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Abstract

Background: Platelet-derived growth factor receptor b (PDGFRb) is a tyrosine kinase receptor known to affect vascular
development. The zebrafish is an excellent model to study specific regulators of vascular development, yet the role of PDGF
signaling has not been determined in early zebrafish embryos. Furthermore, vascular mural cells, in which PDGFRb functions
cell autonomously in other systems, have not been identified in zebrafish embryos younger than 72 hours post fertilization.

Methodology/Principal Findings: In order to investigate the role of PDGFRb in zebrafish vascular development, we cloned
the highly conserved zebrafish homolog of PDGFRb. We found that pdgfrb is expressed in the hypochord, a developmental
structure that is immediately dorsal to the dorsal aorta and potentially regulates blood vessel development in the zebrafish.
Using a PDGFR tyrosine kinase inhibitor, a morpholino oligonucleotide specific to PDGFRb, and a dominant negative
PDGFRb transgenic line, we found that PDGFRb is necessary for angiogenesis of the intersegmental vessels.

Significance/Conclusion: Our data provide the first evidence that PDGFRb signaling is required for zebrafish angiogenesis.
We propose a novel mechanism for zebrafish PDGFRb signaling that regulates vascular angiogenesis in the absence of
mural cells.
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Introduction

The development of blood vessels occurs in two distinct stages.

Vasculogenesis is defined as the formation of new blood vessels

resulting from angioblast aggregation followed by the lumeniza-

tion of vascular endothelial cells. Angiogenesis is a secondary

process to vasculogenesis and occurs via the sprouting of blood

vessels from pre-existing vascular structures [1,2]. During blood

vessel development, endothelial cells initially fuse together to form

the vascular lumen. Supporting mural cells are then recruited to

endothelial cells to stabilize the blood vessel wall and to aid in the

formation of the extracellular matrix [3].

The regulation of vasculogenesis and angiogenesis each involves

multiple cell types and signaling molecules necessary to coordinate

the formation of the vascular system. Platelet-derived growth

factor (PDGF) activates a specific family of receptor tyrosine

kinases and is involved in the development of blood vessels in

chicks and mammals [4]. PDGF-A and PDGF-B ligands can form

homo- or heterodimers that bind to the PDGF receptors (PDGFR)

a or b. PDGF-B and PDGFRb null mice die late in embryonic

development with renal and cardiovascular abnormalities and fatal

hemorrhages [5,6,7]. Tissue-specific knockouts show that PDGF-B

is secreted by endothelial cells and acts to recruit mural cells

(smooth muscle cells and pericytes) for vascular support [8]. Thus,

PDGF-B and PDGFRb paracrine signaling drives the recruitment

of smooth muscle and pericyte progenitor cells to the wall of new

blood vessels [9,10,11,12].

The zebrafish embryo is an excellent model to use for

investigating vascular development. The transparency of zebrafish

embryos allows for convenient observation during development

while transgenic lines that express fluorescent tags in endothelial

cells facilitate the study of developing blood vessels [13,14].

Zebrafish vasculogenesis and angiogenesis are two distinct vascular

processes and occur at different phases of vascular development.

During zebrafish development, the de novo formation of the dorsal

aorta and the posterior cardinal vein of the tail occurs via the fusion

of angioblast precursor cells and is considered vasculogenesis. The

subsequent sprouting and extension of the intersegmental vessels

(ISVs) from the dorsal aorta is considered angiogenesis [15]. More

recently, it was shown that formation of the posterior cardinal vein

occurs via sprouting and segregation from the dorsal aorta in a

process that is distinct from vasculogenesis or angiogenesis [16].
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Here we provide the first analysis of PDGF signaling in vascular

development in the zebrafish. We found that PDGFRb is

expressed adjacent to the dorsal aorta in the hypochord as early

as 20 hours post fertilization (hpf). At these early stages of zebrafish

development, there is no evidence of the presence of mural cells in

the vasculature, although primitive mural cell markers are present

around the anterior portion of the dorsal aorta beginning at 72 hpf

[17]. Inhibition of PDGFR signaling using a PDGFR tyrosine

kinase inhibitor caused a decrease in the number and extent of

ISV formation. Further, morpholino knockdown specific to

PDGFRb and a dominant negative PDGFRb transgenic line

both demonstrated that PDGFRb is required for angiogenesis of

the ISVs. Our results suggest a new role for PDGFRb signaling in

zebrafish vascular development that functions in the absence of

mural cells during early angiogenesis.

