareness by the medical community and to
changes in environmental factors including climate
change. Furthermore, high seroprevalence has
been observed in certain areas of Europe, including
in areas where only few cases of HFRS are being
diagnosed [19, 21]. Whilst PUUV-associated mor-
bidities are significant, mortality rates are normally
low (<1%) with some exceptions in the elderly
populations where rates are higher [22].

In this review, we discuss recent insights into the
cell-mediated immune responses generated in
response to acute PUUV infection. In this context,
we review recent results on MNP, granulocyte,
natural killer (NK) cell, as well as CD8 and CD4 T-
cell responses. Still lacking are more comprehen-
sive studies with respect to responses of B cells
(apart from serology), unconventional T cells such
as mucosal-associated invariant T (MAIT) cells
and cd T cells, and innate lymphoid cells (ILCs) in
acute PUUV infection. Results reviewed here are
largely, but not exclusively, based on clinical
material collected from hospitalized HFRS
patients in Northern Sweden, a highly PUUV
endemic area [19]. Additionally, we also provide
insights into pro-inflammatory cytokines in PUUV
infection and infections caused by other han-
taviruses. We then provide novel insights into
findings demonstrating the ability of han-
taviruses, including PUUV, to cause apoptosis
resistance in infected target cells. We discuss
briefly how PUUV infection may contribute not
only to direct infectious disease-related pathogen-
esis but also to other co-morbidities affecting
several organ systems including an increased
relative risk of lymphoma. Finally, we discuss
possible new treatment strategies for the most
severe forms of human hantavirus infection,
based on novel findings reviewed here.

Mononuclear phagocyte responses to acute human PUUV infection

Mononuclear phagocytes, consisting of monocytes,
macrophages and DCs, present viral antigens to T
cells and produce type I interferons (IFN) and
various other cytokines. By this means, they are
able to initiate and regulate virus-specific immune
responses [23, 24], potentially also in the course of
human hantavirus infections [18, 25]. Monocyte-
derived cells and DCs are present in respiratory
compartments of humans [26–30]. Since han-
taviruses are mainly transmitted via inhalation,
studying immunological responses in these com-
partments is of particular interest. Furthermore,

pulmonary dysfunction, a hallmark of HPS, has
also been reported in HFRS [31–33]. Based on
these reports, we set out initially to study infiltra-
tion of MNPs in the airways of PUUV-infected
patients.

Infiltration of MNPs in the airways

Large numbers of HLA-DR-positive MNPs were
observed in endobronchial biopsies taken from
HFRS patients early after onset of disease [17].
Compared to uninfected controls, HFRS patients
showed significantly increased numbers of CD11c+

cells in the lamina propria and epithelium. In
addition, cells expressing the plasmacytoid DC
(pDC) marker CD123 were also elevated in the
lamina propria. Further analysis revealed a posi-
tive association between levels of CD8+ cells and
CD11c+ cells [17]. Taken together, these results
indicate an infiltration of several MNP subpopula-
tions into the airways during HFRS, coinciding
with increased levels of CD8 T cells (Fig. 2).

Reduced numbers of MNPs in peripheral blood

Since monocytes often participate in the inflam-
matory response following viral infection [23], we
hypothesized that in peripheral blood, the number
of monocytes, as reported for other acute viral
diseases [34–36], would also increase in PUUV-
infected patients. The frequencies of classical
(CD14+CD16�), intermediate (CD14+CD16+) and
nonclassical (CD14�CD16+) peripheral blood
monocytes were hence analysed. Surprisingly, we
observed that the absolute number of all these
subsets of monocytes decreased in peripheral
blood during acute HFRS. The reduction in cell
numbers coincided with high viral load in the
patients. At convalescence, when no virus was
detected in plasma, the monocyte numbers were
normalized [17].

The loss of monocytes in circulation during acute
HFRS led to studies of DCs, important determi-
nants of viral disease outcome [37]. Focus was
first directed to the two myeloid DC (mDC)
subsets found in peripheral blood: conventional
(c)DC1 (CD141+ mDCs) and cDC2 (CD1c+ mDCs).
A dramatic reduction in both cDC subsets was
observed during acute infection. Subsequently,
levels of cDC1s and cDC2s normalized [17]. As
observed for monocytes, the reduction in cDC1s
and cDC2s coincided with high viral load in the
patients.
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During acute infections, pDCs normally produce
high levels of type I IFNs. Yet, levels of IFN-a might
not be elevated in blood during the acute phase of
HFRS [38]. Numbers of blood pDCs, as defined by
CD123 and CD303 expression, were also signifi-
cantly reduced during acute HFRS. Later on, blood
pDC levels returned to normal levels [17]. Similar
to what was observed for mDCs, the loss of blood
pDCs also coincided with high viral load.

