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ABSTRACT

Accurate identification of copy number alterations is
an essential step in understanding the events driv-
ing tumor progression. While a variety of algorithms
have been developed to use high-throughput se-
quencing data to profile copy number changes, no
tool is able to reliably characterize ploidy and geno-
type absolute copy number from tumor samples that
contain less than 40% tumor cells. To increase our
power to resolve the copy number profile from low-
cellularity tumor samples, we developed a novel ap-
proach that pre-phases heterozygote germline sin-
gle nucleotide polymorphisms (SNPs) in order to re-
place the commonly used ‘B-allele frequency’ with
a more powerful ‘parental-haplotype frequency’. We
apply our tool––sCNAphase––to characterize the
copy number and loss-of-heterozygosity profiles of
four publicly available breast cancer cell-lines. Com-
parisons to previous spectral karyotyping and mi-
croarray studies revealed that sCNAphase reliably
identified overall ploidy as well as the individual copy
number mutations from each cell-line. Analysis of ar-
tificial cell-line mixtures demonstrated the capacity
of this method to determine the level of tumor cellu-
larity, consistently identify sCNAs and characterize
ploidy in samples with as little as 10% tumor cells.
This novel methodology has the potential to bring
sCNA profiling to low-cellularity tumors, a form of
cancer unable to be accurately studied by current
methods.

INTRODUCTION

Somatic copy number alterations (sCNAs) represent an im-
portant class of mutation in the cancer genome, evident by
the large number of short focal sCNAs and larger chromo-
somal scale changes seen in the analysis of individual tumor
genomes (1). This class of mutation has been linked to tu-

mor progression, metastasis, multidrug resistance and poor
clinical outcomes (2–6). Despite the sporadic accumulation
of sCNAs during tumor progression, a number of regions
are subject to recurrent sCNAs (7). Some of these recurrent
sCNAs are found across different cancer types, while others
were specific to a particular type or subtype of the disease
(6,8–10). As a result, determining the sCNAs in an individ-
ual tumor sample has become standard practice in pathol-
ogy labs for the treatment of some cancers. For example,
this type of analysis is routinely used to assign the optimal
chemotherapeutic treatments for patients with breast can-
cer who contain additional copies of the HER2 gene (11,12).

Despite the importance of this class of mutation, it can
be difficult to characterize the copy number profile of a tu-
mor genome (13). A typical tumor biopsy will contain both
tumor cells as well as cells with a normal, diploid genome.
This can be quantified via the cellularity (the proportion
of tumor cells in this mixture) or via the tumor DNA pu-
rity (the proportion of tumour DNA in the mixture of nor-
mal and tumor DNA). Tumor purity is a function of both
the cellularity and the tumor ploidy (which we define as the
average copy number of the tumor) – e.g. a 50% cellular-
ity tetraploid tumor and will have a 66% tumor purity. The
best current methods fail to produce the correct copy num-
ber segmentation when tumor cellularity in a sample falls
below 40% (Supplementary Table S1). The cellularity for
a number of serious forms of cancer, such as Breast Inva-
sive Carcinoma, Lung Adenocarcinoma and some forms of
Melanoma routinely fall below this threshold (13), more-
over multiple cancers including renal clear cell carcinoma
and lower grade glioma show a decreased survival time with
lower tumor cellularity (14). Thus, there is an important un-
met need to identify copy number mutations in low purity
samples.

It is possible to survey the copy number profile of samples
with a high tumor content, using a number of different tech-
niques, however, it is difficult to characterize the full spec-
trum of sCNAs with a single technology. Spectral karyotyp-
ing (SKY) is one of the most accurate tools for characteriz-
ing and visualizing genome wide changes in ploidy (15–18),
but suffers from a limited resolution and is low throughput.
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More recent technologies, such as single-nucleotide poly-
morphism (SNP) microarrays has provided powerful ap-
proaches for interrogating the tumor genome and identify-
ing copy number mutations (13,19–22). These include AS-
CAT (23) and ABSOLUTE (13), both of which initially pre-
segment SNPs into regions of equal copy-number (using
a threshold based, model-free approach) and subsequently
estimate ploidy and tumor purity by use of a model for the
observed read-depth data conditional on the fixed segmen-
tation. ASCAT and ABSOLUTE are highly successful in
samples with as little as 40% tumor DNA (13,23), however,
the reliance on an initial model-free segmentation is likely
to limit the ability of these methods to detect copy number
alterations at lower tumor cellularities (Supplementary Ta-
ble S1). The performance of these tools are also restricted
by the resolution of different microarray platforms as well
as fluorescence signal saturation at high copy number.

High throughput sequencing (HTS) is a powerful tech-
nology for identifying sCNAs that may make it possible
to characterize the complete copy number profile of im-
pure cancer samples. Both ASCAT and ABSOLUTE have
been modified to be applicable to HTS, and a number of
other computational tools have been specifically designed
to identify copy number changes, characterize loss of het-
erozygosity (LOH) and identify homozygous deletions from
HTS data (Supplementary Table S1). These tools use a
variety of different signals present in HTS data including
read depth aberration, B-allele frequency at somatic and
germline SNPs. Most of these tools are not suitable for sam-
ples with tumor cellularity less than 40% (23–26). CLImAT
is a recently introduced tool that uses read-depth and B-
allele frequency (BAF) to estimate the ploidy and purity of
impure tumor genomes and also characterizes copy number
and LOH changes (27). At 20% simulated tumor cellularity,
CLImAT demonstrated more robust cellularity and ploidy
estimates as well as greater sCNA and LOH calling accu-
racy than Absolute (13), SNVMix (24), Control-FREEC
(25) and Patchwork (26); however, this was evaluated using
simulated tumor chromosomes rather than tumor-normal
mixture samples.

Modeling BAF has strengths and limitations comple-
mentary to read-depth (RD) modeling. BAF, which effec-
tively uses an internal control of one allele versus the other,
is less susceptible to position-specific biases, such as GC
and mappability biases. However, one striking disadvantage
of BAF modeling is that it is not possible to directly sum-
mate the allelic depth signal over multiple adjacent SNPs,
as the non-reference alleles at one adjacent position may
not be on the same parental haplotype. Summating RD
over windows of size from 10 kb up to 1 Mb leads to sub-
stantial increases in statistical power to detect sCNAs. We
hypothesized that application of state-of-the-art computa-
tional phasing approaches, incorporating population hap-
lotype from the 1000 genomes project (27) as well as di-
rect within-read phasing (28), would allow us to sum al-
lelic depth along phased haplotypes to obtain parental-
haplotype frequency (PHF) estimates. We further hypoth-
esized that modeling PHF instead of BAF could lead to
improved power characterize tumor ploidy and sCNAs at
ultra-low levels of tumor purity.

