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Abstract
Glioblastoma multiforme (GBM) is a devastating brain tumour without effective 
treatment. Recent studies have shown that autophagy is a promising therapeutic 
strategy for GBM. Therefore, it is necessary to identify novel biomarkers associated 
with autophagy in GBM. In this study, we downloaded autophagy-related genes from 
Human Autophagy Database (HADb) and Gene Set Enrichment Analysis (GSEA) web-
site. Least absolute shrinkage and selection operator (LASSO) regression and multi-
variate Cox regression analysis were performed to identify genes for constructing 
a risk signature. A nomogram was developed by integrating the risk signature with 
clinicopathological factors. Time-dependent receiver operating characteristic (ROC) 
curve and calibration plot were used to evaluate the efficiency of the prognostic 
model. Finally, four autophagy-related genes (DIRAS3, LGALS8, MAPK8 and STAM) 
were identified and were used for constructing a risk signature, which proved to be an 
independent risk factor for GBM patients. Furthermore, a nomogram was developed 
based on the risk signature and clinicopathological factors (IDH1 status, age and his-
tory of radiotherapy or chemotherapy). ROC curve and calibration plot suggested the 
nomogram could accurately predict 1-, 3- and 5-year survival rate of GBM patients. 
For function analysis, the risk signature was associated with apoptosis, necrosis, im-
munity, inflammation response and MAPK signalling pathway. In conclusion, the risk 
signature with 4 autophagy-related genes could serve as an independent prognostic 
factor for GBM patients. Moreover, we developed a nomogram based on the risk 
signature and clinical traits which was validated to perform better for predicting 1-, 
3- and 5-year survival rate of GBM.
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1  | INTRODUC TION

Glioblastoma multiforme (GBM) is one of the most aggressive types 
in glioma with 5-year survival rate of 5%.1 Although current treat-
ment approaches, including maximum safe resection and adjuvant 
chemoradiotherapy, have been adopted, the median overall survival 
is only about 15 months.2 Despite the progress of experimental 
technologies and therapeutic regimens in this field, such as inhibi-
tion of oncogenic signal transduction, anti-angiogenesis and immu-
notherapy, GBM remains incurable.3 It is thus necessary to explore 
novel biomarkers or targets for GBM treatment.

Recent study has showed that autophagy is involved in tu-
morigenesis and development of GBM.4 Autophagy is a cellular 
self-digestive process that protects cells via eliminating damaged 
or abandoned intracellular components under the conditions of 
hypoxia, oxidative stress or nutrient starvation.5 Autophagy can 
govern the fate of cancer cells via initiating pro-survival or pro-
death mechanisms.6 As a first-line chemotherapeutic agent, te-
mozolomide (TMZ) has shown benefit for prolonging the survival 
of GBM patients.7 TMZ preferentially induces autophagic death 
in GBM cells rather than apoptosis through PI3K/AKT/mTOR 
signalling pathway.8 However, further study demonstrates that 
persistent inhibition of PI3K/AKT/mTOR by TMZ can only induce 
autophagy transiently and promote drug resistance of GBM.9,10 In 
the meantime, combination with autophagy inhibitors or regula-
tors can interfere with the therapeutic effects of TMZ for GBM.11 
These researches reveal that autophagy-targeted therapy is a 
promising approach to potentiate the efficacy of conventional 
therapies in GBM.

In this study, we identified four autophagy-related genes as-
sociated with the prognosis of GBM patients from the TCGA, 
REMBRANDT and Gravendeel data sets. A risk signature was estab-
lished based on the four genes and proved to be an independent risk 
factor for GBM patients. Furthermore, we developed a nomogram 
that integrated the risk signature with clinicopathological factors 
(IDH1 status, age and experience of radiotherapy or chemotherapy) 
and validated its better performance for predicting 1-, 3- and 5-year 
survival rate of GBM patients.