Upregulation of CCR7 on peripheral blood MNPs

Hantaviruses are not cytopathogenic ([39]; see also
further below in this review), indicating that the
loss of monocytes and DCs from peripheral blood
could be due to redistribution of these cells to other
sites, including the airways. To identify cellular
indicators of trafficking from blood to tissues [40,
41], the level of the chemokine receptor CCR7 was
assessed on the surface of MNPs remaining in the
peripheral blood [17]. Normally, only few such cells
express CCR7. However, in the patients, a subset
of these MNPs expressed CCR7. cDC2s also upreg-
ulated CCR7 expression, whilst no or only very low
levels of CCR7 expression were observed on cDC1s
[17]. Compared to CCR7� cells, CCR7+ cells
showed higher CD70 expression (classical mono-
cytes and cDC2s) and CD86 expression (cDC2s),
suggesting a more mature phenotype [17]. Taken
together, the results suggested that monocyte and
DC numbers decreased in circulation during acute
PUUV infection, and that the remaining MNPs
expressed higher levels of migratory receptors such
as CCR7, facilitating migration from the blood.

Granulocyte responses to acute human PUUV infection

Neutrophils, an essential part of the innate
immune system, are short-lived cells. They are
the most common type of white blood cell and
migrate towards sites of inflammation, helping to
resolve infection. Higher levels of peripheral blood
neutrophils have been observed in PUUV-infected
patients with moderate to severe symptoms than in
patients with mild symptoms [42]. Further, PUUV-
infected patients show increased levels of neu-
trophil activation products [43]. Hantavirus infec-
tion has also been shown to induce neutrophil
extracellular trap formation, though the mecha-
nism behind this finding is debated [43, 44]. These
observations, along with findings showing that
HFRS patients display elevated systemic levels of
histone-double-stranded DNA complexes as well as
antinuclear antigen antibodies, suggest a potential
role for neutrophils in hantavirus-induced
immunopathology [43–45].

NK cell responses to acute human PUUV infection

Natural killer (NK) cells play a crucial role in the
early defence against viruses. Corroborating this
notion, specific NK cell deficiencies often predis-
poses for life-threatening virus infections [46, 47].
NK cells can eliminate virus-infected cells, for
example via the cytotoxic granule-dependent path-
way, and produce antiviral IFN-c and pro-inflam-
matory cytokines such as TNF [46]. NK cells can
also be activated by cytokines induced by virus
infection [48], such as type I IFNs, IL-12, IL-15, IL-

Uninfected control Acute HFRS

HLA-DR

Fig. 2 Infiltration of antigen-presenting cells and other immune cells in the airways during acute Puumala virus-caused
HFRS. Shown are representative images of HLA-DR staining in endobronchial biopsies in acute HFRS. Specific staining
appears in red, and cell nuclei are counterstained with haematoxylin in blue [17]. Visualization was performed using
immunohistochemistry. Scale bar, 50 lm.
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18 and
IL-21 [49, 50].

NK cells rapidly expand and persist at elevated levels

In a cohort of PUUV-infected patients, we initially
set out to assess absolute numbers of total lym-
phocytes, total NK cells and distinct NK cell sub-
sets in peripheral blood. Early after onset of
symptoms, NK cell numbers were found to be low
in peripheral blood, as has also been observed by
others [18]. The initial reduction in peripheral
blood NK cells is possibly caused by extravasation
of NK cells into tissues [51, 52]. After this initial
drop, CD56dim NK cell numbers (the main popula-
tion of NK cells in peripheral blood [53, 54])
increased markedly and peaked approximately
10 days following onset of clinical symptoms [10,
15]. Surprisingly, in a majority of the patients,
CD56dim NK cell numbers remained elevated for at
least 2 months. At 15 months after infection, after
full resolution of clinical symptoms, CD56dim NK
cell numbers were normalized [10] (Fig. 3).