In this manuscript we present sCNAphase that has been
developed to characterize the full copy number profile of a
cancer sample across a range of tumor purity. It achieves
this by inferring tumor ploidy, sCNAs and regions of LOH
across all levels tumor purity by integrated modeling of
PHF and RD. We show that sCNAphase has accuracy com-
parable to SKY in determining genome-wide changes in
ploidy and is able to identify focal sCNAs that are consistent
with results from microarray analyses. We also show that
sCNAphase can confidently determine regions that have
undergone a loss of heterozygosity event and identify re-
gions of homozygous deletion. Moreover, sCNAphase con-
sistently generates accurate sCNA segmentations at low lev-
els of tumor purity and can accurately define levels of tumor
purity in mixtures containing 5% tumor DNA.

MATERIALS AND METHODS

Data sets

The Illumina whole genome sequencing data of four pairs
of tumor and matched normal cell line samples were down-
loaded from The Cancer Genome Atlas (TCGA) (29) or
Illumina BaseSpace (https://basespace.illumina.com). All
of the 8 samples are at higher than 49x coverage, ex-
cept for HCC2218BL at 37x (Table 1). Two independent
normal 30X samples were also available for HCC1143
and HCC1954. For the other two samples HCC1187 and
HCC2218, we generated a second ‘normal’ by downsam-
pling the available matched normal to 30X. We will refer to
these second normal samples as ‘0% mixtures’ as we will use
them as a negative control to investigate whether methods
detect tumor DNA in mixtures without tumor DNA.

By mixing the different amount of reads from pure tu-
mor samples together with the ‘0% mixture’ samples (i.e.
the second normal sample), a series of mixtures samples
were created at 30x coverage with 5%, 20%, 40%, 60%,
80% and 95% of tumor DNA. These mixture samples were
obtained as BAM files from TCGA (29) for HCC1143
and HCC1954, from Illumina BaseSpace for HCC1187 and
HCC2218 (Supplementary Table S2). We also created an ex-
tra 10% mixture for all samples.

Phasing matched normal

By running samtools (30) and BCFtools (30) on the normal
samples, we determined the germline heterozygous SNPs.
At these loci, samtools is used to calculate the depths for
the tumor sample. The somatic mutations were ignored in
this step. Then SHAPEIT2(28), an in silico haplotype phas-
ing tool, was used to phase whole genome sequence short
read data. Because SHAPEIT2 requires a set of pre-phased
reference haplotypes as input, we used pre-phased haplo-
types provided by SHAPEIT2 calculated from the 1000G
Phase I data set. Based on this analysis, we assigned each
allele from each heterozygote in the matched normal to a
haplotype, labeled H1 or H2.

Calculating regional haplotype depth

Our approach only considers read-depth at heterozygous
germline SNPs, and ignores information from somatic mu-
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Table 1. Information about the cell-line samples

Cell-line Platform/ Library Downloaded from Coverage Tissue Annotation

HCC1143 HiSeq2000/ Paired
WGS

TCGA 50x Breast ductal 52 years female,
Caucasian with STAGE
IIA, grade 3 Breast
ductal carcinoma Basal
A subtype

HCC1143BL HiSeq2000/ Paired
WGS

TCGA 60x, 30x Blood Paired 60x normal for
HCC1143 and
independent 30x sample

HCC1954 HiSeq2000/ Paired
WGS

TCGA 58x Breast ductal 61 years female, Indian
with STAGE IIA, grade
3 Breast ductal
carcinoma. Basal A
subtype, HER2 amplified

HCC1954BL HiSeq2000/ Paired
WGS

TCGA 71x, 30x Blood Paired 60x normal for
HCC1954 and
independent 30x sample

HCC1187 HiSeq2000/ Paired
WGS

Illunima BaseSpace 93x Breast ductal 41 years female,
Caucasian with STAGE
IIA, grade 3 Breast
ductal carcinoma
Luminal

HCC1187BL HiSeq2000/ Paired
WGS

Illunima BaseSpace 49x Blood Paired normal for
HCC1187

HCC2218 HiSeq2000/ Paired
WGS

Illunima BaseSpace 83x Breast ductal 38 years female,
Caucasian with STAGE
IIIA, grade 3 Breast
ductal carcinoma Basal
A subtype, HER2
amplified

HCC2218BL HiSeq2000/ Paired
WGS

Illunima BaseSpace 37x Blood Paired normal for
HCC2218

tations. We calculate the total RD for the tumor (t) and nor-
mal (n) in windows i = 1..N, each consisting of K germline
heterozygous SNPs (with a default K = 40) as

dt
i =

K∑
k=1

RDt
k

dn
i =

K∑
k=1

RDn
k

(1)

We also calculate the read-depth in these regions specific
to haplotype H1 (RDH1) as

mt
i =

K∑
k=1

RDt
H1,k

mn
i =

K∑
k=1

RDn
H1,k

(2)

If the K SNPs in a window are split by a large gap (greater
than 1M, e.g a centromere), this window is excluded from
further analysis. We discuss below detection of copy number
switches that occur within a window of n SNPs.

The data modeled by sCNAphase is D = (mt, dt, mn, dn),
where mt = {mt

i} dt = {dt
i}, mn = {mn

i} and dn = {dn
i}.

We also calculate the values Dt, Dn as the sum totals of dt,
dn respectively across the genome.

We also define the tumor PHFt, which is a generalization
of the standard BAF as

PHFt
i = mt

i

dt
i

(3)

Statistical model of haplotype depth under null hypothesis of
absence of tumor DNA

Under the null hypothesis of the presence of no tumor DNA
in the sample or the matched normal the distribution of H1
allele counts mi

t calculated at each window i can be mod-
eled with a binomial distribution with a 50% ‘probability of
success’

mt
i ∼ Binomial(dt

i , pbin = 0.5),

However, the presence of copy number variation and
mapping biases lead to shifting from 0.5 to an unknown p0
and greater than expected variation in mi

t. As a result, it is
necessary to instead use a beta-binomial with parameters
alpha and beta equal to the number of counts mapping to
H1 and H2 in the normal sample:

mt
i ∼ Beta − Binomial(dt

i , α = mn
i , β = dn

i − mn
i ). (4)

As mi
n and di

n – mi
n increase, the beta-binomial distribu-

tion approaches to the Binomial(mi
t, di

t, pbin = p0).

