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Abstract—Biomechanical changes after anterior cruciate
ligament reconstruction (ACLR) may be detrimental to
long-term knee-joint health. We used pattern recognition to
characterise biomechanical differences during the landing
phase of a single-leg forward hop after ACLR. Experimental
data from 66 individuals 12-24 months post-ACLR
(28.2 ± 6.3 years) and 32 controls (25.2 ± 4.8 years old)
were input into a musculoskeletal modelling pipeline to
calculate joint angles, joint moments and muscle forces.
These waveforms were transformed into principal compo-
nents (features), and input into a pattern recognition
pipeline, which found 10 main distinguishing features (and
8 associated features) between ACLR and control landing
biomechanics at significance a ¼ 0:05. Our process identified
known biomechanical characteristics post-ACLR: smaller
knee flexion angle; less knee extensor moment; lower vasti,
rectus femoris and hamstrings forces. Importantly, we found
more novel and less well-understood adaptations: smaller
ankle plantar flexor moment; lower soleus forces; and altered
patterns of knee rotation angle, hip rotator moment and knee
abduction moment. Crucially, we identified, with high
certainty, subtle aberrations indicating landing instability in
the ACLR group for: knee flexion and internal rotation
angles and moments; hip rotation angles and moments; and
lumbar rotator and bending moments. Our findings may
benefit rehabilitation and assessment for return-to-sport 12–
24 months post-ACLR.

Keywords—Anterior cruciate ligament, Feature selection,

Principal component analysis, Knee osteoarthritis, Muscu-

loskeletal modelling, Machine learning.

INTRODUCTION

The single-leg hop-for-distance is routinely used in
the evaluation of individuals after surgery to recon-
struct a ruptured anterior cruciate ligament26,31 (ACL).
During the landing phase, the individual must arrest
the forward motion of the body, while supporting the
body against gravity.38 Due to the dynamic nature of
the task, and the consequent neuromuscular demands
at the knee, the landing phase of single-leg hop-for-
landing is known to stress the ACL1. During single-leg
landing tasks, ACL-reconstructed (ACLR) individuals
have shown altered biomechanics at the hip, knee and
ankle12,15,25,27,45 when landing on the involved knee. In
particular, ACLR individuals have demonstrated
smaller peak knee flexion angles20,27,28,38,45 and smaller
peak knee extensor moments12,20,27,28,38 compared to
controls and/or the uninjured limb. However, these
findings are based on discrete data points in the land-
ing phase determined a priori, and do not take into
account the whole temporal waveforms of these
biomechanical variables.4

Computer-based musculoskeletal modelling is a
powerful, non-invasive approach29 that can facilitate
an estimation of altered biomechanical control strate-
gies after ACLR for many types of movements.
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However, the data resulting from these analyses is
multidimensional and demonstrates a non-linear rela-
tionship with quasi-periodic temporal dependence.3,8

Furthermore, the data exhibits variability, even within
subjects and sessions3,6. This variability can be attrib-
uted to measurement error (e.g. inconsistent marker
alignment and instrumentation3,6) and/or the individ-
uals’ neuromuscular adaptations to their impair-
ments6. The latter often results in functionally optimal,
although abnormal, movement patterns. Movement
variability complicates the objective examination of
the data. In this regard, pattern recognition techniques
may be suitable for the examination of biomechanical
waveform data with such inherent variability.

Principal Component Analysis (PCA) is one of the
most commonly used approaches for analysing vari-
ance in multivariate data, and can be applied to the
analysis of biomechanical temporal waveform data
using pattern recognition methods.6 PCA can reveal
clinically relevant information that would otherwise be
difficult to interpret from the original waveforms in
healthy5,16,34,44 and pathological8,18,21,23,33,35 move-
ment patterns. PCA attempts to find a smaller set of
new, non-redundant features, known as principal
components, which sufficiently capture the observed
total variation in the original variables3. It is unbiased
and it does not require an a priori determination of
features to extract.5 Although principal components
are mathematically-abstract features, meaningful
interpretation of the principal components can be
undertaken with expert knowledge of human motion.3

Often, PCA is followed by statistical hypothesis test-
ing,5,8,44 classification2,16 or regression models21 to
identify those features that are good predictors of the
presence of anomalous movement patterns.

Despite the widespread use of PCA in biomechani-
cal studies, only two studies have used PCA to inves-
tigate differences in biomechanics between ACLR
individuals and controls during dynamic tasks. Both
Leporace et al.21 and Sanford et al.35 investigated
walking gait post-ACLR using PCA and post-hoc
classification methods; however, these studies only
examined biomechanical variables associated with the
knee. Leporace et al.21 examined only knee-joint an-
gles, finding that aberrations in knee internal rotation
and knee adduction angles during gait were more
important than knee flexion angle in distinguishing
between ACLR and controls. Sanford et al.35 addi-
tionally found that the knee adduction moment, which
was elevated in early and late stance, was also a key
variable in distinguishing between the groups. How-
ever, neither study included variables at the trunk, hip
or ankle, and did not consider muscle forces. To our
knowledge, no study using pattern recognition meth-
ods has examined a demanding dynamic task that is

known to stress the ACL, such as the single-leg hop-
for-distance.