2  | MATERIAL S AND METHODS

2.1 | Data source

Autophagy-related genes were extracted from Human Autophagy 
Database (HADb, http://www.autop hagy.lu/index.html) and the 
GO_AUTOPHAGY gene set in Gene Set Enrichment Analysis 
website (http://softw are.broad insti tute.org/gsea/index.jsp). The 
two gene sets were combined and integrated into an autophagy-
related gene set. Gene expression data, clinical characteristics 
and survival information in The Cancer Genome Atlas (TCGA, 
HG-UG133A microarray and GBMLGG RNA-seq), Repository for 
Molecular Brain Neoplasia Data (REMBRANDT, microarray) and 

Gravendeel data sets (microarray) were downloaded from GlioVis 
(http://gliov is.bioin fo.cnio.es/).12 In the GlioVis online data set, 
RNA-seq data processing is based on the normalized count reads 
from the pre-processed data (sequence alignment and transcript 
abundance estimation) with log2 transformation after adding a 0.5 
pseudocount. For microarray data, the “affy” package was used 
for robust multi-array average normalization followed by quantile 
normalization.

2.2 | Construction of a risk signature associated 
with survival of GBM patients

To screen genes for constructing risk signature, univariate Cox re-
gression models were performed to select genes that are associated 
with overall survival of GBM patients in the TCGA (HG-UG133A 
platform), REMBRANDT and Gravendeel data sets. P < .05 was 
considered statistical significance. Overlapping autophagy-related 
genes were extracted from the three data sets and visualized in 
a venn diagram. Least absolute shrinkage and selection opera-
tor (LASSO) regression was used to screen out the optimal gene 
combination for constructing the risk signature. Multivariate Cox 
regression model was carried out to further identify the selected 
genes using “step” function in R language. The data in the TCGA 
database (HG-UG133A) were used as the training cohort, and 
data in the Gravendeel and REMBRANDT data sets were used for 
the validation cohorts. Subsequently, a risk signature was estab-
lished based on a linear combination of the regression coefficient 
derived from the multivariate Cox regression model coefficients 
and expression level of the genes. The risk score formula was 
calculated as follows: Risk score = (exprgene1 × Coefgene1) + (ex-
prgene2 × Coefgene2) + … + (exprgenen × Coefgenen).13 The GBM pa-
tients were classified into low-risk group and high-risk group 
according to the median value of the risk scores. The Kaplan-Meier 
(K-M) method and time-dependent receiver operating character-
istic (ROC) curve were used to assess the efficiency of the risk 
signature.

2.3 | Establishment and 
assessment of the nomogram

For better clinical application of the risk signature, patients in the 
TCGA data set (HG-UG133A) with detailed information about 
age, IDH status and experience of radiotherapy or chemotherapy 
were included. Univariate and multivariate Cox regression analy-
ses were performed to determine the association between these 
factors (risk score, age, IDH status and history of radiotherapy or 
chemotherapy) and patients' overall survival. The included pa-
tients were divided into training cohort (60%) and validation co-
hort (40%) randomly using R package “caret.” The training cohort 
was used to establish a nomogram for predicting 1-, 3- and 5-year 
survival rate of GBM patients via R programming language. The 
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validation cohort was used for internal validation. ROC curve and 
calibration plot were carried out to evaluate the efficiency of the 
nomogram.

2.4 | Functional enrichment analysis

Gene set enrichment analysis (GSEA, https ://www.broad insti tute.
org/gsea/index.jsp) was performed to identify the autophagy-
related gene sets between LGG and GBM.14 Normalized enrich-
ment score (NES) and false discovery rate (FDR) were applied to 
determine the statistical differences. The gene set variation anal-
ysis (GSVA) was used to explore biological processes and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways associ-
ated with the risk signature.15 Gene sets with differences between 
high-risk group and low-risk group in TCGA data set (GBM HG-
UG133A) were selected using the R package “limma,” and adjust 
P value < .05 was considered statistically significant. Several rep-
resentative gene sets were presented in heatmaps. To confirm the 
KEGG pathways associated with the signature, R package “clus-
terProfiler” was performed on the differentially expressed genes 
(DEGs) between low-risk group and high-risk group which were 
selected via “limma” package in R with adjust P value < .05 and 
|log2(fold change)| > 0.5.16 The KEGG pathway map was presented 
by “pathview” package.