Tumor purity and cellularity

The percentage of tumor content can be measured in two
different scales, (i) tumor cellularity (tc) defined as the per-
centage of tumor cells or (ii) tumor purity (tp) defined as
the percentages of tumor DNA in mixtures of tumor and
normal cells. These two quantities are related via the tumor
ploidy, which we define as the average copy number of the
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tumor over all windows:

pl =
N∑

i=1

cnt
i

/
N

If we assume a diploid normal, then the relationship be-
tween tc and tp is given by:

tp
1 − tp

= tc
1 − tc

· pl
2

(5)

Hidden Markov Model based on haplotype segments

We model the probability of the data conditional on the tu-
mor celullarity tc and the tumor ploidy pl as

log P(mt, dt, mn, dn, Dt, Dn|tc, pl) =
log P(mt, dt|mn, dn, tc, pl, Dt, Dn) + log P(mn, dn, Dt, Dn),

assuming that the normal depth is independent of tumor
cellularity and ploidy, and the total tumor read depth is also
independent of cellularity and ploidy.

We use a hidden Markov Model to calculate this prob-
ability. The hidden states (si) of this model are the unob-
served copy numbers, x for H1 and y for H2 in the tumor
genome in window i, represented by g = (x, y). The total
copy number is given by CN(g) = x + y. We consider all
hidden states g with copy number in the range 0 ≤ CN(g)
≤ 12, that makes up a set G of 91 possible configurations.
We also define a transition probability for transitioning be-
tween pairs of states g and l as t(si = g | si-1 = l). We can write
down the joint probability of the observed tumor depth data
and the unobserved state path using the following equation:

log P
(
mt , dt , s| mn , dn, tc, pl, Dt , Dn)

= log

(
P(s1) +

N∑
i=1

log P(mt
i , dt

i |si , mn
i , dn

i , tc, pl, Dt , Dn ) +
N∑

i=2
log

(
t(si |si−1)

))

= ∑
g∈G

log P(s1 = g) +
N∑

i=1

∑
g∈G

log P(mt
i , dt

i |si = g, mn
i , dn

i , tc, pl, Dt , Dn )

+
N∑

i=2

∑
g∈G

∑
l∈G

log
(
t(si = g|si−1 = l)

)
= ∑

g∈G
log P(s1 = g)+

+
N∑

i=1

∑
g∈G

log P(mt
i |si = g, dt

i , mn
i , dn

i , tc) +
N∑

i=1

∑
g∈G

log P(dt
i |si = g, dn

i , tc, pl, Dt , Dn )

+
N∑

i=2

∑
g∈G

∑
l∈G

log
(
t(si = g|si−1 = l)

)

(6)

Emission probability. In the above equation, the emission
probability was split into two parts (the second and third
components): one models the effect of sCNA on the total
read depth di

t comparing to Dt and another models the ef-
fect of sCNA on read depths for H1 comparing to H2. They
can be calculated as,

P(mt
i |si = g, dt

i , mn
i , dn

i , tc)
= Beta − Binomial(mt

i , dt
i , α = (1 − tc) · mn

i + tc · mn
i · x,

β = (1 − tc) · dn
i + tc · mn

i · x + tc · (dn
i − mn

i ) · y − (1 − tc) · mn
i − tc · mn

i · x).
P(dt

i |si = g, dn
i , tc, pl, Dt , Dn )

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Beta − Binomial(dt
i , Dt , α = tc · dn

i · CN(g) + (1 − tc) · dn
i ,

β = tc · pl · Dn + (1 − tc) · Dn − tc · dn
i · CN(g) − (1 − tc) · dn

i ), i f CN(g) ≤ 11
maxcn=12..100{Beta − Binomial(dt

i , Dt , α = tc ∗ dn
i ∗ cn + (1 − tc) ∗ dn

i ,

β = tc ∗ pl ∗ Dn + (1 − tc) ∗ Dn − tc ∗ dn
i ∗ cn − (1 − tc) ∗ dn

i )}, i f CN(g) = 12

This effectively extends the maximal copy number to 100
to capture the significantly amplified regions, e.g. 50 copies
of HER2, which otherwise seems equally unlikely to be any
of the genotypes with copy number ≤ 12.

Initial and transition probability. The initial probability
p(s1 = g) in Equation (6) was set to be 1/91 for each g from
G, so that there is no a-priori preferences for any particu-
lar genotypes. We used a fixed transition probability model
defined on the all the states G at locus i. The transition prob-
ability between two successive sites si-1 and si is defined as

t(si = g, si−1 = l) =

⎧⎪⎨
⎪⎩

A, i f g = l OR g = rev(l)
0.95 × A/2, i f CN(g) > 2 AND g! = l AND g! = rev(l)
A/2, i f CN(g) ≤ 2 AND g! = l AND g! = rev(l)

(7)

∑
l∈G

t(si = g, si−1 = l) = 1 (8)

in which, rev(l) is to reverse the order of the copy numbers
for H1 and H2 for state l. Combining Equations (7) and (8),
A can be calculated. Essentially, this transition probability
imposes a weak preference for lower copy number states.

Estimation of tumor cellularity and ploidy. We first esti-
mate the tumor purity and ploidy by maximizing the like-
lihood function in Equation (6) calculated by the Baum–
Welch algorithm (31). Because of the flat likelihood surface
at low purity tumor (Supplementary Figure S1), two dimen-
sional gradient-free local searching algorithms occasionally
failed to find the global maximum. We solved this by per-
forming a one-dimensional optimization to determine the
ideal tumor cellularity, for a set of ploidy values increased
from 1.8 to 5 with an increment of 0.2. The pair of cellu-
larity and ploidy with the biggest likelihood are chosen as
cellularity and ploidy estimate.

Estimation of copy number profile. With the estimated tu-
mor purity and ploidy, the hidden states (s) at each the win-
dow i are estimated using Viterbi algorithm (32). The den-
sity of the windows calculated by counting the distance be-
tween two neighbor windows (Supplementary Figure S2) is
less than 100 kb for the vast majority. To impute the copy
number information for regions in between two successive
windows (segments), two windows are joined into one seg-
ment, if they are with the same copy number state and locate
in short distance of less than 100 kb. This generates a copy
number segmentation for the whole genome, with a few un-
determined regions when two windows cannot be joined.

