premorbid blood pressures; however, it is unclear if this rate is
generalizable to settings with less interconnected electronic health
records (e.g., the United States). Out of the 302 included patients,
none had a right-heart catheterization; premorbid central venous
pressure was instead estimated from echocardiography (25%) or
cardiac disease history (75%). Using MAP deficit may be more
pragmatic, therefore, given its relatively similar performance
characteristics and reliance on less premorbid data.

Randomized controlled trials to assess the value of
individualized blood pressure targets are warranted. Such
personalization is not antithetical to protocolization. Rather,
protocolized tailoring of vasopressor titration based on individualized
targets—akin to protocolized tailoring of ventilator settings based on
predicted body weight (10)—may allow us to realize the best of both
worlds: standardization with a personal touch.
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3 Spelunking in Sputum: Single-Cell RNA Sequencing Sheds New

Insights into Cystic Fibrosis

Cystic fibrosis (CF) is autosomal recessive disease caused by
mutations in the CFTR (CF transmembrane conductance regulator)
gene, which leads to chronic pulmonary disease and gastrointestinal
abnormalities through the loss of CFTR-mediated chloride and
bicarbonate transport (1, 2). Clinically, the lung disease is
characterized by chronic neutrophilic inflammation with bacterial
airway infection, especially by Pseudomonas aeruginosa, which can
lead to progression of CF lung disease, the primary cause of
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morbidity and mortality in CF (3). Although the dominant
inflammatory cells in CF sputum are neutrophils, other cells
including macrophages, eosinophils, T cells, and B cells have been
reported in sputum and BAL fluid (4). However, much of this
analysis has been morphological or based on flow cytometry with
prespecified antibody panels, which by definition introduce some
bias to the analysis. There have been prior bulk RNA sequencing
(RNAseq) studies that found clear evidence of excessive
inflammation, dominated by neutrophils, as well as type 1 and type
17 inflammation (5, 6). In this issue of the Journal, Schupp and
colleagues (pp. 1419-1429) conducted an unbiased analysis by
performing single-cell RNAseq analyses in sputum between nine
CF subjects and five healthy control subjects (7).

The authors found a cluster of recruited lung mononuclear
phagocytes in CF sputum and identified three different archetypes of
monocytes: activated monocytes, monocyte-derived macrophages,
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and heat shock-activated monocytes. The authors used pseudotime
analyses, which is a bioinformatic tool to infer a cell trajectory that is
highly relevant to recruited myeloid cells in the lung. In accordance
with prior data (8), some monocytes had a proinflammatory
trajectory with increasing expression of inflammatory genes (IL1B,
CXCL2, CCL3, CCL4, CCL20, VEGFA, and EREG), calprotectin
(S100A8, SI100A9), antiapoptotic genes such as MCLI and BCL2L1,
the inflammasome subunit NLRP3, inducible cyclooxygenase 2
(PTGS2), and expression of the transcription factors NFKB1, NFKB2,
ETS, and IRFI1. Expression of the proinflammatory cytokines TNF
and ILIA were observed in the most activated subset. There was also
a significant decrease in monocyte maturation gene expression
(APOCI and APOE) and impaired phagocytic function (MARCO).
This transcriptomic feature might account for phagocytic
dysfunction, contributing to the perpetuation of infection in CF
lungs. Most macrophages in CF sputum originated from the
circulating monocytes as opposed to tissue-resident alveolar
macrophages observed in healthy control subjects.

Also, the authors observed a complex population of
polymorphonuclear neutrophils (PMN) based on the inflammatory
genes (SI00A8, SI00A9, S1I00A11, CSF3R, BL2A1, and MIP [CCL3
and CCL4]) and genes involved in PMN maturation (FCGR3B,
ALPL, CXCR2, CEBPB, and NFIL3), which was quite distinct from
healthy control subjects. Consistent with a prior report (9), the CF
airway PMNs consisted of an overall proinflammatory phenotype,
but single-cell RNAseq identifies cells in different stages of PMN
differentiation. In addition, the authors found evidence of an
antiapoptotic program in PMNs that may be due to high levels of
G-CSF (granulocyte colony-stimulating factor) in the CF lung (10).

The authors also found B cells in CF sputum. This feature
is quite interesting, as B cells are believed to largely reside in
the submucosal space (11). Considering that P. aeruginosa-
specific antibodies in patients with CF decrease rapidly after
transplantation (12), tissue-resident B cells in the CF airway might play
a role to exert humoral immune responses in CF. Given that class II
MHC (major histocompatibility complex) is a gene modifier in CF (13),
it would be of keen interest to know the antigen specificity of these cells.
Also, are antibodies protective, or do they contribute to CF lung
disease? Newer single-cell techniques that allow simultaneous BCR (B-
cell receptor) and mRNA sequencing of the same cell will be a valuable
tool to understand the role of B cells in CF. Notably, not fresh but
cryopreserved sputum samples were able to be used for transcriptome
analysis, which allows investigation on archived specimens. In addition,
unlike lung tissues or bronchial blushing (14, 15), sputum sampling is
noninvasive, on hand at the clinic, and low cost.

However, as the authors point out, there are still some
limitations in this study. One issue is the minimal sputum and cell
populations in health, so what are the appropriate controls for CF?
Also, with the use of modulators, sputum production has declined,
and thus it remains to be determined if this technique may aid our
understanding of residual disease after modulator therapy.

These results provide one of the first unbiased transcriptomic
data sets in CF sputum. Moreover, the data could be successfully
generated from archived sputum samples as opposed to more
invasive samples such as BAL or bronchial brushings. Whether
sputum single-cell analysis will be useful in other diseases remains
to bet determined. However, this report could be a blueprint for
the future applications of this technology to advance our basic
understanding of chronic lung diseases. These data may be useful in

Editorials

understanding responses to therapy as well as potentially informing
clinical trial design. This technology will likely accelerate our
understanding and, ultimately, management of chronic lung disease.
With a more granular understanding of the cellular basis of lung
disease, we can use this knowledge to reduce the burden of these
diseases, which are major diseases affecting human health.
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