2.5 | Statistical analyses

All the statistical analyses including principal component analysis 
(PCA), univariate and multivariate Cox regression models, LASSO 
regression, ROC curve analysis and K-M survival analyses were per-
formed using Rstudio (version 3.5.2). Quantitative data were exhib-
ited as the mean ± standard deviation (SD). Statistical differences 
were compared by Wilcoxon test between two groups and Kruskal-
Wallis H for multigroup comparison. P < .05 was considered statisti-
cally significant. The venn, heatmaps, boxplots, pie charts, forest 
plots and calibration plots were drawn using R language.

3  | RESULTS

3.1 | Four autophagy-related genes were screened 
out for constructing a risk signature

A total of 531 autophagy-related genes were integrated from HADb 
database and the GO_AUTOPHAGY gene set in GSEA website 
(Table S1). PCA based on these autophagy-related genes confirmed 
the distribution difference between low-grade glioma (LGG) and 
glioblastoma multiforme (GBM) in the TCGA (GBMLGG RNA-seq) 
data set. As shown in Figure 1A, GBM samples were located on 
the left side, and LGG samples were on the other side. To identify 
autophagy-related biological processes between LGG and GBM, 

GSEA was performed and the results showed that autophagy-re-
lated genes were highly enriched in GBM (Figure 1B), suggesting 
that autophagy played an essential role in GBM. Our study just fo-
cused on GBM based on these results of PCA and GSEA. Ninety-
one genes in the TCGA HG-UG133A, 73 genes in the REMBRANDT 
and 129 genes in the Gravendeel data set were found to be cor-
related with GBM survival using univariate Cox regression analysis 
(Table S2, P < .05). Sixteen overlapping genes in the three databases 
were screened out and visualized in a venn diagram (Figure 1C). 
LASSO regression analysis was performed on the overlapping genes 
so as to avoid overfitting problems in risk signature, and 7 genes 
(CTSB, DIRAS3, HK2, LGALS8, MAPK8, PPP1R15A and STAM) 
were retained according to the optimal lambda value (Figure 1D,E, 
log(lambda.min) = −3.1114). Multivariate Cox regression analysis 
was adopted to further identify an appropriate gene combination 
for establishing the risk signature using “step” function in R soft-
ware. Finally, 4 genes (DIRAS3, LGALS8, MAPK8 and STAM) were 
selected (Figure 1F). Among the four genes, DIRAS3 and LGALS8 
were risk factors for GBM survival with HR > 1, and MAPK8 and 
STAM were protective factors with HR < 1. Consistent with the re-
sults, K-M survival curves showed patients with higher expression 
levels of MAPK8 or STAM had favourable outcomes (Figure S1A,B, 
P < .05) and patients with higher expression levels of DIRAS3 or 
LGALS8 had poor prognosis in GBM (Figure S1C,D, P < .05).

3.2 | Establishment of a risk signature with four 
autophagy-related genes

A total of 525 GBM patients in TCGA HG-UG133A platform were 
used to establish a risk signature. As mentioned in the method, 
the risk signature was constructed based on the expression levels 
of the four genes and the regression coefficient derived from the 
multivariate Cox regression model. The risk score for each patient 
was calculated as follows: risk score = (0.1052 × expression level of 
DIRAS3) + (0.2152 × expression level of LGALS8) + (−0.3603 × ex-
pression level of MAPK8) + (−0.2851 × expression level of STAM). 
The patients were divided into high-risk and low-risk groups ac-
cording to the median cut-off value of the scores. To explore 
the difference between low-risk and high-risk groups, PCA was 
implemented based on genome expression data and the results 
demonstrated the distribution difference between the two groups 
(Figure 2A). In addition, patients in the high-risk group had sig-
nificantly worse overall survival than those in the low-risk group 
(Figure 2B, P < .0001). Considering the key roles of IDH1, MGMT 
and G-CIMP in GBM,17,18 ROC curves were used to compare the 
efficiencies of the risk signature with these biomarkers in prog-
nostic prediction. As shown in the ROC curves, the area under 
curves (AUCs) of the risk signature for predicting the 1-, 3- and 
5-year survival were 0.644 (Figure 2C), 0.727 (Figure 2D) and 
0.877 (Figure 2E), respectively, which were larger than those of 
IDH1, MGMT promoter and G-CIMP status. With the increase in 
the risk scores, the expression levels of MAPK8 and STAM were 
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F I G U R E  1   Screening out genes for 
constructing a risk signature. A, Principal 
components analysis (PCA) of autophagy-
related genes between LGG and GBM. 
B, Gene set enrichment analysis (GSEA) 
for comparing autophagy gene term 
between LGG and GBM. C, Overlapping 
genes associated with GBM survival in 
the TCGA, REMBRANDT and Gravendeel 
database. D, Log (Lambda) value of the 
16 genes in LASSO model. E, The most 
proper log (Lambda) value in LASSO 
model. F, Four genes (DIRAS3, LGALS8, 
MAPK8 and STAM) were selected for 
constructing a risk signature using 
multivariate Cox regression model