Removal of merging errors at copy number switches

The merging of every K SNPs gives a merging error, if the
region spans the boundary of two adjacent sCNAs, which
cannot be resolved with a single copy number state. There-
fore, we nullify the estimation for segments with merging
errors, which can be detected by a likelihood ratio test for
each SNP k in a window i as follows,

�(s1, s2, s3, ..., sK ) =
max
g∈G

(∏K
k=1 P(mt

k|dt
k, mn

k, dn
k , sk = g, tc)

)
∏K

k=1 max
g∈G

(P(mt
k|dt

k, mn
k, dn

k , sk = g, tc))

P(mt
k|dt

k, mn
k, dn

k , sk = g, tc)
= Beta − Binomial(mt

k, dt
k, α = (1 − tc) · mn

k + tc · mn
k · x,

β = (1 − tc) · dn
k + tc · mn

k · x + tc · (dn
k − −mn

k) · y − (1 − tc) · mn
k − tc · mn

k · x)
(9)

in which mk
t, dk

t are the alternative allelic depth and the
read depth from a tumor sample at locus k; mk

n and dk
n
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are depths from the matched normal sample. The numera-
tor assumes the K SNPs are in a single sCNAs, with a sin-
gle copy number state g from G which maximizes the likeli-
hood. The numerator assumes each SNP k can have an in-
dividual genotype that maximizes the likelihood. We then
removed 1% of the segments with minimal values.

Workflow

We built a pipeline to generate a full copy number profile
including copy number alterations to each parental haplo-
type, tumor purity and tumor ploidy using the method de-
scribed above.

The pre-processing steps of the workflow (Figure 1A)
include (i) calling germline SNP variants, (ii) resolving
germline allelic haplotypes and (iii) generating regional
haplotype depths. Compared with B-allelic depth at per site,
the phased allelic depths generated by ordering the alleles
according to parental haplotypes (H1 and H2), gives a less
variable allelic frequency, from which the regional haplo-
type depths further reduce the variability (Figure 1B–D).
The regional haplotype depth information is then used for
the estimation step. By default, sCNAphase uses Equation
(4) to calculate the distribution of P-values for the observed
parental haplotype counts under a null model. This is used
to infer the presence of tumor DNA. If the distribution of
P-values matches the expected distribution in the QQ plot,
then running sCNAphase is not recommended as there is
not a strong enough signal in the data to infer the copy
number segmentation. In terms of computational resources,
variant calling using samtools mpileup ran on a single core
(Intel Xeon X5680 3.3 GHz) per chromosome and took up
to 12 h to complete the largest chromosome for a bam with
71x coverage. SHAPEIT2 runs on a single core per chromo-
some (Intel Xeon X5680 3.3 GHz), and the largest chromo-
some takes 2 h to complete.

The estimation step performed an integrated calculation
of tumor purity, tumor ploidy and copy number profile, us-
ing the idea from Equation (6). The output from this in-
cludes (i) a copy number segmentation file that shows the re-
gional changes in overall copy number as well as haplotype
copy number in a region; (ii) a digital SKY (dSKY) plot
based on the segmentation is generated for visualization
similar to traditional SKY plot; (iii) a vcf file includes al-
lelic copy numbers and phases for the each germline SNPs.
This estimation procedure was implemented in R, powered
by the multithreading technique, OpenMP. With the tasks
split to 12 threads on as single chip (Intel Xeon X5680 6
3.3GHz), the estimation step takes ∼4 h.

Comparison of two copy number segmentations

Using one segmentation as the reference, the consistency of
the other segmentation (test segmentation) with the refer-
ence can be measured in varied ways, given different crite-
ria for counting if two copy number states are consistent.
We performed this analysis using three different criteria:

Counting per base overlap for copy number gain or loss. A
segment is identified as gain if the copy number is higher

than the average ploidy; otherwise, it is identified as loss ac-
cording to a particular segmentation. The two segmenta-
tions are counted as overlapped at a single base, if that base
is consistently seen as gain or loss. The fraction of over-
lapped bases to the number of bases in reference and the
test segmentation are defined as sensitivity and specificity,
respectively.

Counting per base overlap for LOH. The sensitivity and
specificity are calculated based on how many bases are con-
sistently identified as LOH. This only stresses identification
of one haplotype copy number being zero (not both), dis-
regards whether the overall copy numbers from two predic-
tions being equal.

Counting 50% reciprocal overlap for focal amplifications. A
segment is identified as focal amplification if the copy num-
ber is at least twice the average ploidy and the size is be-
tween 100 kb to 4 Mb. Once a segment is identified as a fo-
cal amplification, the actual copy number is disregarded. A
reference segment and a test segment are overlapped, if the
overlapped region accounts for at least 50% of each of the
two segments. The ratio of the total number of overlapped
segments to the number of segments from reference or test
segmentation are defined as the sensitivity and specificity,
respectively.

RESULTS

We developed a new method, sCNAphase, for estimating
the copy number and LOH profile of the tumor genome for
low cellularity tumors. sCNAphase integrates haplotype-
specific allele counts together with total read depth in a
Hidden Markov model that explicitly models both tumor
DNA purity and ploidy. We evaluated the performance of
sCNAphase against two state-of-the-art algorithms (CLI-
mAT (version 1.1) and ASCAT (version 2.4)) using mixture
samples derived from whole genome sequence data from 4
well-characterized tumor cell-line samples covering a range
of ploidies with known copy number information from SNP
array and SKY data. The samples used in this study are de-
scribed in Table 1. Mixture samples were generated in silico
over a range of tumor purities from 5% to 95% as described
in Materials and Methods.