Understanding the key distinguishing features of
single-leg hop-for-distance may help improve the
clinical assessment of individuals post-ACLR, and
help mitigate re-injury or future osteoarthritis. Fur-
thermore, it may, in future, facilitate the automated
machine-based evaluation of individuals post-ACLR
by interrogating subtle or hidden features of landing
biomechanics that may be difficult to observe directly.
Therefore, the aim of this study was to apply muscu-
loskeletal modelling and pattern recognition methods,
to find a minimum set of features of muscle forces,
joint angles and joint moments, that could distinguish
between the biomechanics of ACLR individuals and
uninjured controls during a single-leg forward hop-
landing task. As lower peak knee flexion angle and
knee extensor moment are distinct identifying charac-
teristics of single-leg landing tasks post-ACLR38, we
hypothesised that principal components associated
with these respective variables would be included in the
set of selected features.

MATERIALS AND METHODS

Data Collection and Musculoskeletal Modelling

Sixty-six participants (28.2 ± 6.3 years, 24 (36%)
women, height: 1.75 ± 0.10 m, mass: 78.3 ± 14.8 kg,
17 ± 3 months after ACLR) from a previously-de-
scribed cohort of 111 eligible patients with unilateral
single-bundle ACLR using a semitendinosis-gracilis
tendon graft.31 and 32 uninjured control subjects
(25.2 ± 4.8 years old, 17 (47%) women, height:
1.70 ± 0.08 m, mass: 68.0 ± 11.4 kg) participated in
this study after providing informed consent. Ethical
approval (ID: 1136167) for the study was provided by
the Behavioural and Social Sciences Human Ethics
sub-committee at the University of Melbourne. Sur-
gery was performed by one of two experienced ortho-
paedic surgeons using identical surgical techniques.
Inclusion criteria were a successful unilateral ACLR as
determined by clinical examination by the orthopaedic
surgeon. Subjects with self-reported knee instability,
knee instability on clinical examination, revision
ACLR, other surgery since ACLR or any other con-
ditions affecting walking, sports activity or daily
function were excluded.

Data collection was undertaken at the Movement
Research Laboratory, Centre for Health, Exercise and
Sports Medicine, University of Melbourne. Partici-
pants completed an anticipated single-limb forward
hop. The experimental procedure has been previously
detailed,38 and only briefly described below. Hop dis-
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tance was normalised to 100% of leg length (greater
trochanter to floor), with white tape used to mark the
subject-specific take-off point on the floor and the
landing point in the centre of the force plate. Partici-
pants took three steps forward using their preferred
step length, took off at the marked take-off point, and
landed on the cross in the centre of the force plate with
the same leg with arms folded across their chest.
ACLR participants used their affected leg while con-
trols performed the task on their right leg. Landings
were deemed successful if participants were able to
maintain balance for five seconds after landing without
moving their arms. Spatial marker trajectories were
recorded using a 14-camera Vicon motion analysis
system (Oxford Metrics, Oxford, UK) at 120 Hz and
ground force data were recorded using a single force
plate (AMTI Watertown, MA, USA).

Modelling and analyses were performed using
OpenSim 4.17 via the API using MATLAB R2020b
(MathWorks Inc. Natick, MA, USA). For each par-
ticipant, a musculoskeletal model was generated by
scaling a generic 27-degree-of-freedom 92-muscle
model. The ankles and subtalar-joints were modelled
as pin-joints, while the hips and knees were modelled
as a ball-joints. The metatarsophalangeal-joints were
modelled as pin-joints, but locked at their reference
positions. The head, arms and torso were merged into
a single body which articulated with the pelvis via the
back-joint, modelled as a ball-joint.

For each participant and trial, joint angles were
calculated using an inverse kinematics analysis by
minimising the distance between model and experi-
mental marker trajectories.24 Joint moments were cal-
culated using inverse dynamics by applying the joint
kinematics and measured ground forces to the model.
Computed Muscle Control41 (CMC) was then used to
calculate muscle forces. The internal knee adduction
and rotation moments were excluded from CMC. Prior
to calculation of muscles forces, the model’s torso
centre-of-mass and trial joint kinematics were adjusted
using the Residual Reduction Algorithm (RRA) to
minimise dynamic inconsistencies. All analyses were
performed for the landing phase of the task, defined as
the period from initial foot strike to maximum knee
flexion angle.

Pattern Recognition Pipeline

The temporal waveforms of 30 biomechanical vari-
ables (13 joint angles, 10 joint moments and 7 muscle
forces) for each of 452 recorded trials from all subjects
(301 ACLR trials; 151 control trials) were input into a
pattern recognition pipeline, implemented in MA-

TLAB, that found a minimal set of features, called
principal components, that could best differentiate
between the biomechanics of ACLR and control
groups.