F I G U R E  2   Establishment of the risk signature with four autophagy-related genes in the TCGA database. A, PCA based on genome 
expression data between low-risk group (n = 263) and high-risk group (n = 262). B, Kaplan-Meier survival curves showed the prognostic 
value of the risk signature between low-risk group (n = 263) and high-risk group (n = 262). C-E, ROC curves were used to assess the 
efficiency of the risk signature for predicting 1- (C), 3- (D) and 5-y survival (E). F, The four genes expression profiles, the risk scores 
distribution and patients' survival status in the TCGA database
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decreased and the expression levels of DIRAS3 and LGALS8 were 
up-regulated (Figure 2F). In the meantime, the number of alive pa-
tients reduced (Figure 2F).

3.3 | Validation of the risk signature

A total of 155 GBM samples in the Gravendeel data set and 181 
GBM samples in the REMBRANDT database were collected and 
used for two validation data sets to assess the performance of the 
risk signature. The K-M survival curves showed that patients with 
higher risk scores had poorer prognosis than those with lower risk 
scores (Figure 3A, Gravendeel, P < .01 and B, REMBRANDT, P < .01). 
The AUCs of ROC curves for predicting 1-, 3- and 5-year survival of 
GBM in the Gravendeel data set were 0.583, 0.824 and 0.799, re-
spectively (Figure 3C), and those in the REMBRANDT database were 
0.627, 0.733 and 0.64, respectively (Figure 3D). Consistent with the 
results in the TCGA, with the increase in the risk scores, the expres-
sion levels of MAPK8 and STAM were down-regulated and the ex-
pression levels of DIRAS3 and LGALS8 were up-regulated both in 
the Gravendeel (Figure 3E) and in the REMBRANDT (Figure 3F) da-
tabase. Concomitantly, the overall survival and the number of alive 
patients declined (Figure 3E,F). These results indicated the risk sig-
nature performed well for predicting the survival of GBM patients.

3.4 | Association between the risk signature and 
clinical characteristics

To explore the association between the risk signature and clini-
cal characteristics, we firstly developed a heatmap to present the 
distribution trends of age, gender, molecular subtypes, MGMT 
promoter status and IDH1 status between low-risk and high-risk 
groups in the TCGA database. As shown in Figure 4A, high-risk 
group inclined to contain more elder patients, whereas samples 
with IDH1 mutant were all in low-risk group. To be more intuitive, 
pie charts were used to display the proportion of each factor (age, 
gender, molecular subtypes, MGMT promoter status and IDH1 sta-
tus) in low-risk and high-risk groups. Similar results were shown in 
Figure S2A, elder patients and samples with mesenchymal subtype 
or classical subtype accounted for a large proportion in the high-
risk group. And there were no significant differences between low-
risk and high-risk groups for gender and MGMT promoter status. 
Subsequently, we compared the risk scores in different cohorts 
stratified by molecular subtypes, age, IDH status, MGMT promoter 
status and gender separately. The risk scores in the mesenchymal 
subtype were obviously higher than those in neural and proneural 
subtypes (Figure 4B, P < .0001). For IDH status, the risk scores de-
creased in patients with IDH1 mutant type compared with IDH1 
wild-type (Figure 4C, P < .0001). The risk scores of patients with 
MGMT promoter methylation were lower than MGMT promoter 
unmethylation (Figure 4D, P = .033). Patients above 60 years old in-
clined to have higher risk scores compared with those in the younger 

age group (Figure 4E, P = .002). However, there was no difference in 
risk scores between male and female (Figure 4F, P = .468).