Haplotype phasing greatly improves the power to identify
sCNA from allelic depth

The BAF is commonly used to detect the presence of copy
number variants (CNVs) in normal, diploid genome (33).
This signal can also be interrogated to find sCNAs by look-
ing for deviations from an expected equal ratio of two alleles
at germ-line heterozygous SNPs. In order to investigate the
power of this signal, we calculated allelic depth (AD) at all
germ-line heterozygous SNPs in a tumor derived cell-line
(HCC1143, see Table 1) at varying tumor purities, as well
as in the matched normal sample (note that an independent
normal was used to generate artificial mixed tumor/normal
samples at varying purity, see Materials and Methods). The
distribution of P-values under a null model that assumes
an equal ratio is inflated even for the normal sample, due
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Figure 1. The individual steps that make up the sCNAphase workflow. (A) Each panels shows an individual process used by sCNAphase to characterize the
copy number profile from matched tumor and normal pairs. (B) The B-allele frequencies (BAFs) from a region of chromosome 8 from the HCC1143 breast
cancer cell-line. (C) The application of phasing to the BAF data makes it possible to identify parental-haplotype frequencies (PHFs), regions composed of
40 adjacent germline, heterozygous single nucleotide polymorphisms (SNPs). Each PHF increase the power of this analysis and makes it possible to better
reflect the copy number profile of this region. (D) Application of the sCNAphase pipeline to the phased data, calls specific copy number changes.

to the presence of germline CNVs (Supplementary Figure
S3), thus we instead calculate P-values under the assump-
tion that tumor BAF is the same as germ-line BAF, which
corrects this inflation (Figure 2A). BAF provides substan-
tial power to identify sCNA at 100% purity (Figure 2B), but
the signal is too weak at 5% purity to identify any sCNAs
(Figure 2C).

To investigate the improvement in power to detect sCNAs
using PHF rather than BAF, we phased germ-line heterozy-
gotes using SHAPEIT2 (28) and the panel of reference hap-
lotypes from the 1000 Genomes Project, then used this in-
formation to calculate tumor PHF in non-overlapping win-
dows of 40 consecutive heterozygous SNPs (Materials and
Methods). This strategy dramatically improved the power
to detect sCNAs in the 100% purity sample (Figure 2E) and
5% (Figure 2F), and did not lead to spurious identification
of sCNAs in the normal sample (Figure 2D).

Digital spectral karyotyping with sCNAphase is concordant
with spectral karyotyping

The genome-wide results from the analysis of each of the
pure tumor cell-lines and the matched germline samples
were visualized using dSKY plots. These images were de-
signed to build on the effectiveness of SKY images to repre-
sent genome-wide changes in ploidy (Figure 3). Our dSKY
plots make visual identification of aneuploidy, loss of het-
erozygosity and focal changes straightforward. To build on
the SKY visualization, red shading on the chromosome
ideograms was added to indicate regions of LOH, while
green shading indicates homozygous deletions.

Comparing the three available SKY images from these
cell-lines to the corresponding dSKY plots, demonstrated
that the results from sCNAphase were highly concordant
with those from the SKY analyses, both at the ploidy level
(Table 2) and at the large-scale genomic alterations level.
For example, both the sCNAphase and SKY analysis of
HCC1187 classified this cell-line as hypo-triploid and both
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Figure 2. The capacity of different Allele Frequencies to determine sCNAs in tumor derived cell-line samples. Each of the points in the Q-Q plots corre-
sponds to a P-value for a pair of allelic depths from a tumor derived cell line (HCC1143) at all germ-line heterozygote SNPs in different scenarios. The red
line represents the expected distribution of P-values under the null hypothesis (of no sCNA). P-values are calculated using a binomial distribution with
probability of success equal to observed (A–C) germline BAF or (D–F) PHF. Deviation above this line indicates power to detect (A) sCNA using BAF on
0% tumor purity sample (i.e. normal). (B) Using BAF at 100% tumor purity. (C) Using BAF at 5% tumor purity. (D) Using PHF on a 0% tumor purity
sample (i.e. normal). (E) Using PHF at 100% tumor purity. (F) Using PHF on 5% tumor purity.

Figure 3. dSKY plots build on SKY images to better reflect the complete
copy number profile of a tumor genome. (A–C) In each of these subplots,
a SKY image (reproduced with permission from (52) on the left shows the
copy number of a particular chromosome, which was compared to a dSKY
plot of the same chromosome – the vertical bars shown on the right in the
same color. The number of the bars correspond the copy numbers at the
specific regions calibrated by the chromosomal ideogram (vertical bar with
grey bandings). The red shading on the ideogram is used to mark regions
of loss of heterozygosity (LOH).

suggested that this cell-line had 4 copies of chromosome 7,
and 2 copies of chromosome 17 (Figure 3A and B; Supple-
mentary Figure S4). In addition to the chromosomal gains
or loss shown in SKY, dSKY plots are able to display more
important information such as focal copy number changes,
regions with loss of parental chromosomes and regions that
are altered by events more complicated than whole chromo-
some gains or loss. For example, at the chromosome level,
both SKY and sCNAphase suggest that HCC1187 has four
copies of chromosome 7 (Figure 3A). However, the higher

resolution result from sCNAphase was able to detect that
two of these copies shared an identical deletion at the tip
of the q arm. Analysis of chromosome 17, revealed that
while both the SKY and the dSKY suggested HCC1187
contained two copies of the chromosome (suggesting this
chromosome had not undergone a copy number mutation),
the dSKY plot revealed this chromosome has undergone a
copy neutral LOH event (Figure 3B).

In addition to visualizing large-scale chromosomal
copy number alterations, inter-chromosomal translocations
make it difficult for traditional SKY analyses to determine
the exact copy number of translocated regions. For example,
the results of from the SKY analysis of chr1 in HCC1187,
make it difficult to resolve the copy number profile of this
chromosome at the genome level (Figure 3C). While the
dSKY plots do not provide any information about the
translocations, they are able to demonstrate which region
has undergone a specific copy number alteration. Together
these examples show that dSKY plots, make it possible to
begin to untangle complex phenotypes and identify muta-
tions invisible to previous methodologies at a genome-wide
level.

sCNAphase accurately calculates tumor ploidy, tumor purity
and sCNAs across a range of different levels of simulated tu-
mor purity

The presence of stromal cells or other cells with a normal
diploid genome in a solid tumor sample can impact the ca-
pacity of genomic-based approaches to characterize muta-
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Table 2. Summary of results from sCNAphase on four cancer cell lines. The proportion of the genome that has undergone sCNA is calculated as the
proportion of the genome with copy number not equal to nearest integer ploidy

Estimated ploidy Proportion of genome

Cell-line
Ploidy determined by
sCNAphase

Ploidy determined by
COSMIC Undergone sCNA Undergone LOH

Undergone LOH with
more than two copies

HCC1143*

Hypo-tetraploid
3.7 3.36 83% 46% 30%

HCC1954*

Tetraploid
4.5 4.2 43% 8% 6%

HCC1187*

Hypo-triploid
2.7 2.64 28% 58% 8%

HCC2218#

Tetraploid
4.2 3.93 64% 14% 4%

*Cell-line with the ploidy determined from SKY (52).
#Cell-line with the ploidy determined from flow cytometry (38).