Results

Zebrafish PDGF-B and PDGFRb were highly conserved
with other species

We previously cloned and characterized a gene encoding

zebrafish PDGF-B [18], and recently cloned the zebrafish

homolog of PDGFRb2 (Accession No. HM439112) which is

syntenic to colony stimulating factor 1 receptor on chromosome 14.

Comparison of zebrafish PDGFRb2 with human, mouse, Fugu and

other species indicated that the predicted tyrosine kinase domain

of zebrafish PDGFRb2 was highly conserved across multiple

species (Figure 1A). Zebrafish PDGFRb2 was more similar to Fugu

PDGFRb1 than Fugu PDGFRb2. Phylogenetic analysis on

predicted PDGF-B and PDGFRb amino acid sequences indicated

that both proteins were closely related to their respective

vertebrate homologs (Figure 1B). The grouping of amino acid

sequences was consistent with the phylogeny of the major

vertebrate groups, strongly suggesting that the genes arose early

in vertebrate evolution. The phylogenetic analyses of PDGFRb
isoforms using the entire amino acid sequence strongly supported a

gene duplication within the represented ray-finned fishes, with all

nodes supported at 100%. A second analysis including the

zebrafish PDGFRb1 was consistent with this finding, with the

64 amino acid fragment clustering with the corresponding D. rerio

PDGFRb2 fragment. This result suggested a more recent

duplication of isoforms within zebrafish. However, the bootstrap

support for the groupings within fish taxa for PDGFRb1 was

relatively low (54–69%), therefore this tree is not presented. These

analyses also indicated that zebrafish PDGF-B is evolutionarily

distinct from PDGF-A. Both PDGF-B and PDGFRb are thus

highly conserved members of their respective protein families

(Figure 1).

Expression patterns of pdgfrb and pdgf-b suggested a
role for PDGF signaling in developing zebrafish blood
vessels

Using in situ hybridization, we found that pdgfrb2 was expressed

in the floor plate and hypochord at 20 hpf (Figure 2A). At 24 hpf,

there was decreased expression in the floor plate while hypochord

expression persisted with spreading ventral expression lateral to

the dorsal aorta and posterior cardinal vein to the ventral somite

boundary (Figure 2B and C). Comparison with fli1a, which codes

for an endothelial transcription factor, suggested a close associa-

tion of pdgfrb2 to the developing vasculature. However, pdgfrb2 was

still expressed in cloche mutants, which lack endothelial cells [19]

(Figure 2D), indicating that pdgfrb2 was not expressed in

endothelial cells. Cross sections of these embryos at 24 hpf further

confirmed expression of pdgfrb2 in the hypochord and ventral

somite boundary (Figure 2C). The localization of pdgfrb2 to the

hypochord, adjacent to the dorsal aorta, suggested that pdgfrb2

may play an important role in zebrafish vascular development.

Vascular endothelial growth factor C (VEGFC), a factor known to

affect segmental artery formation, is similarly expressed in the

hypochord [20].

A recent report showed the presence of mural cells in the

anterior portion of the dorsal aorta and to a lesser extent in the

posterior cardinal vein starting at 72 hpf [17]. Although pericytes

and smooth muscle cells express PDGFRb2 in other model

systems, these data suggest that zebrafish PDGFRb2 is likely

expressed in other cells associated with the developing vasculature.

We further characterized the cellular structure of the developing

zebrafish ISVs to rule out the presence of mural cells in these

vessels. We performed electron microscopy on longitudinal

sections through the ISVs of zebrafish embryos at 72 hpf to

examine the ultra structure of developing zebrafish ISVs. We

found that mural cells, which typically surround mature blood

vessels, were absent in the ISVs at 72 hpf (Figure 2E). This

absence of vascular support cells in the ISVs at 72 hpf suggested

that the developing blood vessels are very immature and consist

mainly of endothelial cells.