Afterwards, we also explored the prognostic value of the risk 
signature in different cohorts stratified by molecular subtypes, 
MGMT promoter status, IDH1 status and history of radiotherapy or 
chemotherapy. In the four different molecular subtypes, higher risk 
scores indicated poor prognosis in the mesenchymal (Figure 5A, 
P < .001) and proneural (Figure 5B, P < .0001) subtypes, but there 
were no prognostic differences between low-risk group and 
high-risk group in the classical (Figure S3A, P = .9447) and neural 
(Figure S3B, P = .5887) subtypes. The patients in high-risk groups 
had adverse outcomes in the IDH1 wild-type group (Figure 5C, 
P < .01), MGMT promoter methylation group (Figure 5D, P < .0001) 
and MGMT promoter unmethylation group (Figure 5E, P < .001). 
Furthermore, higher risk scores were also found to be clinically 
associated with poor prognosis in patients receiving radiotherapy 
(Figure 5F, P < .0001) or chemotherapy (Figure 5G, P < .0001).

3.5 | Construction of a nomogram for predicting 1-, 
3- and 5-year survival rate of GBM

In order to better apply the risk signature, we collected 401 GBM 
patients in the TCGA HG-UG133A platform with detailed clinical 
information including IDH1 status, age and history of radiotherapy 
or chemotherapy. The 401 samples were randomly divided into a 
training cohort (n = 241) and a validation cohort (n = 160) (Table 1). 
The training cohort was used for constructing a nomogram to pre-
dict survival of GBM, and the validation cohort was used for further 
assessing the efficiency of the nomogram. Firstly, we performed 
univariate and multivariate Cox regression analyses in the train-
ing cohort, indicating that the risk signature was an independent 
risk factor for GBM patients (Figure 6A,B, P < .05). Subsequently, a 
nomogram integrating the five factors was constructed for predict-
ing 1-, 3- and 5-year survival rate of GBM. In the nomogram, the 
patients' 1-, 3- and 5-year survival rates were estimated by the total 
points obtained by adding up the point of each factor (Figure 6C). 
ROC curve and calibration plot were applied to evaluate the perfor-
mance of the nomogram. The AUCs of ROC curves for predicting 1-, 
3- and 5-year survival were 0.756, 0.821 and 0.885, respectively, in 
the training cohort (Figure 6D) and 0.763, 0.725 and 0.777, respec-
tively, in the validation cohort (Figure 6E). The calibration curves 
showed good agreements between the prediction and observation 
in the training cohort (Figure 6F-H) and in the validation cohort 
(Figure 6I-K) for the probabilities of 1-, 3- and 5-year survival. These 
results indicated that the nomogram demonstrated good accuracy 
for predicting 1-, 3- and 5-year survival rates of GBM patients.

3.6 | Functional analysis of the risk signature

GSVA was used to explore biological processes and KEGG path-
ways associated with the risk signature. As shown in Figure 7A, 
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several biological processes relevant to apoptosis, necrosis, cell ad-
hesion, immune and inflammatory response were enriched in the 
high-risk group. These biological processes such as apoptosis, ne-
crosis, immune and inflammatory response were closely related to 

autophagy.19,20 For KEGG pathway, high-risk group was positively 
correlated with focal adhesion, MAPK signalling pathway, Toll-like 
receptor signalling pathway, apoptosis, ECM receptor interaction and 
so on (Figure 7B). To confirm the KEGG pathways associated with 