tions in a tumor sample (13). To assess the performance of
sCNAphase to characterize impure tumor samples, simu-
lated mixtures from HCC1143 and HCC1954 (29) as well as
HCC1187 and HCC2218 from Illumina BaseSpace (https:
//basespace.illumina.com) were analyzed (see Materials and
Methods). To simulate the range of tumor heterogeneities
found in primary tumor samples, each cell-line had a num-
ber of mixtures analyzed, each with varying proportions
of tumor cell-line DNA (95%, 80%, 60%, 40%, 20%, 10%,
5% and 0% – see Materials and Methods). Each mixture
and matched normal sample were passed through the sC-
NAphase pipeline. Given that the ploidy estimates from the
pure cell lines were comparable to the results from SKY (Ta-
ble 3), we assessed the degree to which the analysis of the
mixture samples were consistent with the results from the
pure cell lines. A similar analysis was carried out using CLI-
mAT and ASCAT, which estimate sCNAs as well as tumor
purity and ploidy.

This analysis revealed that sCNAphase was able to accu-
rately recapitulate the ploidy results from each of the pure
cell-lines across the majority of the mixtures as well as ac-
curately determine the level of tumor DNA in each sample
(Figure 4A and B, Supplementary Table S3). The only inac-
curate ploidy calls came from HCC1954 and HCC2218 mix-
tures at 5% tumor purity. Despite this, sCNAphase was still
able to accurately report on the amount of cell-line DNA in
these samples. Across the entire cohort of mixtures, the sC-
NAphase results only deviated from the simulated propor-
tion by maximum 2% (Figure 4B, Supplementary Table S3).
Cellularity estimates, which can be calculated as a function
of tumor purity and ploidy (see Materials and Methods),
were also reported (Figure 4C). The sCNAs identified were
consistent across the mixtures (see Materials and Methods)
except for the 5% mixtures from HCC2218 and HCC1954 in
which the ploidy estimates had been incorrectly calculated
(Figure 4D). Adjusting the ploidy to the correct value res-
cued the segmentation and allowed sCNAphase to capture
the same broad copy number profile from these 5% mixtures
(Supplementary Figure S5).

In comparison, both CLImAT and ASCAT provided ro-
bust purity estimate down to 20% simulated tumor purity,
but substantially over-estimated tumor cellularity for the
simulated low purity samples (Figure 4C). Both tools also
failed to correctly resolve the correct ploidy of these low

purity samples (Figure 4A). ASCAT provided results that
were consistent with the ploidy estimates from sCNAphase
for high purity samples, but at 40% and 20% purity, the es-
timates changed significantly for one and three of cell-lines,
respectively. CLImAT also showed the limitation in ploidy
estimation at 40%, and it also misinterpreted the tumor
ploidy of all the mixtures from HCC1954 and HCC2218.
The sCNA predictions of CLImAT and ASCAT were self-
consistent down to 40% purity for 3 of 4 samples, although
with lower self-consistency scores than sCNAphase (Fig-
ure 4D). These results showcase the utility of the increased
power offered by per-segment based haplotype counting
strategy to resolve complex tumor genomes over the current
state-of-the-art BAF based approach.

The effect of sequencing and mapping artifacts

To test the tolerance of the methods to sequencing artifacts,
we applied the tools to a matched tumor normal pair in
which the tumor was an independent normal sample (i.e. a
0% tumor sample). In this case, the estimated tumor DNA
purity should be 0%, and any sCNAs predicted are due to
noise alone. For all four 0% tumor samples, sCNAphase
identified < 0.1% tumor purity (Figure 4C; Supplementary
Table S3). It did, however, identify spurious sCNAs present
at this level of purity. On this basis, we can recommend that
the sCNAphase segmentation should be disregarded if the
estimated tumor cellularity is less than 1%. In order to avoid
inference of spurious sCNA, sCNAphase also performs an
initial significance test that infers whether there is detectable
tumor DNA in the mixture (see Materials and Methods).
The output QQ-plots for the four cell-lines at 0% showed
no inflation of the test statistics, indicating no detectable tu-
mor DNA, whereas substantial inflation of the test statistic
was observed for 10% mixture samples and most of the 5%
samples (Supplementary Figure S6). ASCAT and CLImAT
reported tumor purity estimates of above 20% for these 0%
tumor mixtures, which indicates that the copy number seg-
mentation of these tools may be only reliable down to 40%
purity (Figure 4C).

https://basespace.illumina.com
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Table 3. The capacity of sCNAphase to detect the focal sCNAs in COSMIC

HCC1143 15 focal
amplification from COSMIC

HCC1954 94 focal
amplification from COSMIC

HCC1187 2 focal
amplification from COSMIC

HCC2218 18 focal amplification
from COSMIC

Tumor purity Sen Spe Sen Spe Sen Spe Sen Spe

100% 80 23 66 52 100 26 61 31
80% 80 24 67 47 100 25 56 31
60% 80 24 63 47 100 27 44 38
40% 67 28 61 52 100 30 78 25
20% 80 22 65 57 100 30 61 44
10% 87 29 77 52 100 23 61 48
5% 80 23 37 93 100 29 22 100

Sen for sensitivity; Spe for specificity.

Figure 4. (A) Inferred ploidy as a function of tumor purity. (B) Estimated tumor cellularity (the proportion of tumor cells in each sample) at different levels
of simulated purity. (C) Estimated tumor purity versus simulated tumor purity (proportion of tumor DNA in sample). These purity values were calculated
from estimated cellularity and estimated tumor ploidy using Equation (6) for each tool. (D) Self-consistency at decreasing tumor purity was measured as
average of base-pair sensitivity and base-pair specificity versus 100% tumor sample.

Microarray analysis of cell-lines validates the sCNAphase re-
sults

The Cancer Cell Line Encyclopedia and the COSMIC Cell
Line Project (34) provide an independent annotation of the
mutations present in publically available cell-lines. The copy
number profiles of the cell-lines analyzed by sCNAphase
had been characterized as part of this COSMIC project,
and were independently profiled using a PICNIC analysis
of microarray data (35). This resource provides us with an
independent annotation of the specific sCNAs in each of
these cell-lines and allows us to investigate the capacity of
sCNAphase to report on individual sCNAs.