Principal Component Analysis

For each variable, the individual trial waveform
data were first transformed into a set of features called
principal components that explain the maximum
amount of variance in the original variables in a pro-
cess known as Principal Component Analysis (PCA).
This process is described in detail by Wrigley et al.,44

therefore we present only a summary here. PCA uses
an orthogonal transformation that converts the n� p
matrix of waveform data X into an n� p matrix of
mutually uncorrelated principal component scores Z.
There is an independent matrix X for each biome-
chanical variable, e.g. knee adduction angle or rectus
femoris muscle force. For each variable’s matrix X, n
rows represent trials, while p columns represent indi-
vidual temporal samples of the waveform. ACLR and
control trials are pooled such that n ¼ 452, and
p ¼ 101, with each temporal sample representing 1%
of the landing phase within the 0%-100% range. The
principal component scores matrix Z for that variable
was then calculated by the linear transformation:

Z ¼ XU ð1Þ

where U is the p� p matrix of eigenvectors of R, which
is the weighted correlation matrix of X. Each eigen-
vector uj, where j 2 ½1; p�, in the matrix of eigenvectors

U, is a set of coefficients that is applied to each row of
X to produce the matrix of principal scores Z. For each
given biomechanical variable, every element zij of its

matrix Z is known as a principal component score, and
is a measure of the degree to which the shape of that
variable’s waveform for trial i corresponds to the shape
of the principal component eigenvector uj.

All trials from all subjects were input into the PCA,
however some participants recorded more trials than
others. Thus, a normalized weight was applied to each
row i 2 1; n½ � in X when constructing the weighed
correlation matrix R. Suppose row i represents a trial
from participant S, who recorded qS trials in total. We
define a unique factor:

si ¼
1

qS
ð2Þ

Therefore, the normalised weight applied to row i is:

wi ¼
siPn

m¼1 sm
ð3Þ
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Parallel Analysis

For each biomechanical variable, the number of
principal components was then reduced using Parallel
Analysis (PA).13 Only those principal components that
explained most of the variance in the data are retained,
discarding the remainder. That is, if most of the vari-
ance in the data is explained by the first k principal
components, the remaining p� k components were
dropped. PA assumes that non-trivial principal com-
ponents should have eigenvalues larger than principal
components derived from random data with the same
sample size and number of variables.10

To apply PA in the present context, N matrixes of
size n� p were generated, whose elements were inde-
pendent and identically distributed random variables
from a standard normal distribution. As larger N im-
proves the accuracy of PA, we set N ¼ 1000. The n� n
correlation matrix was calculated from each random
matrix, and its eigenvalues were extracted. The 95th-
percentile of each eigenvalue from the random set was
estimated and compared with the corresponding
eigenvalues of R. Principal components with eigen-
values greater than the 95th-percentile were retained.
After PA, 108 principal components were retained, a
large number that may not have represented the most
relevant modes of variation present in the data for the
discrimination task.34

Weiss-Indurkhya Independent Features Selection

To further reduce the number of retained features
after PA, the Weiss-Indurkhya Independent Features
Selection method43 was applied to the remaining
principal components. For each retained variable, the
mean principal component scores were calculated for
the ACLR and controls groups, and compared using
Welch’s t-test. Only features for which the between-
group comparison returned t � 2:0 were retained. For
n ¼ 108, this is approximately a significance level of
95%, i.e. a ¼ 0:05. Forty-six principal components
were retained after this step.

Sequential Feature Selection

Sequential Feature Selection14 (SFS) was then used
to obtain the final minimal set of features from those
46 retained thus far. In SFS, the principal components
were sequentially added to an empty candidate set until
the addition of further features did not improve the
stopping criterion or the number of valid features was
exceeded. The stopping criterion was defined as the 10-
fold cross-validated misclassification rate of a Naı̈ve
Bayes classifier, with maximum number of valid fea-
tures set to 10. The Naı̈ve Bayes Classifier was used

because of its simplicity, effectiveness and short
training time.32 As each iteration of SFS could produce
different results due to the random nature of the 10-
fold cross validation, 1000 iterations of the SFS were
performed, with only the 10 most-frequently selected
principal components were retained.

These final 10 principal components were defined as
main features. Between-group differences in principal
component scores for each of the main features were
evaluated using Welch’s t-tests at a tighter significance
level of 99.9% (a ¼ 0:001), as these features were al-
ready significantly different at the 95% level. Effect
sizes were calculated using Hedges’ g-score.

As principal components are abstract constructs,
they require interpretation to have contextual mean-
ing. For each feature, this was accomplished by:
comparing the waveforms of the pooled original data
that correspond to high and low principal component
scores respectively8,36; the shape of the eigenvectors,
i.e. waveform of the principal component coeffi-
cients36; and the variance of the original data explained
by that feature, i.e., the squared correlation between
the temporal samples of the original data and the
principal components.44

Associated Features

SFS tends to exclude features that are well-corre-
lated with the main features if they do not increase the
accuracy of the model. These associated features can
aid in interpretation of the results. For each main
feature, we calculated the Pearson correlations q
between it and every other remaining principal com-
ponent after PA. Associated features were defined as
those remaining principal components which corre-
lated moderately (0:5 � qj j<0:7) or strongly
( qj j � 0:7) with their respective main feature at signif-
icance level a ¼ 0:05. Between-group differences in
principal component scores for each of the associated
features were evaluated using t-tests at significance le-
vel t � 2:0 for consistency with our Weiss-Indurkhya
Independent Features Selection step, noting those
which were also significant at a ¼ 0:001.