Significantly elevated levels of CD69 were
observed on CD56dim NK cells during the acute
phase of disease [55]. Levels of CD69+ CD56dim

NK cells subsequently decreased over time. Dur-
ing the acute phase, CD56dim NK cells also
expressed significantly elevated levels of NKG2D
and 2B4 (activating NK cell receptors), NKp30
and NKp46 (natural cytotoxicity receptors), as
well as granzyme B and perforin [55]. Taken
together, this shows that cytotoxic CD56dim NK
cells are highly activated during PUUV infection.

Increased NK cell numbers are a result of induced proliferation

To explore whether the increased numbers of
activated CD56dim NK cells were a consequence of
proliferation, levels of the proliferation marker Ki67
were assessed in NK cells from PUUV-infected
HFRS patients. Strikingly, Ki67 expression was
detected in up to half of the CD56dim NK cells
during the first 10 days after onset of HFRS [10].
Thereafter, the level of Ki67-expressing CD56dim

NK cells decreased.

Certain cytokines are known to trigger NK cell
proliferation and persistence. Interestingly, we
observed elevated plasma levels of IL-15, but not
of IL-2 or IL-12, up to 60 days after onset of disease
[10], suggesting that IL-15 might be involved in the
observed CD56dim NK cell proliferative responses.

Corroborating this notion, in vitro, hantavirus
infection was found to induce transcription of IL-
15 and IL-15Ra mRNAs and cause increased IL-15
and IL-15Ra cell surface expression [55]. Upon
neutralization of IL-15, fewer NK cells expressed
CD69 [55], suggesting that trans-presented IL-15
may induce activation of CD56dim NK cell upon
contact with PUUV-infected cells.

Noteworthy, besides contributing to NK cell prolif-
eration, IL-15 can also promote the survival of
proliferating NK cells [56]. This may, at least in
part, occur via IL-15-induced production of the
anti-apoptotic protein Bcl-2 [57]. In this respect,
compared with nonproliferating (Ki67�) NK cells,
proliferating (Ki67+) NK cells were found to express
elevated Bcl-2 levels [10], which may inhibit apop-
tosis in proliferating NK cells, leading to an accu-
mulation of these cells.

Hantavirus-infected endothelial cells upregulate the NKG2C ligand
HLA-E

Specific NK cell-activating receptors play important
roles in stimulating proliferation and in control
of viral infections. A common feature of these
receptors is that they can recognize virus-asso-
ciated and/or virus-induced cellular proteins on
infected cells [58]. To identify possible NK
cell-activating receptors that might be involved in
the recognition of target cells, primary human
endothelial cells were infected. Hantavirus-
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Fig. 3 NK cell and T-cell immune responses observed
following Puumala virus (PUUV) infection. Generally, in
viral infections, innate immune responses peak after a few
days. In contrast, in a cohort of hospitalized PUUV-infected
individuals, a strong NK cell response was elicited and cell
numbers remained elevated over several weeks well
beyond the resolution of viraemia. The patients also
displayed a vigorous, albeit transient, CD8 T-cell response
largely coinciding with viraemia.
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induced changes in NK cell receptor-ligand
expression were then analysed. Increased levels of
intercellular adhesion molecule 1 (ICAM-1), a
ligand for lymphocyte function-associated antigen
1 (LFA-1), were observed on the cell surface of
hantavirus-infected cells [10]. ICAM-1–LFA-1 inter-
actions play important roles for NK cells, including
promoting lymphocyte adhesion to endothelial
cells, NK cell activation, and polarization of NK cell
lytic granule release [59]. Furthermore, HLA-E was
found to be significantly upregulated. Importantly,
HLA-E is a ligand for the activating NK cell receptor
NKG2C [60] implicated in cytomegalovirus (CMV)
infection [61–63].

Expanding and persisting NK cells are confined to an
NKG2C-expressing subset

The latter observations led us to address whether
NKG2Cmight be involved in the NK cell response to
hantavirus infection. In this respect, during the
acute phase, HFRS patients showed significantly
higher levels of NKG2C+ NK cells compared with
uninfected controls [10]. Furthermore, NKG2C+ NK
cell expansion, and persistence, was observed in
the patients. This expansion was specific for
NKG2C+ cells and accounted for a large part of
the overall CD56dim NK cell expansion in the
patients [10]. Phenotypically, a large proportion of
these NKG2C+ cells expressed CD57 and inhibitory
killer cell immunoglobulin-like receptors (KIRs)
after expansion, suggesting that they represent
highly mature and terminally differentiated
CD56dim NK cells [54].