In mammals, PDGF-B is secreted by endothelial tip cells and

is responsible for the proliferation of vascular smooth muscle

cells and pericytes [10,11,21]. In adult zebrafish, pdgf-b

expression is upregulated in the regenerating heart and may

promote revascularization of the regenerating heart [18]. To

determine the expression pattern of pdgf-b in the developing

zebrafish embryo, we used in situ hybridization at 24, 48, and

72 hpf. pdgf-b expression was present throughout these stages of

development and was localized to the head, dorsal aorta,

posterior cardinal vein and ISVs (Figure 3A). The expression

pattern was similar to that of mammalian pdgf-b, which is

expressed mainly in endothelial cells. Sagittal sections of 72 hpf

embryos after whole mount in situ hybridization showed that

pdgf-b is localized to the dorsal aorta and ISVs (Figure 3B).

Transverse sections further showed that pdgf-b expression was

localized to the dorsal aorta, the posterior cardinal vein, and the

ISVs (Figure 3C). Thus, pdgf-b and pdgfrb2 are both likely

candidates for determining the structure and function of the

developing zebrafish vasculature.

PDGFR inhibition decreased the number and extent of
ISV formation

To determine the function of PDGFR signaling in zebrafish

blood vessel development, we blocked PDGFR signaling using a

tyrosine kinase inhibitor selective to PDGFRs. kdrl:GFP [22]

transgenic embryos, which express GFP in endothelial cells, were

treated at the shield stage (6 hpf) in three groups: 0.1 mM or

0.25 mM of PDGF receptor tyrosine kinase inhibitor V (inhV,

Calbiochem) [23], or DMSO for control. The IC50 of inhV for

PDGFRs is 4,7.6 nM. We chose to utilize inhV because it caused

less overall developmental defects compared to other PDGFR

inhibitors such as AG1295.

Embryos treated with 0.1 mM or 0.25 mM inhV had signifi-

cantly fewer angiogenic sprouts at 24 hpf than embryos treated

with DMSO (Figure 4A and B, p,0.001, n = 30). When analyzed

at 48 hpf, a time point where most ISVs in control embryos have

fully extended dorsally to form the dorsal longitudinal anastomotic

vessel (DLAV), treatment with inhV resulted in a significant

reduction in the number of complete ISVs, with a greater

reduction in embryos treated with 0.25 mM inhV (Figure 4A and

C, p,0.001, n = 30). This deficit in ISV formation was maintained

at 72 hpf (Figure 4A and D, p,0.001, n = 30). At 24 hpf there
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appeared to be no developmental delay of embryos treated with

inhV (Figure 4E). At 48 hpf, embryos treated with 0.25 mM

started to exhibit edema and loss of circulation as seen by pooling

of blood in the dorsal aorta (Figure 4F). Angiography at 72 hpf

showed a decrease in circulation through the ISVs of embryos

treated with 0.1 mM inhV when compared to embryos treated

with DMSO alone (Figure 4G). Embryos treated with 0.25 mM

inhV completely lacked circulation and angiography could not be

done. These data suggested that PDGFR signaling was critical for

ISV angiogenesis.

Figure 1. Sequence and phylogenetic analysis of PDGFRb. Alignment of the zebrafish PDGFRb tyrosine kinase domain with known PDGFRb
proteins of human, mouse, and Fugu (A). Phylogenetic analysis of PDGFRb and PDGF-B proteins (B). Arrows in A indicate the beginning and end of
the tyrosine kinase domains of PDGFRb.
doi:10.1371/journal.pone.0011324.g001

Figure 2. pdgfrb2 expression in the developing zebrafish. In situ hybridization of embryos at 20 hpf (A) and 24 hpf (B) using an anti-sense
probe against fli1a or pdgfrb2. pdgfrb2 was expressed in the floorplate (arrow) and the hypochord (arrowhead) at 20 hpf. fli1a is known to be
expressed in the tail vasculature. Floorplate expression of pdgfrb2 diminished by 24 hpf while expression in the hypochord persisted and spread
ventrally in association with the dorsal aorta and posterior cardinal vein (B). Cross section analysis further indicated pdgfrb2 expression in the
hypochord (arrowhead), floorplate (arrow) and ventral somite boundary (brackets). cloche mutant embryos showed normal expression of pdgfrb2
indicating that pdgfrb2 was not expressed in endothelial cells of the dorsal aorta or posterior cardinal vein (D). Transmission electron micrograph
images of a longitudinal section through the ISVs (E). Mural cells surrounding the endothelial cells of the ISVs were absent at 72 hpf. Notochord (nc),
blood cell (BC).
doi:10.1371/journal.pone.0011324.g002
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PDGFRb2 activity was required for ISV angiogenesis in
zebrafish embryos