RESULTS

For each variable retained after PA, median of 4
principal components accounting for an average of
98.5% of the total variance was retained (Table 1).
This was reduced to 10 main features (Table 2) com-
prising 3 principal components of muscle forces
(Fig. 1), 4 of joint angles (Fig. 2), and 3 of joint mo-
ments (Fig. 3). Seven features were able to distinguish
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between control and ACLR groups at significance level
a ¼ 0:001.

For each main feature, we qualitatively interpreted
the influence of that feature (e.g., hKNEEFLEX PC1) on
the original variable waveform (e.g., hKNEEFLEX), and
described between-group differences, by: (1) plotting
the waveforms of the original pooled data (ACLR and
controls combined) corresponding to the upper and
lower quartiles of the principal component scores
(Figs. 1, 2, and 3, top row); (2) plotting the shape of the
eigenvector (i.e, the waveform of the principal com-
ponent coefficients), and its squared correlation with
the waveforms of the original data (i.e. variance ex-
plained by the feature, which naturally corresponds
better with the upper quartile of the original pooled

data) (Figs. 1, 2, and 3, bottom row); and (3) finally,
we identified whether the ACLR group was ‘‘more
like’’ the upper or the lower quartile based on the
magnitude and sign of the mean principal component
score compared to controls (Table 2). As this is a
lengthy and exhaustive procedure, we provide a de-
tailed step-by-step narrative description of the above
process for each main feature as Supplementary
Material, with the only summary of findings reported
here (Table 3).

All three principal components of muscle forces,
FHAMS PC1 (read as ‘‘the first principal component of
the hamstrings force’’), FRF PC1 and FSOL PC1, dif-
fered between ACLR and controls at significance level
a ¼ 0:001 (Table 2). They were interpreted to upscale

TABLE 1. Proportion of variance explained by each principal component retained after Parallel Analysis for the pooled data,
followed by Weiss-Indurkhya independent feature selection and, finally, Sequential Feature Selection.

Variable Description

Proportion of variance explained (%)

PC1 PC2 PC3 PC4 PC5 PC6 Total

Muscle forces

FGMAX Gluteus maximus 76.5 9.4 6.4 4.8 97.2

FGMED Gluteus medius 58.4 26.5 9.9 3.0 97.8

FHAMS Hamstrings 73.2 15.0 6.3 2.6 97.1

FRF Rectus femoris 68.5 15.4 8.3 5.1 97.3

FVAS Vasti 64.1 17.4 7.4 4.0 92.9

FGAS Gastrocnemius 65.3 20.4 7.7 3.0 96.5

FSOL Soleus 77.9 15.6 3.5 97.0

Joint angles

hHIPFLEX Hip flexion 95.0 3.7 98.7

hHIPADD Hip adduction 87.4 10.2 2.0 99.6

hHIPROT Hip internal rotation 89.3 8.9 98.2

hKNEEFLEX Knee flexion 93.3 4.8 1.5 99.7

hKNEEROT Knee internal rotation 82.9 13.0 2.9 98.8

hKNEEADD Knee adduction 93.4 4.9 1.4 99.6

hANKLEDF Ankle dorsiflexion 51.2 36.5 9.9 2.1 99.7

hPELVISTILT Pelvis tilt 95.8 3.5 99.3

hPELVISLIST Pelvis list 86.8 10.1 2.5 99.5

hPELVISROT Pelvis internal rotation 93.0 6.1 99.0

hLUMBAREXT Lumbar extension 96.5 2.9 99.4

hLUMBARBEND Lumbar bending 86.1 10.7 2.7 99.5

hLUMBARROT Lumbar internal rotation 86.8 10.2 2.5 99.5

Joint moments

MHIPFLEX Hip flexor 47.8 25.2 13.2 7.1 4.1 1.6 99.0

MHIPADD Hip adductor 47.1 30.5 12.6 4.9 3.1 98.3

MHIPROT Hip internal rotator 66.3 20.0 6.7 4.0 1.8 98.8

MKNEEFLEX Knee flexor 52.0 36.0 5.1 3.4 2.1 98.7

MKNEEROT Knee internal rotation 93.2 4.5 1.2 0.6 99.6

MKNEEADD Knee adduction 73.9 15.8 6.2 2.4 98.3

MANKLEDF Ankle dorsiflexor 79.3 16.0 2.9 1.0 99.2

MLUMBAREXT Lumbar extensor 70.0 19.6 7.9 1.5 99.0

MLUMBARBEND Lumbar bending 60.5 28.4 8.4 1.7 99.0

MLUMBARROT Lumbar internal rotator 51.2 34.2 10.9 2.7 0.7 99.7

Principal components retained after Weiss-Indurkhya independent feature selection are shown in bold italic text. Those subsequently retained