Skewing of the NK cell repertoire towards dom-
inance of certain subsets with narrow phenotype
properties, such as the expanded NKG2C+ NK
cells, leads to an overall lower diversity within
the NK cell compartment [64]. Noteworthy, a
similar disturbance of the NK cell receptor
repertoire occurs during chronic hepatitis C
virus (HCV) infection and appears to persist for
years after clearance of HCV [65]. Potential long-
term consequences of such skewing, be it
increased susceptibility to subsequent infections
and/or cancer, still need to be addressed in
future studies.

CMV infection and NKG2C+ NK cell expansion in hantavirus infection

Although degrees of infection vary between different
geographical regions around the world, most
humans are infected with CMV. CMV seropositivity

has been associated with increased frequencies of
peripheral blood NKG2C+ NK cells [61, 62]. In this
context, three out of the 16 PUUV-infected patients
included in the NK cell cohort study reviewed above
wereCMVIgG� [10]. Interestingly, at theacutephase
of disease, these three patients had lower absolute
numbers of NKG2C+ NK cells than the majority of
CMV IgG+ patients and displayed no subsequent
NKG2C+ NK cell expansion. Based on these obser-
vations, apreviousCMVinfectionmayhaveprimeda
NKG2C+ NK cell population for expansion.

T-cell responses to acute human PUUV infection

T cells are believed to contribute to hantavirus
pathogenesis [11, 66, 67]. High frequencies of
hantavirus-specific memory CD8 T cells have been
observed years after patients recovered from their
infection [12, 68]. However, the primary antiviral
CD8 Tcell response, including formation of anti-
gen-specific T cells and Tcell memory [69, 70], has
not been extensively characterized in human han-
tavirus infection.

PUUV-infected patients display increased levels of airway CD8 T cells

To investigate local T cell responses, endobronchial
biopsies and bronchoalveolar lavage (BAL) were
sampled from PUUV-infected HFRS patients, and
then, CD8 T cells were analysed [15]. Compared
with control subjects, HFRS patients showed
increased numbers of CD8 T cells in the epithelium
and increased numbers of submucosal CD4 T cells
and CD8 T cells. Analysis of BAL fluid showed
higher proportions of CD8 T cells and NK cells in
the patients. T cells showed signs of activation as
deduced by observations of elevated HLA-DR and
CD25 expression [15]. In relation to these studies,
the magnitude of pulmonary cytotoxic lymphocyte
responses has been shown to correlate with the
severity and systemic organ dysfunction, including
vascular leakage, hypotension, cardiac dysfunc-
tion, supplemental oxygen treatment, renal failure
and cell damage [71]. Taken together, this indi-
cates an increased lung Tcell response of patients
infected with PUUV.

Identification of responding CD8 T cells in peripheral blood

Parallel to these studies, a detailed characteriza-
tion of peripheral blood T cells was carried out in
acute PUUV infection [9]. Studies of cells from
peripheral blood allowed for a thorough analysis of
the temporal dynamics of the Tcell response,
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including in-depth studies of activation status and
effector cell phenotypes. Early after infection, rel-
ative levels of CD8 T cells were increased compared
to levels of CD4 T cells. At day 60 after infection
(convalescent phase), CD8 Tcell levels were nor-
malized to those observed in uninfected individu-
als. During the acute phase of infection, a
substantial proportion of CD8 T cells were found
to express Ki67, CD38 and HLA-DR. The
Ki67+CD38+HLA-DR+ CD8 Tcell subset peaked at
day 6 and then decreased by day 10, to be virtually
undetectable at day 60 [9]. The decrease in levels of
effector CD8 T cells coincided with decreased viral
load in the patients [9] (Fig. 3). Levels of
Ki67+CD38+HLA-DR+ CD4 T cells were not elevated
early after symptom debut. However, increased
CD4 Tcell Ki67 expression, and a trend towards
higher CD38 expression, was observed [9].