We further investigated the role of PDGFR signaling in ISV

angiogenesis using a morpholino oligonucleotide (MO) specific to

pdgfrb2. We injected fli1a:eGFP [13] and kdrl:GFP [22] transgenic

embryos at the one-cell stage with MOs that blocked the splicing

of the eighth exon-intron junction of zebrafish pdgfrb2. The

disruption in splicing was confirmed by RT-PCR at 48 hpf, which

indicated that approximately 30–50% of pdgfrb2 splicing was

blocked (Figure 5D). The splicing block was targeted to affect the

tyrosine kinase domain of pdgfrb2 while leaving the extracellular

and transmembrane portions of the receptor intact. Thus, it is

possible that the alternatively spliced pdgfrb2 was also able to

function as a dominant negative form that was able to interfere

with the endogenous form of the receptor. pdgfrb2 MO-injected

embryos had a reduction in the number and extent of ISVs

compared to control embryos that were injected with a control

mismatch morpholino. At 24 hpf, pdgfrb2 MO-injected embryos

had an average of 4.7 angiogenic sprouts as compared to 12.5 for

control MO-injected embryos (Figure 5A and C, p,0.001,

n = 18). The sprouting delay seen at 24 hpf did not result from

an overall developmental delay as evidenced by no delay in somite

formation (Figure 5B). When analyzed for the number of complete

ISVs that extended to form the DLAV at 30 hpf, pdgfrb2 MO-

injected embryos had an average of only 7.0 complete ISVs that

extended dorsally to form the DLAV versus 17.6 complete ISVs

for control MO-injected embryos (Figure 5E and F, p,0.001,

n = 20). At 48 hpf, pdgfrb2 MO-injected embryos started to recover

from the original sprouting delay with an average of 23.25 ISVs

that fully extended dorsally, compared to control MO-injected

embryos that had 27.6 complete ISVs (Figure 5D and E, p,0.01,

n = 20). These data suggest that a decrease in MO activity between

30–48 hpf may result in ISV recovery in pdgfrb2 MO-injected

embryos. Angiography at 72 hpf showed a decrease in circulation

of ISVs of pdgfrb2 MO-injected embryos (Figure 5H). Overall,

these results indicated that PDGFRb2 signaling was required for

ISV angiogenesis in zebrafish embryos.

To confirm that the phenotypes observed in pdgfrb2 MO-injected

embryos were caused by loss of function in pdgfrb2, we co-injected

pdgfrb2 mRNA with pdgfrb2 MO. pdgfrb2 mRNA was not subject to

the MO splice blocking and should therefore be fully functional.