after Sequential Feature Selection are shown with additional bold italic underline. Rows: Biomechanical variables input into the feature

selection pipeline: F, muscle forces; h, joint angles; and M, joint moments. Columns: Variance explained by individual principal components

up to the 6th principal component for each variable. PC abbreviates the term ‘‘principal component’’, and the numeric suffix is the number of

that principal component, e.g. read PC3 as ‘‘third principle component’’.
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their respective waveforms (i.e., increase the waveform
amplitude), through middle of the landing phase, act-
ing predominantly near their respective waveform
peaks (Fig. 1; Table 3). Thus, these features influenced
greater peak hamstrings force, but lower peak rectus
femoris and soleus forces in the ACLR group.

Two of the four principal components of joint an-
gles, hKNEEFLEX PC1 and hKNEEFLEX PC3, differed
between groups at significance level a ¼ 0:001 (Ta-
ble 2). hKNEEFLEX PC1 tended to downscale, i.e., re-
duce the amplitude, of the knee flexion angle waveform
throughout landing, while hKNEEFLEX PC3 further re-

TABLE 2. Group means and standard deviations of the principal component scores for 10 main features that best distinguish
between ACLR and control groups during the landing phase of a single-leg forward hop.

Feature ACLR Control P g

FHAMS PC1 0.62 (2.58) 2 1.25 (1.4) < 0.001 0.830

FRF PC1 2 1.63 (4.45) 3.31 (5.44) < 0.001 2 1.027

FSOL PC1 2 1.94 (12.21) 3.79 (11.69) < 0.001 2 0.475

hHIPROT PC2 2 1.70 (22.37) 3.8 (21.19) 0.013 2 0.250

hKNEEFLEX PC1 2 11.32 (83.29) 27.08 (67.92) < 0.001 2 0.488

hKNEEFLEX PC3 2 2.09 (9.82) 3.4 (9.93) < 0.001 2 0.556

hKNEEROT PC3 2 0.99 (11.36) 2.2 (9.04) 0.003 2 0.299

MKNEEROT PC3 2 0.11 (1.48) 0.22 (1.65) 0.031 2 0.216

MKNEEADD PC1 5.52 (17.32) 2 12.06 (20.25) < 0.001 0.956

MLUMBARROT PC3 0.27 (2.61) 2 0.59 (2.47) < 0.001 0.334

Principal component scores presented as mean (standard deviation). P-values calculated using t-test between ACLR and controls at an a

priori significance level of a ¼ 0:001 as the 46 features input into Sequential Feature Selection were already significant at t � 2:0 (approx.

a ¼ 0:046Þ. Significant P-values are presented in bold italic. Effect sizes were calculated using Hedges g, with strong effects ( gj j � 0:8) shown

in bold.
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FIGURE 1. Main features representing muscle forces: FHAMS PC1, FRF PC1, and FSOL PC1. Top row: waveforms of the pooled
original data (FHAMS, FRF and FSOL respectively), representing the upper (solid blue) and lower (dashed red) quartiles of the
principal component scores for each respective feature. Shaded regions represent 1 standard deviation about the respective
waveforms. Bottom row: for each feature, waveforms of the principal component coefficients (PC coefficient, solid black) and the
squared correlation with the waveforms of the original data (Explained variance, dashed black). Landing phase: from foot strike
(0%) to peak knee flexion angle (100%).
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FIGURE 2. Main features representing joint angles: hHIPROT PC2, hKNEEFLEX PC1, hKNEEFLEX PC3 and hKNEEROT PC3. Top row:
waveforms of the pooled original data (hHIPROT, hKNEEFLEX, hKNEEFLEX and hKNEEROT respectively), representing the upper (solid blue)
and lower (dashed red) quartiles of the principal component scores for each respective feature. Shaded regions represent 1
standard deviation about the respective waveforms. Bottom row: for each feature, waveforms of the principal component
coefficients (PC coefficient, solid black) and the squared correlation with the waveforms of the original data (Explained variance,
dashed black). Landing phase: from foot strike (0%) to peak knee flexion angle (100%).
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FIGURE 3. Main features representing joint moments: MKNEEROT PC3, MKNEEADD PC1, and MLUMBARROT PC3. Top row: waveforms
of the pooled original data (MKNEEROT, MKNEEADD and MLUMBARROT respectively), representing the upper (solid blue) and lower
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Landing phase: from foot strike (0%) to peak knee flexion angle (100%).
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duced the knee flexion angle near foot strike (Fig. 2;
Table 3). These features influenced a ‘‘straighter’’ a
knee landing strategy in the ACLR group.

Two of the three principal components of joint
moments, MKNEEADD PC1 and MLUMBARROT PC3,
differed significantly between ACLR and controls at
significance level a ¼ 0:001 (Table 2). MKNEEADD PC1
tended to downscale the knee adduction moment
waveform particularly near the peaks in the second
half of the landing phase (Fig. 3; Table 3). The ACLR
tended to land with less knee abduction moment com-
pared to controls. MLUMBARROT PC3 tended to
downscale both the amplitude and frequency of the
lumbar rotator moment waveform, with the ACLR
group having reduced range and frequency of lumbar
rotator moments (Fig. 3; Table 3).