Responding CD8 T cells display an effector phenotype

To analyse whether the Ki67+CD38+HLA-DR+ CD8
T cells represented effector CD8 T cells, the
expression patterns of CCR7, CD28, CD45RA,
CD127, granzyme B and perforin were analysed
on responding (Ki67+) and nonresponding (Ki67�)
CD8 T cells [9]. Responding CD8 T cells consis-
tently expressed low levels of CCR7, CD45RA and
CD127, whilst the co-stimulatory molecule CD28
was expressed on approximately half of the Ki67+

CD8 T cells. Of the Ki67+ CD8 T cells, more than
70% were CCR7�CD45RA�CD127�CD28+/� at day
6 after symptom debut. This phenotype differed
from that of Ki67�CD8 T cells at the same time-
point as well as from uninfected controls. Further-
more, CD8 T cells showed a high frequency of
perforin and granzyme B expression during the
acute phase, which had normalized at day 60 [9].
These data suggest that Ki67+CD38+HLA-DR+ CD8
T cells make up the effector cell CD8 Tcell popu-
lation that respond to PUUV infection.

No expansion of regulatory CD4 T cells

A few studies exist with respect to CD4 T cells,
including regulatory FoxP3+ CD4 T cells, in clinical
hantavirus infection [72–75]. To more directly
identify mechanisms that could balance the effec-
tor Tcell response, we analysed FoxP3+CD25high

CD127low T regulatory (Treg) cells in PUUV-infected
patients [9]. To summarize studies performed, CD4
T cells with a regulatory phenotype are present in
peripheral blood during acute hantavirus infection
but seem not to be increased in frequency.

Transient expression of inhibitory receptors on responding T cells

Expression of inhibitory receptors is a mechanism
to ensure Tcell tolerance during steady-state con-
ditions. These receptors regulate Tcell responses
and have been linked to Tcell dysfunction during
chronic viral infection [76]. However, they have not
been extensively analysed during the early phase of
acute human viral infection. In this context,
expression of PD-1 and CTLA-4 on responding T
cells was analysed during acute PUUV infection [9].
PD-1 was not detected on CD8 T cells from patients
in the present cohort [9]. In contrast, CTLA-4 was
detected on 40% of the CD8 T cells during the acute
phase but then rapidly declined. At day 60, almost
no CD8 T cells expressed CTLA-4.

The analysis was also extended to CD4 T cells.
CTLA-4 was detected on many CD4 T cells early
after symptom debut. Additionally, PD-1 was
expressed on 15% of CD4 T cells. Noteworthy,
almost all of the PD-1-expressing CD4 T cells
expressed CTLA-4. CTLA-4 and PD-1 expression
on CD4 T cells then decreased after the early acute
phase [9]. Taken together, this suggests that cell-
intrinsic processes may balance effector T-cell
responses early after onset of disease.

Hantavirus-infected cells are protected from cytotoxic
lymphocyte-mediated apoptosis

In the previous sections, we have described how an
acute PUUV virus infection generates a high
number of activated NK cells that can persist for
months [10]. In parallel, strong CD8 Tcell
responses are observed during the acute phase
[9]. However, no obvious damage of infected
endothelial cells has been observed in autopsies
from deceased patients [4–6]. This suggested to us
that hantaviruses, including PUUV, might protect
infected cells from being killed by cytotoxic
lymphocytes.

To study the effects of cytotoxic lymphocytes on
hantavirus-infected cells in vitro, we exposed
infected primary endothelial cells to activated NK
cells. Levels of NK cell degranulation did not differ
between NK cells co-incubated with infected com-
pared to uninfected cells. Strikingly, however,
whilst the NK cells readily killed uninfected cells,
infected cells were not killed [39, 77]. Interestingly,
we observed that the hantavirus nucleocapsid
protein interfered with granzyme B and caspase 3
enzymatic activities [39, 77]. This suggests that
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hantavirus inhibits cytotoxic granule-mediated
apoptosis induction, hence protecting infected cells
from being killed by cytotoxic lymphocytes.