After the addition of pdgfrb2 mRNA, we observed a partial rescue of

Figure 3. Characterization of pdgf-b in the developing zebrafish embryo. In situ hybridization of embryos at 24, 48, and 72 hpf (A) using an
anti-sense probe against pdgf-b. pdgf-b was expressed at all time points in the head and tail vasculature (arrowheads indicate pdgf-b staining in ISVs,
red brackets indicate the dorsal aorta, and black brackets indicate the posterior cardinal vein in A). Sagittal (B) and transverse (C) JB-4 sections of
72 hpf embryos analyzed with whole mount in situ hybridization using a probe against pdgf-b. pdgf-b expression was localized near the dorsal aorta,
posterior cardinal vein and ISVs (arrow in C indicates pdgf-b staining in dorsal aorta and posterior cardinal vein while the arrowhead indicates staining
in the ISV). Neural tube (nt), notochord (nc), dorsal aorta (a), posterior cardinal vein (v).
doi:10.1371/journal.pone.0011324.g003
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Figure 4. PDGFR inhibition blocked ISV formation and extension. kdrl:GFP embryos were treated at the shield stage (6 hpf) with DMSO
alone, 0.1 mM PDGFR tyrosine kinase inhibitor V (inhV), or 0.25 mM inhV. Inhibition of PDGFRs resulted in a decrease in the number of angiogenic
sprouts (asterisks in A) in the tail at 24 hpf (B) and a decrease in the number of complete ISVs (arrowheads in A) at 48 hpf (A and C) and 72 hpf (A and
D). The morphology for all treatments at 24 hpf was normal (E). Embryos treated with 0.25 mM inhV began to show edema (arrowhead in F) and
pooling of blood (arrow in F) at 48 hpf. Angiography at 72 hpf showed a decrease in blood circulation through the ISVs in embryos treated with inhV
(G). *** indicates p,0.001. All data represent the mean +/2 standard error.
doi:10.1371/journal.pone.0011324.g004
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Figure 5. PDGFRb2 activity was required for ISV angiogenesis in zebrafish embryos. fli1a:eGFP or kdrl:GFP embryos were injected with
control morpholino oligonucleotide (MO) or pdgfrb2 MO at the one-cell stage and imaged at 24 hpf (A), 30 hpf and 48 hpf (E). Light images of whole
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pdgfrb2 MO-induced defects at 30 hpf (Figure 5I and J, p,0.01,

n = 18), suggesting that the defects caused by injecting the pdgfrb2

MO were indeed caused by a knockdown of pdgfrb2 activity.

We also created a heat shock-inducible dominant negative

PDGFRb transgenic line to further verify the effect of PDGFRb
signaling on ISV formation. To create the dominant negative

PDGFRb (dnPDGFRb-YFP) we replaced the intracellular tyrosine

kinase domains of PDGFRb with YFP to create a fusion protein that

is inactive and has the ability to bind to endogenous PDGFRb and

prevent auto-transphosphorylation (Figure 6A). Triple transgenic

UAS:dnpdgfrb-yfp;hsp70:Gal4;fli1a:eGFP embryos were generated by

crossing the UAS:dnpdgfrb-yfp;hsp70:Gal4 double transgenic line with

the double transgenic fli1a:eGFP;hsp70:Gal4 line to allow for

visualization of the vasculature (see materials and methods for

details). Embryos were heat shocked for 20 minutes in a 40uC water

bath at 10 hpf or 22 hpf. When heat shocked at 10 hpf,

dnPDGFRb-YFP expression was visible within 7 hours after heat

shock (Figure 6B). Heat shock at 10 hpf showed very distinct

dnPDGFRb-YFP expression localized to the notochord at 20 hpf.

However, dnPDGFRb-YFP expression was not maintained at

48 hpf and there was no effect on ISV formation (data not shown).

In contrast, embryos that were heat shocked at 22 hpf expressed

dnPDGFRb-YFP throughout the tail and maintained dnPDGFRb-

YFP expression to 48 hpf and exhibited defects in ISV formation

(Figure 6C and E, n = 23, p,0.0001) as shown by fli1a:eGFP.

Expression of dnPDGFRb-YFP resulted in no developmental delay

when compared with heat-shocked embryos negative for

dnPDGFRb-YFP expression at 17 hpf or 48 hpf (Figure 6B and D).

A critical period existed for PDGFR signaling in ISV
formation

To determine if a critical period exists for PDGFR signaling, we

treated kdrl:GFP embryos with inhV from 6–24 hpf or 6–48 hpf

and measured the extent of ISV recovery after drug withdrawal.

Withdrawal of inhV at 24 hpf (treated from 6–24 hpf with inhV)

resulted in a full recovery of complete ISV formation when

analyzed at 48 hpf for embryos initially treated with 0.1 mM

(Figure 7A and C, p = 0.593, n = 30) and 0.25 mM inhV (Figure 7A

and C, p = 0.097, n = 30) when compared to DMSO control.

When analyzed at 72 hpf, embryos treated with 0.1 mM inhV

continued to show no difference from control (Figure 7A and D,

p = 0.363, n = 30). Embryos treated with 0.25 mM inhV from 6–

24 hpf showed an almost full recovery of ISV formation at 72 hpf,

but had an average of 3.09 fewer complete ISVs as compared to

control (Figure 7A and D, p = 0.01, n = 30). In contrast to the

recovery seen after withdrawal of inhV at 24 hpf, withdrawal at

48 hpf resulted in almost no recovery of ISV formation (Figure 7B

and D, p,0.001, n = 30). The difference in the ability to recover

after withdrawal at 24 hpf versus 48 hpf suggested that there was a

critical period for PDGFR function in ISV angiogenesis.