Eight associated features were found that correlated
moderately or strongly with the main features at sig-
nificance level a ¼ 0:05, and were also able to distin-
guish between ACLR and control groups at
significance level t � 2:0 (approx. a ¼ 0:046Þ (Table 4),
with six able to distinguish between groups at signifi-
cance level a ¼ 0:001.

DISCUSSION

Using automated pattern recognition methods, we
found altered biomechanics in individuals 12-24
months after ACLR during the landing phase of a sub-
maximal single-leg forward hop. We systematically
identified and described 10 main features that distin-

TABLE 3. Qualitative interpretation of the effect of each principal component in the main feature set, and the corresponding
differences between ACLR and control groups.

Feature Qualitative interpretation*:The principal component…

ACLR

group�
:Nearest

quartile

Effect of principal component�:The ACLR

group tends to have…

FHAMS PC1 …upscales the hamstrings force throughout middle of the

landing phase, predominantly near the peak

Upper …greater peak hamstrings force, greater

hamstrings force throughout the middle of

landing

FRF PC1 …upscales the rectus femoris force throughout middle of the

landing phase, predominantly near the peak

Lower …diminished peak rectus femoris force,

smaller rectus femoris force throughout the

middle of landing

FSOL PC1 …upscales the soleus force throughout middle of the landing

phase, predominantly near the peak

Lower …diminished peak soleus force, smaller so-

leus force throughout the middle of landing

hHIPROT PC2 …increases hip internal rotation angle at foot strike, i.e. hip

has greater range of motion through landing

Lower …less range of motion throughout the landing

phase

hKNEEFLEX
PC1

…downscales the waveform towards zero, reducing knee

flexion angle, particularly after foot strike, i.e. favours

straighter knee throughout landing

Lower …a straighter knee throughout landing phase,

predominantly after foot strike

hKNEEFLEX
PC3

…reduces instantaneous knee flexion angle at foot strike, i.e.

at the instant of footstrike, tends to land with straighter

knee initially

Lower …a straighter knee at the instant of foot strike

hKNEEROT

PC3

…downscales the amplitude of oscillatory components knee

rotation angle waveform

Lower …greater oscillations in knee rotation angle

waveform, a more internally-rotated knee

around mid-phase

MKNEEROT

PC3

… applies a small modulation to the magnitude and timing of

first peak of knee rotation moment waveform

Lower …more pronounced oscillations in knee rota-

tion moment waveform, out of phase rela-

tive to controls

MKNEEADD

PC1

…downscales the knee adduction moment towards zero

throughout the second half of the landing phase, pre-

dominantly near the peak

Upper …lower peak knee abduction moment, lower

knee abduction moment throughout the

middle of landing

MLUMBARROT

PC3

…downscales the amplitude and frequency of oscillatory

components of lumbar rotator moment waveform

Upper …less pronounced oscillations in lumbar

rotator moment waveform, fewer peaks

*Qualitative interpretation: statement describing the meaning of the principal component with respect to its associated variable, i.e. description

of the what the principal component does to the overall waveform of that variable. This is determined by analysing the shapes and magnitudes

of waveforms of the upper and lower quartiles of the pooled data for that principal component, and comparing them against the waveforms of

the principal component coefficient and the percentage of variance explained (Figs. 1, 2, and 3).
�ACLR group: indicates whether the mean principal component score for the ACLR group is nearer the upper or lower quartile of principal

component scores for the pooled data, based on the principal component scores for each group (Table 2.
�Effect of principal component: a statement describing how the principal component impacts the overall waveform for that variable in the

ACLR group compared to the control group, based on: (1) the qualitative interpretation of the principal component; and (2) the quartile of the

principal component scores that is nearest the average score for the ACLR group.
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guished between the landing biomechanics of ACLR
and control groups—specifically, 3 principal compo-
nents of muscle forces, 4 of joint angles and 3 of joint
moments, and 8 additional associated features—which
advance and reinforce current understanding of altered
biomechanics after ACLR. Furthermore, the ability to
analyse full temporal waveforms rather than just dis-
crete points, and also to embody a large suite of vari-
ables within a small set of main features, are two major
advantages of using pattern recognition methods over
traditional multivariate analyses. Our hypothesis was
supported, as two principal components of knee flex-
ion angle were included as main features, and knee
flexor moment was included as an associated feature of
rectus femoris force.