To compare the annotations of these cell-lines (Table 2),
the base ploidy for each cell-line were determined, by round-
ing up the ploidy estimates from SKY, flow cytometry and
PICNIC to integers and taking the consensus values. In this

process, hyper or hypo-teraploidy was round to tetraploidy;
hypo-triploidy to triploidy. On this basis, HCC1187 was
considered as triploid and all other cell-lines were treated
as tetraploids. Any segment with a copy number greater
than the ploidy was defined as an amplification, otherwise
as a deletion. Sensitivity and specificity were calculated by
counting the per base overlap for copy number gain or loss
(Materials and Methods). This comparison revealed that
the majority of events present in the COSMIC annotation
of each cell line could be found across the range of mix-
tures for each cell-line using sCNAphase, when ploidy was
properly assigned (Figure 5A and B). In the samples in
which ploidy was incorrectly calculated (5% mixtures for
HCC2218 and HCC1954), the capacity of sCNAphase to
reflect the COSMIC results was greatly diminished. A simi-
lar comparison with the results from CLImAT showed that



e34 Nucleic Acids Research, 2017, Vol. 45, No. 5 PAGE 10 OF 14

Figure 5. sCNAphase recapitulates the COSMIC annotation of these cell-lines across a range of purities. (A and B) Consistency with COSMIC segmenta-
tion for copy number and (C and D) LOH at varied tumor purity. For tumor samples at different tumor purity, the base-pair sensitivity in (A and C) and
base-pair specificity in (B and D), was calculated by overlapping sCNAphase, CLImAT and ASCAT segmentations estimated at a particular tumor purity
with COSMIC segmentations based on 100% purity tumor samples. Each of the four cell-lines was represented a particular point shape as indicated in
the legend. Results from sCNAphase, CLImAT and ASCAT are shown in green, black and orange, respectively. The copy number segmentations of chr9
p-arm HCC1187 from COSMIC, sCNAphase, CLImAT and ASCAT were shown in (E) in blue, green, black and orange hash lines, respectively. BAFs at
this region in (F) support the loss of heterozygosity shown in COSMIC and CLImATsegmentation in p-arm except for the region highlighted in the pink
box (39M-47M). For most of this 8M region, sCNAphase did not report copy number or LOH due to the highly variable BAFs that give merging errors
(see Materials and Method).
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this approach failed to correctly profile any of the HCC2218
or HCC1954 mixtures (Figure 5A and B). ASCAT had
comparable performance with sCNAphase for all four cell-
lines in the samples that contained more than 40% tumor
DNA, but the consistency with COSMIC segmentation sig-
nificantly dropped at lower purity due to incorrect ploidy
estimates. The comparison of the sCNAs identified by an
array-based approach to those identified by sCNAphase,
CLImAT and ASCAT, illustrate the ability of sCNAphase
to identify valid copy number changes across a range of dif-
ferent simulated tumor purities.

LOH events are a common feature of the cancer genome
and have been previously linked to the inactivation of tumor
suppressors (36,37). Given the capacity of our approach to
quantify and identify the haplotype of each chromosome,
we assessed the ability of sCNAphase to identify the LOH
events present in the COSMIC annotation of these cell lines
(Figure 5C and D). This comparison showed sCNAphase
identified ∼90% of the regions of LOHs in COSMIC anno-
tations of these cell-lines while producing few spurious re-
sults (except for HCC1954). Furthermore, sCNAphase was
still able to identify the same regions of LOH in the low pu-
rity samples in which ploidy had been incorrectly assigned.
CLImAT and ASCAT, however, showed very inconsistent
LOH profile with COSMIC at low than 40% and 20% tu-
mor purity.

One limitation for sCNAphase to reach even higher sensi-
tivity was that sCNAphase provided no estimation at long
regions with few SNPs or with highly variable depth pro-
file (see Materials and Methods). For example, chr9p1-13
of HCC1187 was defined as a region of LOH by both COS-
MIC and CLImAT (Figure 5E); however, sCNAphase only
identified small islands of LOH (marked in pink) and left
the majority as undetermined. When investigating the raw
BAFs from this location (Figure 5F), the majority of the
BAFs fell randomly between 0 to 1, producing a depth pro-
file that was too confounding for sCNAphase to confidently
resolve. The complexity of the copy number profile at this
region was also recognized by ASCAT as revealed in the
frequent switching between different copy number states.

In the analysis of HCC1954 there was a low degree of
overlap between the regions of LOH identified by the three
tools and those present in the COSMIC LOH annotation
of the cell-line. Closer inspection indicated that these dif-
ferences were due to large chromosomal regions predicted
to be LOH in COSMIC, but which appear to be regions
of high copy number and allelic imbalance, rather than re-
gions of LOH (Supplementary Figure S7). We also found
substantial differences between the copy number estimates
from COSMIC and sCNAphase for multiple chromosomal
arms for HCC1954 as well as differences between the ploidy
estimates in COSMIC and those from sCNAphase and the
previous SKY analyses (Supplementary Figures S4 and S7).
Given the inconsistent results, the COSMIC annotation of
the HCC1954 may underestimate the ploidy of this cell-line
(Table 2) and as a result, may have reported some regions of
LOHs and focal deletions for HCC1954 that do not reflect
the true copy number profile of this cell-line.

Focal sCNAs identified by sCNAphase mirror those identified
by microarray analysis

Given the clinical importance of recurrent focal amplifica-
tions in the cancer process, we assessed the performance
of sCNAphase and CLImAT to detect the focal amplifica-
tions present in the COSMIC annotation for these four cell-
lines, using the criteria of counting 50% reciprocal overlap
for focal amplifications (Materials and Methods). A very
stringent threshold was applied, which required focal am-
plifications to be in between 100 kb and 4 Mb as well as
a copy number that was greater than twice the ploidy of
the cell-line. It is worth noting that this is a more difficult
copy number threshold for amplification than the one used
in the previous section. In the analysis of the pure cell-lines,
sCNAphase was able to detect the majority of the focal am-
plifications present in the COSMIC annotation of each of
these cell-lines, with a sensitivity approximately twice that
of CLImAT (Table 3; Supplementary Table S4).