PDGFRb signaling was mediated by PI3 kinase
PI3 kinase is a known downstream effector of PDGFRb2. It was

recently shown that blocking PI3 kinase with the chemical inhibitor

wortmannin causes defects in blood vessel formation in zebrafish [24].

To determine if PDGFRb2 signaling during ISV angiogenesis in

zebrafish embryos is mediated by PI3 kinase, we tested the effect of

wortmannin on mRNA rescue of the pdgfrb2 MO phenotype. High

concentrations (1 mM) of wortmannin cause defects in blood vessel

formation [24]. Consistent with previous studies [24], we found that a

lower dose of wortmannin (100 nM) did not affect normal ISV

sprouting at 24 hpf (Figure 8). pdgfrb2 MO-injected embryos exhibited

ISV sprouting defects at 24 hpf (Figure 5A–C). Treatment with

100 nM wortmannin did not further exacerbate the defects caused by

pdgfrb2 MO injection (Figure 8). Co-injection of pdgfrb2 mRNA

partially rescued the sprouting defects caused by pdgfrb2 MO injection

when treated with DMSO as a control. In contrast, treatment with

100 nM wortmannin blocked this rescue at 24 hpf (Figure 8, p,0.001,

n = 14). These data suggested that partially inhibiting PI3 kinase with

100 nM wortmannin decreased PDGF signaling throughput, and were

consistent with PI3 kinase acting downstream of PDGFRb2 signaling

at 24 hpf to promote the formation of zebrafish ISVs.

Discussion

Previous studies in mice have shown an important role for

PDGFRb2 in mural cell recruitment to the developing vasculature

[4]. Here we characterize the zebrafish homolog of PDGFRb in

zebrafish embryos. We report the expression pattern of pdgfrb2 in

the hypochord in association with the vasculature and further

show the importance of PDGFRb2 signaling in zebrafish

developmental angiogenesis in the absence of mural cells. Our

results demonstrate a novel role for PDGFRb2 signaling in

zebrafish developmental angiogenesis in vivo.

The angiogenic sprouting of zebrafish ISVs is potentially regulated

by different signaling mechanisms than the de novo vasculogenic

formation of the dorsal aorta and the arterial-venous segregation of

the posterior cardinal vein [16]. Our data suggest a role for PDGF

signaling in the sprouting and extension of the ISVs, as evidenced by

the deficit in ISV formation after PDGFR chemical inhibition,

PDGFRb2 MO knockdown and dominant negative PDGFRb
expression. The function of PDGFRb on ISV angiogenesis is likely

to be indirect as we found that the expression of pdgfrb is mainly in the

hypochord and ventral somite boundary. In Xenopus, the hypochord

is shown to express VEGF and is important for dorsal aorta

development [25]. In zebrafish, vegf-a is expressed in the somites and

hypochord [26] while vegf-c is expressed in the hypochord and dorsal

aorta [20]. The expression of PDGFRb and VEGFs in the

hypochord parallels with the localized expression patterns of these

genes in pericytes and mural cells in more mature vasculature.

To our knowledge, our data are the first in vivo findings that

demonstrate the role of PDGFRb2 in the zebrafish vasculature at

the early stages of development when there are likely no mural

cells present. Together, our data suggest a potential alternative

PDGF-B- PDGFRb2 signaling mechanism in immature blood

vessels that is distinct from the role of PDGF-B signaling that is

seen in more developed vascular networks.