Our pattern recognition method systematically de-
tected large between-group differences in landing
biomechanics, as evidenced by a number of high
principal components (PC1, and some PC2) of vari-
ables in our main and associated feature sets, with the
PC1 features accounting for between 52.0% and
93.3% of the variance in their respective variables. In
particular, the ACLR group demonstrated consider-
ably altered knee-spanning muscle forces and sagittal-
plane knee-joint biomechanics. Similar to reported
findings for single-legged9,25,28,45 and double-legged20

landing tasks, individuals with ACLR landed with a
more extended knee (hKNEEFLEX PC1) and reduced
knee extensor moments (MKNEEFLEX PC1 via main
feature FRF PC1). This latter finding manifested as
diminished quadriceps forces in the ACLR group (FRF

PC1, and FVAS PC1 via main feature hKNEEFLEX PC1).
Together with greater hamstrings forces (FHAMS PC1)

in the ACLR group, this indicated elevated ham-
strings-quadriceps co-contraction throughout landing,
a finding frequently reported in electromyographic
studies in individuals with ACLR.42 Furthermore,
these results could imply lower patellofemoral-joint
loading in the ACLR group, which is associated with
risk of future osteoarthritis.39,40 Our results are in
agreement with those commonly reported for biome-
chanical alterations after ACLR surgery12,15,25,27,45

and our method could identify them with an excep-
tionally high degree of certainty (at the 99% confi-
dence level) providing confidence in the validity of our
approach.

However, our finding of reduced ankle plantar
flexor function (FSOL PC1, and its associated feature
MANKLEDF PC1) differs from previously reported re-
sults for landing activities, which found greater hip
extension and ankle plantar flexor moments in the
ACLR limb relative to the uninjured contralateral
limb9,28 during such tasks, typically described as a
redistribution of torque away from the compromised
knee.38 In our present study, reduced ankle plantar
flexor function with reduced knee (and hip; not se-
lected as a main or associated feature; see Supple-
mentary Material) extensor moments indicate a global
reduction in kinetic demand across the ACLR limb.
This could occur as a result of the straighter, stiffer
landing strategy adopted by individuals with ACLR,
which we have shown provides the same centre-of-
mass modulation with less muscular effort, but at the
expense of greater axial knee-joint loading.38 Our re-
sults may be explained by the reduced demands of our
constrained sub-maximal single-leg forward hops,

TABLE 4. Associated features for each main feature in the final set.

Main feature Associated feature q

Mean principal component scores

ACLR Control P g

FHAMS PC1 None

FRF PC1 MKNEEFLEX PC1 0.638 7.67 2 15.23 < 0.001 1.084

FSOL PC1 MANKLEDF PC1 2 0.862 3.09 2 5.96 < 0.001 0.347

hHIPROT PC2 None

hKNEEFLEX PC1 FVAS PC1 2 0.536 2 2.52 5.45 < 0.001 2 0.712

MHIPROT PC2 2 0.524 0.55 2 0.83 0.002 0.311

MKNEEADD PC2 0.577 2 1.24 1.93 < 0.001 2 0.347

hKNEEFLEX PC3 None

hKNEEROT PC3 None

MKNEEROT PC3 None

MKNEEADD PC1 hKNEEROT PC1 2 0.618 2 7.57 19.66 < 0.001 2 0.484

MHIPROT PC1 2 0.611 2 2.33 4.98 < 0.001 2 0.989

MLUMBARROT PC3 MLUMBARBEND PC3 0.510 0.49 2 1.21 0.002 0.304

Only associated features with moderate, 0:5 � qj j<0:7, or strong. qj j � 0:7, correlation with their main feature, and which were able to

discriminate between ACLR and control groups at significance level t � 2:0 (approx. a ¼ 0:046Þ are shown. Associated features with strong

correlation are presented in bold italic with bold italic underline. All correlations are significant at a ¼ 0:05. P-values indicating significant

between-group differences in principal component scores at level a ¼ 0:001 are presented in bold italic. Effect sizes for principal component

scores were calculated using Hedges g, with strong, gj j � 0:8, effects shown in bold.

BIOMEDICAL
ENGINEERING 
SOCIETY

SRITHARAN et al.338



compared to the maximum-effort hops of Gokeler
et al.,9 for example.

We identified very subtle differences in the temporal
waveforms of the biomechanical variables, and could
say with at least 95% certainty that these were not
simply due to measurement noise. This was evidenced
by the inclusion of low principal components (PC3,
and some PC2) in our main and associated feature sets,
with PC3 features accounting for only 1.2% to 10.9%
of the variance in those respective variables (Table 1).
These small between-group differences could not be
discerned by comparing group mean waveforms of the
original data alone (Supplementary Material). Our
results suggest that these subtle aberrations in non-
sagittal-plane angles and moments may, in fact, be
salient features of ACLR biomechanics 12-24 months
post-surgery, that may not be easily detectable in a
clinical setting. Specifically, these subtle biomechanical
aberrations were indicated by the inclusion of low
principal components of: (1) the knee (hKNEEFLEX

PC3, hKNEEROT PC3 and MKNEEROT PC3), each of
which accounted for less than 3% of the variance in
their respective variables; (2) the hip (hHIPROT PC2),
accounting for 8.9% of the variance of hip rotation
angle; and (3) the back (MLUMBARROT PC3,
MLUMBARBEND PC3), each of which accounted for less
than 11% of the variance in their respective variables
(Table 1). Both hKNEEFLEX PC3 and hHIPROT PC2
tended to perturb their respective joint angles at foot-
strike, while the others modulated oscillations in the
temporal waveforms of their respective variables
(Figs. 1, 2, and 3; Table 3), suggesting the ACLR
group landed with a greater level of frontal- and
transverse-plane unsteadiness or instability. Allowing
individuals after ACLR to return to sport without
specifically identifying and addressing these subtle
instabilities may cause individuals to retain them as
they increase the intensity and volume of their physical
activity22, elevating risk of re-injury and future
osteoarthritis. Currently, detecting these small aber-
rations reliably and robustly is challenging in a clinical
setting, however, future technological advancements
may enable such analyses to be undertaken routinely.