Acute and possible long-term effects of clinical PUUV and other
hantavirus infections

Reports on the clinical manifestations of HFRS
have largely focused on acute renal failure. Up to
5% of PUUV and 50% of Dobrava virus-infected
hospitalized HFRS patients have been reported to
require dialysis during the acute stage of disease
[19]. However, several extrarenal manifestations
are also observed in HFRS including cardiac,
pulmonary, ocular and hormonal disorders [19].
In a Korean study, extrarenal manifestations
involving major organs were reported to occur in
one-third of HFRS patients [78]. This included
cardiovascular, central nervous system, pancre-
atobiliary symptoms, and major bleedings [78]. A
Finnish prospective study of cardiac dysfunction in
hospital-treated HFRS patients using electrocar-
diogram (ECG) and electrocardiography as well as
serial measurement of cardiac troponins showed
that cardiac involvement is common [79]. In acute-
phase ECG, changes were observed in more than
half of the HFRS patients and impairments of
cardiac contractions and pericardial effusions were
reported in some patients. Aberrances were usually
normalized after 3 months [79]. A Swedish study
addressing the causes of death during and after
HFRS concluded that cardiovascular disorders
were the cause of death in more than half of
patients who died in Sweden during the first year
after HFRS [80]. Corroborating this study, a related
report demonstrated a significantly increased risk
of acute myocardial infarction and stroke during
HFRS [81]. More recently, risk of thromboembolism
following HFRS has also been addressed where a
significantly increased risk of venous thromboem-
bolism was observed early after on onset of HFRS
[82].

Given the observations on hantavirus-mediated
inhibition of apoptosis, and the notion that apop-
tosis resistance is one of the hallmarks of cancer
[83], we addressed whether PUUV infection might
be linked to cancer. This study was done by cross-
running the Swedish HFRS register with the
Swedish Cancer Registry. Over 6500 HFRS diag-
nosed individuals in Sweden were included in the
study. Of these patients, more than 350 were
diagnosed with cancer. Strikingly, amongst these
patients, the relative risk of developing lymphoma

was significantly increased [84]. The highest risk of
lymphoma was observed early after HFRS and then
decreased with time. The possibility of a causal link
between PUUV and lymphoma development
remains to be investigated.

Inflammatory responses in PUUV and other hantavirus infections

Despite recent efforts to characterize the human
immune response to hantavirus infection, mecha-
nisms behind the pathogenesis of HFRS and HPS
remain unknown. Not unlikely, the virus-induced
immune responses may contribute to the pathol-
ogy of the diseases [1, 19]. It has been known for
long that human hantavirus infection induces a
strong inflammatory response with increased levels
of pro-inflammatory cytokines [85–89]. How these
responses might affect the disease outcome has,
however, not been studied in detail.

In 1996, elevated plasma levels of IL-6, IL-10 and
TNF were reported in PUUV-infected HFRS patients
[90]. Since then, several reports have confirmed
findings of strong cytokine responses in PUUV-
infected patients, including elevated plasma levels
of IL-2, IL-6, IL-8, IL-10, TNF, TGF-b1, IFN-c, VEGF
and other inflammatory markers such as CRP [88,
89, 91–95]. Elevated IL-6 levels in plasma have
been associated with more severe HFRS [89].
Elevated levels of IL-6 and other cytokines such
as IL-8, IL-10, TNF and IFN-c have also been
detected in Dobrava virus-infected and Hantaan
virus-infected HFRS patients [96–99] and in HPS
patients [87, 100, 101] indicating that elevated
levels of these cytokines are a general consequence
of human hantavirus infection.

In an attempt to more directly address correlates
with disease outcome and severity during han-
tavirus infections, we recently characterized the
systemic inflammatory response in one of the
largest cohorts of HPS patients analysed to date,
including 93 Andes virus-infected HPS patients out
of whom 34 had a fatal outcome [102]. The results
showed that not only were inflammatory markers
highly increased, but also markers of microbial
translocation and intestinal damage. Interestingly,
by multivariate analyses, it was shown that intesti-
nal fatty acid-binding protein (I-FABP), a marker of
intestinal injury, was independently associated
with increased odds of a fatal outcome. When
comparing fatal and nonfatal cases in univariate
analyses, IL-6 and IL-15 were the only two cytoki-
nes associated both with increased odds of severe
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disease and fatal outcome. Interestingly, multivari-
ate analyses identified IL-6 as an independent
marker of severe disease, suggesting that this
cytokine may have an important role in HPS
pathogenesis [102].