Materials and Methods

Identification of zebrafish pdgfrb and RT-PCR
To clone the zebrafish homolog of pdgfrb, we utilized two pairs of

primers to amplify cDNA from embryos and regenerating hearts:

PDGFRb 59 forward: ATGAAGAGTTCGACCATCAG, PDGFRb
59 reverse: TCTTCCTCC ACACAGCAATG, PDGFRb 39 forward:

embryos are shown for 24 hpf (B) and 48 hpf (G). Blocking of splicing was confirmed using RT-PCR (D). pdgfrb2 MO-injected embryos had significantly
more ISV defects than control MO-injected embryos at 24 hpf (A and C), 30 hpf and 48 hpf (E and F). Angiography at 72 hpf showed less circulation
through ISVs in pdgfrb2 MO-injected embryos (H). The ISV defect seen in pdgfrb2 MO-injected embryos was partially rescued when pdgfrb2 mRNA
was coinjected with pdgfrb2 MO (I and J). Arrowheads indicate complete ISVs. Asterisks indicate angiogenic sprouts. *** indicates p,0.001,
** indicates p,0.01. All data represent the mean +/2 standard error.
doi:10.1371/journal.pone.0011324.g005
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TCCAGACTAATGTCACCTACAACAG, and PDGFRb 39 re-

verse: GAAGCTCTCCTCTACTTCTGGACTT. Both fragments

were digested at the overlapping SmaI restriction site and cloned into

the pGEM-T easy vector.

Phylogenetic analysis
Sequences were selected from GenBank to represent the

available major vertebrate groups (i.e., fish, amphibians, and

mammals). For PDGF-B, the following sequences were selected:

Danio rerio (ABG34342), Xenopus laevis (NP_001087935.1), Xenopus

tropicalis (AAI60575.1), Gallus gallus (NP_989601.1), Mus musculus

(NP_035187.2), Rattus norvegicus (NP_113712), Homo sapiens

(isoform 1, NP_002599.1 and isoform 2, NP_148937.1). PDGF-

A (AAH78289) was used as an outgroup to PDGF-B. For

PDGFRb, two sets of phylogenetic analyses were performed: the

first analysis utilized the full length PDGFRb2 (HM439112) and

Figure 6. A dominant-negative PDGFRb blocked ISV angiogenesis in zebrafish embryos. A heat shock-inducible dominant negative form
of PDGFRb was created by substituting the intracellular kinase domains of PDGFRb with YFP (A, dnPDGFRb-YFP). Heat shock at 10 hpf led to
dnPDGFRb-YFP expression within 7 hours after heat shock with no effect on overall morphology (B). Heat shock at 20 hpf and analysis at 48 hpf
indicated an increase in ISV defects in heat shocked embryos positive for dnPDGFRb-YFP versus heat shocked embryos negative for dnPDGFRb-YFP
(C and E, n = 23). Embryos heat shocked at 20 hpf that were positive for dnPDGFRb-YFP at 48 hpf showed no overall morphology defects as
compared to embryos heat shocked at 20 hpf negative for dnPDGFRb-YFP (D). Arrowheads indicate complete ISVs. Asterisks indicate angiogenic
sprouts. ** indicates p,0.01. All data represent the mean +/2 standard error.
doi:10.1371/journal.pone.0011324.g006
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the following sequences: two Fugu isoforms: PDGFRb1

(P79749.1) and PDGFRb2 (AAL50567), two H. burtoni isoforms:

PDGFRb a (ABD48800.1) and PDGFRb b (ABD48798.1), Gallus

gallus (XP_001233830.1), Mus musculus (NP_032835.1), Rattus

norvegicus (NP_113713.1), Homo sapiens (NP_002600.1 and isoform

CRA_a, EAW61746.1). The second analysis included a 64 amino

acid residue fragment of PDGFRb1 from D. rerio (AAN02896),

with the sequences of other species edited to correspond to the 64

aa fragment. The sequences for each set of genes were aligned in

Clustal X [27] and then analyzed for the most appropriate model

of protein evolution using ProtTest [28]. For PDGF-B, the

phylogenetic relationships among sequences were estimated using

Bayesian analysis with MrBayes v3.0.4b [29] with the Jones-

Taylor-Thorten [30] model of protein evolution with gamma

distributed rates, 10,000,000 generations with 4 chains and a

burn-in of 10% of the generations before trees were sampled. A

majority rule consensus tree for this analysis was constructed in

PAUP 4.0B [31]. For the two PDGFRb analyses, the phylogenetic

relationships among sequences were estimated using minimum

evolution with the Jones-Taylor-Thorten [30] model of protein

evolution with gamma-distributed rates, and 1,000 bootstrap

replications. A consensus tree for each analysis was constructed.