Overall, non-sagittal-plane variables, specifically
those associated with hip rotation, knee rotation and
knee adduction angles and moments, were strongly
represented in the main and associated feature sets
(Tables 3 and 4). Most notably, our results add new
evidence supporting the importance of abnormal/defi-
cient coordination of hip rotation in biomechanics of
ACLR individuals.17,20,25 In the ACLR group, we
found diminished internal hip rotator moments
(MHIPROT PC1 andMHIPROT PC2) (Table 4), as well as
a tendency for reduced range of hip rotation angle
during landing (hHIPROT PC2). Holistically, these

findings suggest that reduced hip rotator muscle
function in the ACLR group is associated with a more
extended knee (hKNEEFLEX PC1), less internal rotation
(hKNEEROT PC1), and diminished internal knee
abduction moments (MKNEEADD PC1) (Tables 3 and
4). Thus, our results reinforce the role of dynamic
coupling in hop-landing biomechanics,38 and the need
to consider the entire kinetic chain in the assessment
and rehabilitation of individuals after ACLR.

Furthermore, deficiencies in hip external rotator
strength can predict single-leg hop performance in
ACLR individuals 8 months post-operatively,17 and,
together with deficient hip abductor muscle function, is
a risk factor for lower-limb injuries during sports.19

Although hip external rotator muscles, such as gluteus
medius, were not selected as either main or associated
features, their deficient action could be inferred from
MHIPROT PC1, MHIPROT PC2 and hHIPROT PC2, and
confirmed by examining the actual group mean wave-
forms for gluteus medius (Supplementary Material).
Additionally, it is possible that many individuals in our
present ACLR cohort may have been at some risk of
re-injury at the time of testing, as deficient hip rotation
kinetics strongly predicted ACL re-injury after
returning to sport.30

Our present study is not without limitations. Firstly,
PCA allows for examination of bimodal data (trial vs
time, or variable vs time), whereas motion data is tri-
modal (trial vs variable vs time).11 A multimodal
analysis method, such as Parallel Factor Analysis
(PARAFAC), could potentially simultaneously iden-
tify the components describing individual or group
differences in motion patterns, determine the instants
when components are influential, and examine rela-
tionships between variables.11 However, the PCA cal-
culation is a convex problem with unique solutions,
while PARAFAC solves a non-convex problem that
must, during its execution, examine locally-optimal
solutions. Thus, overall PARAFAC is computation-
ally more expensive than PCA, but not necessarily
more accurate.

Secondly, SFS is a suboptimal method for feature
selection. It may be possible to find a ‘‘better’’ set of
discriminating features. However, feature selection
problems may not be solved optimally in polynomial
time37; therefore, only suboptimal methods such as
SFS are feasible in practice.14 This implies that SFS,
with our selection threshold of 10 features, could retain
a few ‘‘weak’’ features while discarding some ‘‘stron-
ger’’ ones. Yet, our use of t-tests at approximately 95%
significance level as a preliminary reduction method
guarantees that all remaining features are statistically-
relevant.

Thirdly, the present set of results is valid only for
distinguishing between groups using data from single-
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leg hop landings. We chose to examine single-leg hop
landings as they are an important task used the clinical
assessment of ACLR individuals for return-to-sport.
Nevertheless, our methodology is not task-specific.
Inputting biomechanical data from other tasks, such as
running or squatting, may reveal contrasting sets of
discriminating features, which may be used to assess
individuals’ performances in those tasks. Future stud-
ies may pool data from many tasks to reveal common
discriminating features.

Finally, our calculation of muscles forces did not
consider subject-specific muscle activation patterns.
We used CMC41 in OpenSim to calculate muscle
activations, which can be constrained by inputting
normalised electromyographic signals for one or more
muscles if desired. However, electromyographic data
were not collected in this study as it would have
exacerbated the long testing time (>3 h) and partici-
pant fatigue. Nevertheless, our use of CMC, which
combines static optimisation, forward dynamics and
feedback control to calculate muscle activations, im-
proves on previous estimates using static optimisation
alone.39,40

In conclusion, we found altered landing biome-
chanics 12–24 months after ACLR using an automated
pattern recognition approach. Our findings reinforce
the importance of non-sagittal-plane biomechanical
variables, as well as subtle aberrations, in clinical
assessments after ACLR. Automated methods for
classifying individuals with ACLR may, in future, have
application in machine learning-based software tools
for improving clinical decision-making around the
time of return-to-sport.
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