For mixture samples, sCNAphase was still able to iden-
tify the majority of focal events at 5% tumor purity for
HCC1187 and HCC1143, and 10% for HCC1954 and
HCC2218. The drop in the 5% mixtures from HCC2218
and HCC1954 was due to the underestimation of the tu-
mor ploidy in two samples. Despite this, sCNAphase was
able to detect at least 12 copies of the pathologically rele-
vant ERBB2 in HCC1954 and HCC2218 across the entire
cohort of mixtures (Supplementary Table S5), highlight-
ing the diagnostic potential of sCNAphase (38,39) at even
5% tumor DNA. Likewise, another focal peak of amplifi-
cation, that was found to be recurrently altered in breast
cancer (11q13) (40,41), was detected in both the 100%
HCC1143 and HCC1954 samples, as well as their corre-
sponding 5% mixtures. The identification of focal events, in-
cluding those that are well known to be clinically significant,
across the full range of mixtures demonstrates the capacity
of sCNAphase to identify pathologically relevant sCNAs in
ultra-low purity samples.

We hypothesized that one reason for a low validation rate
(on average, only 41% and 31% of focal amplifications de-
tected by sCNAphase and CLImAT, respectively, were vali-
dated) could be that COSMIC underestimates copy number
of highly duplicated regions (due to florescence signal satu-
ration) and so the 2 × ploidy threshold for declaring a focal
amplification is not reached. To test this, we re-calculated
specificity and sensitivity after increasing the sCNAphase
detection threshold, but keeping the COSMIC threshold
(Supplementary Table S6). As the sCNAphase threshold in-
creased, the specificities almost doubled across all tumor
purities, with a much smaller effect on sensitivity.

Homozygous deletions are another class of copy num-
ber mutation involved in the tumorigenic process (42–44).
The COSMIC annotations show that there are 7 homozy-
gous deletions larger than 100 Kb in these four cell-lines.
sCNAphase was able to consistently detect the three longer
homozygous deletions from HCC1143 and HCC1187 (Sup-
plementary Table S7). The size of a focal deletion, more
specifically, the number of germ-lines SNPs in the region
limits sCNAphase from identifying shorter events. Our
analysis of HCC1954 did not detect the longer deletion
from chr22 of HCC1954; however, analysis of the raw se-
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quencing data suggest that this deletion may be shorter than
the 332 kb listed in the COSMIC annotation, as the read
depth at the flanking region is significantly higher than the
deleted region (Supplementary Figure S8). Despite this, sC-
NAphase did not identify any false positives and was able
to consistently identify these deletions at minimal levels of
tumor purity. In contrast, CLImAT failed to identify any of
homozygous deletions present in COSMIC, and it classified
a few other regions as homozygous deletions that were not
present in either the COSMIC or sCNAphase results.

sCNAphase identifies copy neutral/amplified regions of LOH
in low purity samples

Examination of the pure cell-lines with sCNAphase, re-
vealed a substantial fraction of the tumor genome that had
undergone LOH and contained two or more copies (Table
2). This is a compound event that requires at least a dele-
tion of one haplotype as well as amplification of the other
haplotype. Analysis of these regions revealed a number of
loci that were present in multiple unrelated cell-lines, in-
cluding chr5q and chr17p as well as parts of chr17q, all of
which had been previously found to undergo recurrent CN-
LOH in cancer (37,45–47) (Supplementary Figure S4). One
of these regions contains the tumor suppressor TP53, the
gene most commonly altered by CN-LOH (45,48). We ob-
served homozygous somatic mutations in TP53 for three of
the cell-lines (Supplementary Table S8; Supplementary Fig-
ure S9), which are likely to be disruptive. In the remaining
cell-line, two heterozygous germline SNPs were identified
(Supplementary Table S9), one of which, R283C has been
previously shown to increase a carrier’s risk of developing
cancer (45,49,50). It is likely that the loss of the wild-type
allele and the amplification of the deleterious SNP increase
this risk. These results demonstrate the power offered by
HTS and sCNAphase to characterize the biological impacts
of a complex mutation in low purity samples.

DISCUSSION

Although somatic copy number alterations are a well-
established driver of cancer, the capacity to identify these
mutations are impacted by a number of issues including
varying levels of tumor purity and frequent changes in tu-
mor ploidy. As a result, the majority of methods designed
to characterize the sCNAs in the cancer genome are un-
able to accurately profile a significant fraction of primary
tumor samples. In this study, we have shown that by tak-
ing a haplotype-based approach, sCNAphase can over-
come these issues and reliably characterize both genome-
wide, chromosome-arm-wide as well as focal copy number
changes present in a tumor genome across a range of tumor
purities.

Comparison of the results from the sCNAphase to those
from SKY and flow cytometry, illustrated the ability of sC-
NAphase to correctly reflect the genome-wide changes in
ploidy. Using a range of mixtures, to simulate the challenges
posed by low-cellularity primary tumors, we were able to
recapitulate the changes in ploidy seen in the analysis of
the pure cell-lines, across the spectrum of tumor purities.
Comparison of copy number and LOH segmentations ob-
tained from a high density microarray at 100% purity to

those reported by sCNAphase across a range of mixture
samples demonstrated the high specificity and sensitivity of
the method down to 10% tumor purity.

Equally importantly, samples without any tumor DNA
were predicted to have less than 0.1% tumor cellularity by
sCNAphase, whereas both of the other approaches tested
reported at least 20% tumor DNA. sCNAphase has this in-
built robustness to sequencing and mapping artifacts be-
cause it models the observed regional tumor depth data (in-
cluding total depth and haplotype-specific depth), condi-
tional on normal depth data from the same region.

To focus on characterizing the copy number profile of low
purity tumors, we have made the simplifying assumption
that there is a dominant tumor clone with low heterogeneity
in the tumor biopsy. Regions with heterogeneous copy num-
ber between clones with similar abundance would lead to a
failure of the merging test statistic, and thus these regions
would likely be excluded.

The accurate characterization of the copy number pro-
file in low cellularity samples as well as the identification
of mutations in cancer genes, is suggestive of the potential
clinical utility of this tool. In addition to low purity tumors,
a potential application of our haplotype-based methodol-
ogy would be in studies that aim to profile the copy number
changes in a tumor through the analysis of circulating tu-
mor DNA. Circulating tumor DNA, has been previously
shown to contain mutations present in the tumor genome,
but tumor DNA in circulation is mixed with DNA from
normal cells and the tumor purity is frequently low (51).
While sCNAphase can successfully profile low purity mix-
tures, it is likely that in order to realize this, an optimized
version of the tool will need to be developed.
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sCNAphase is available from https://github.com/Yves-
CHEN/sCNAphase.
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