Novel possible treatment options for patients with severe
hantavirus infection

As mentioned above, hyperinflammation is a hall-
mark of severe hantavirus infection [1]. In the
most severe hantavirus infections, as seen pri-
marily in the development of HPS following infec-
tion with the Sin Nombre or Andes viruses, but
also in some HFRS cases, inflammatory responses
coincide with pulmonary vascular leakage, result-
ing in high mortality rates due to fulminant
hypoxic respiratory failure and/or cardiogenic
shock. In these situations, extracorporeal mem-
brane oxygenation (ECMO) represent a possibly
life-saving intervention [103, 104]. Notably, treat-
ment with corticosteroids or antiviral drugs has
not been successful [105]. Hence, novel treatment
strategies are needed for the most severe cases of
hantavirus infection. We here discuss some pos-
sible alternative strategies, based in part on
results discussed above.

The first strategy emerges from patients with
familial haemophagocytic lymphohistiocytosis
(FHL). FHL is a hyperinflammatory, often life-
threatening, primary immunodeficiency syndrome
affecting infants or young children [106]. The
disease is related to mutations in the perforin-
encoding gene or in genes encoding proteins
required for the exocytosis of perforin- and gran-
zyme-containing cytolytic granules. Because of
these mutations, cytotoxic lymphocytes of the
patients cannot eliminate virus-infected cells via
the cytolytic pathway [107]. The described muta-
tions are strongly associated with the development
of a hyperinflammatory syndrome that shares
many similarities to symptoms observed in severe
hantavirus infections [108]. In a historic context,
patients with FHL had a dismal prognosis.
However, since the implementation of
immunochemotherapy that serves to control exces-
sive immune activation, one has efficiently been
able to resolve the oftenfatal hyperinflammatory
condition [109]. In view of these accomplishments,
one may speculate whether some aspects of this
radical immunochemotherapy could be used in the
most severe cases of hantavirus-induced hyperin-
flammatory conditions.

The second strategy emerges from cancer
immunotherapy, a field that has undergone a
remarkable progress in recent years. In this con-
text, recently developed chimeric antigen receptor
(CAR) T cells and immune checkpoint inhibitors
have shown remarkable efficiency in clinical trials
[110, 111]. However, treatment with CAR-T cells, in
particularly, has been associated with some poten-
tially fatal adverse effects. The latter include
hyperinflammatory conditions [112]. The patho-
geneses of these ‘cytokine release syndromes’
(CRS) are not completely understood, but it likely
involves several types of immune cells producing
IL-6 and other pro-inflammatory cytokines. This
has led to the introduction of successful anti-IL-6R
treatment of severe CRS [113]. In relation to recent
findings from our own laboratory [102], and other
laboratories [89, 100], increased levels of IL-6 have
also been observed and found to be associated with
severe disease in hantavirus infection caused by
Andes and Puumala viruses. This finding suggests
the possibility of trying similar anti-IL-6R thera-
peutic strategies for treatment in the most severe
cases of hantavirus infection.

Finally, it is not clear whether and to what extent
the severe NK cell activation contributes to disease
pathology in hantavirus infection. If it does, one
may consider strategies to dampen this activation.
We earlier described how the cytokine IL-15 con-
tributed to driving the massive NK cell response
following interaction with hantavirus-infected cells
and levels of IL-15 have also been associated with
severe disease and fatal outcome. IL-15 is thought
to drive immunopathology in certain other clinical
situations, conditions that might be reversed by
blocking anti-IL-15 antibodies [114–116]. Thus, IL-
15 might represent a possible therapeutic target for
severe hantavirus infection.

We cannot say whether any of the discussed
treatment options outlined here would be effective
or even at all possible. It is, however, noteworthy
that HFRS/HPS, FHL and cancer have a common
denominator in terms of pathogenesis, the inability
of the immune system to efficiently eliminate target
cells albeit for different reasons (Fig. 4). We spec-
ulate that, in all three types of diseases, this could
contribute to hyperinflammatory responses/CRS.
In this context, lessons learnt from the latter two
conditions (FHL and side effects of CAR T cell
treatment during cancer) may serve to improve the
clinical outcomes of patients with severe forms of
clinical hantavirus infection, critical conditions
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associated with rapid progress and high fatality
rates. More research is clearly needed in this field.
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