Figure 7. A critical period existed for PDGFR signaling in ISV formation. kdrl:GFP embryos were treated with inhV starting from
6 hpf. Withdrawal of PDGFR inhibition at 24 hpf resulted in full recovery of ISV number and extent within 24 hours after withdrawal (A and C).
In contrast, withdrawal of inhV at 48 hpf resulted in little or no recovery of ISV formation by 72 hpf (B and D). Arrowheads indicate fully-
formed ISVs. Asterisks indicate angiogenic sprouts. *** indicates p,0.001, * indicates p,0.05. All data represent the mean +/2 standard
error.
doi:10.1371/journal.pone.0011324.g007
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Zebrafish husbandry, chemical inhibition, and
morpholino injection

Zebrafish were maintained on a 14 hr light/dark cycle at

28.5uC. All experiments involving zebrafish were performed

according to the National Institute of Health guidelines and have

been approved by the Institutional Animal Care and Use

Committee of the Childrens Hospital Los Angeles. Embryos were

collected and raised in E3 media according to standard protocol

[32]. All embryos were treated with 0.2 mM 1-phenyl-2-thiourea

(PTU) at 22 hpf to prevent pigmentation. A stock solution of

1 mM PDGF receptor tyrosine kinase inhibitor V (inhV,

Calbiochem) dissolved in DMSO was used for all chemical

inhibitor experiments. Embryos were treated at 6 hpf with DMSO

alone, 0.1 mM or 0.25 mM inhV in E3 media and protected from

the light, as inhV is light sensitive. E3 media, PTU, and inhV were

refreshed daily. In the cases of 24 hpf and 48 hpf inhV

withdrawal, media was replaced at the indicated time with E3

media and PTU only.

Embryos were injected in E2 media at the one-cell stage with

3.5 ng morpholino oligonucleotides (MO). MOs were obtained

from Gene Tools (Philomath, OR) with the following oligonucle-

otide sequences: pdgfrb MO, ACA GGA ACT GAA GTC ACT

GAC CTT C; pdgfrb control MO, ACA CGA ACT GAA CTC

AGT GAC GTT C. The control MO had five nucleotides that

differed from the experimental MO.

In situ hybridization
Embryos were fixed in 4% paraformaldehyde at 4uC for

16 hours and then transferred to methanol at 220uC. Embryos

were then treated as previously described [33].

Ultrastructural examination
Zebrafish embryos were fixed with 2% glutaraldehyde in

phosphate buffer, post-fixed with 1% osmium, and embedded in

Epon. The areas of interest were discussed and confirmed with

light microscope in longitudinal sections stained with toluidine

blue solution. The ultra-thin sections were cut onto one-hole grids,

stained with uranyl and lead, and examined with Morgagni 268.

Generation of dnPDGFRb-YFP fish
To achieve temporal control over expression of the dominant

negative receptor, we utilized a GAL4-UAS system [34] and

generated UAS:dnpdgfrb-yfp transgenic fish lines. We then crossed

the UAS:dnpdgfrb-yfp transgenic fish to hsp70:Gal4 fish to obtain a

double transgenic line (UAS:dnpdgfrb-yfp;hsp70:Gal4) [35,36]. The

heat shock protein 70 (hsp70) promoter allowed for temporal

control of expression of Gal4. The double transgenic UAS:dnpdgfrb-

yfp;hsp70:Gal4 line was then crossed with a second double

transgenic fli1a:eGFP;hsp70:Gal4 line to generate triple transgenic

UAS:dnpdgfrb-yfp;hsp70:Gal4;fli1a:eGFP embryos to be used for the

experiment. Embryos obtained from this crossing were then heat

shocked for 20 minutes in a 40uC water bath at 10 hpf or 20 hpf.

Embryos were then sorted for expression of YFP. 40 embryos each

from the YFP-positive and the YFP-negative embryos were

selected for their normal morphology at 48 hpf as heat shock

alone caused some overall morphology defects in approximately

10–20% of embryos. These embryos were selected under normal

light illumination to prevent biased selection under GFP

fluorescence. From these 40 embryos, the GFP-positive embryos

(n = 23 for each of the YFP-positive and YFP-negative groups)

were analyzed for full ISV extension.
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