F I G U R E  3   Evaluating the efficiencies of the risk signature in the REMBRANDT and Gravendeel data sets. A, B, Kaplan-Meier survival 
curves showed the prognostic value of the risk signature in Gravendeel data set (A. low-risk group, n = 78; high-risk group, n = 77; P < .01) 
and REMBRANDT database (B. low-risk group, n = 91; high-risk group, n = 90; P < .01). C, D, ROC curves evaluated the efficiency of the risk 
signature for predicting 1-, 3- and 5-y survival in Gravendeel data set (C) and REMBRANDT database (D). E, F, The four genes expression 
profiles, the risk scores distribution and patients' survival status in the Gravendeel data set (E) and REMBRANDT database (F)
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F I G U R E  4   Associations between the signature risk scores and clinical features. A, The heatmap showed the associations between the 
risk signature and the clinical characteristics (age, gender, molecular subtypes, MGMT promoter status, IDH1 status and survival status) 
in the TCGA database. B-F, Distribution of the risk scores in different cohorts stratified by the molecular subtype (B, classical, n = 144; 
mesenchymal, n = 156; neural, n = 88; proneural, n = 137; P < .0001), IDH1 status (C, mutant, n = 30; wild-type, n = 372; P < .0001), MGMT 
promoter status (D, methylated, n = 170; unmethylated, n = 176; P = .033), age (E, age > 60, n = 248; age ≤ 60, n = 271; P = .002) and gender 
(F, female, n = 203; male, n = 314; P = .469)
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the risk signature, we screened out DEGs between low-risk group 
and high-risk group, and 558 genes were obtained (Table S3). R pack-
age “clusterProfiler” was performed on the DEGs. Consistent with 
the result in GSVA, KEGG pathways including focal adhesion, MAPK 
signalling pathway and ECM receptor interaction were also obtained 
(Figure 7C). Considering the close relationship between MAPK sig-
nalling pathway and autophagy, MAPK signalling pathway was down-
loaded from the KEGG database and marked according to DEGs such 
as HSP27, FAS and CD14 (Figure 7D). In this pathway map, a major-
ity of red-labelled genes were involved in triggering MAPK signalling 

pathway that can induce cell proliferation, differentiation, inflamma-
tion, cell cycle and apoptosis. In brief, these results revealed that the 
risk signature was correlated with apoptosis, necrosis, immunity and 
inflammation response and MAPK signalling pathway.

4  | DISCUSSION

GBM is a refractory central nervous system tumour without ef-
fective treatment strategy. Emerging evidence has indicated that 

F I G U R E  5   Kaplan-Meier survival curves showed prognostic values of the risk signature in different cohorts. Prognostic values of the risk 
signature in different cohorts stratified by mesenchymal and proneural subtypes (A-B), IDH1 wild-type (C), MGMT promoter status (D-E) 
and history of radiotherapy (F) or chemotherapy (G)
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autophagy plays essential roles in GBM and serves as a therapeu-
tic target. The level of autophagy in GBM is declined,21 and TMZ 
can promote autophagy in malignant glioma cells rather than apop-
tosis.22,23 Furthermore, combination of TMZ with bafilomycin A1, 
an autophagy inhibitor, enhances the chemotherapy effect of TMZ 
for malignant gliomas.22 However, another study shows that TGF-
β2 induces autophagy to promote invasion of glioma.24 Despite the 
controversial roles of autophagy in GBM, these investigations sug-
gest autophagy is a promising target for GBM treatment and needs 
further explorations.

In our study, we identified four autophagy-related genes 
(DIRAS3, LGALS8, MAPK8 and STAM) which were associated with 
GBM survival. DIRAS family GTPase 3 (DIRAS3), also known as 
ARHI, is a member of RAS superfamily and locates on human chro-
mosome 1p31. Its encoding protein shares 60% homology with 
RAS or Rap, but unlike other members, it has a long N-terminal 
extension, low GTPase activity and constitutive GTP binding state 
in resting cells.25 DIRAS3 is involved in the occurrence and pro-
gression of a variety of cancers and considered as an anti-onco-
gene. For example, DIRAS3 inhibits gastric cancer and epithelial 
ovarian cancer cells proliferation and promotes apoptosis by in-
ducing autophagy.26,27 Up-regulating the expression of DIRAS3 
can enhance the chemosensitivity in both breast cancer and ovar-
ian cancer.28,29 However, the functional roles of DIRAS3 in glioma 
were controversial. It has been reported that DIRAS3 is down-reg-
ulated in glioma samples, and DIRAS3 overexpression inhibits the 

proliferation, migration and invasion of glioma cells.30 Instead, 
another study has shown that DIRAS3 is overexpressed in gli-
oma and is positively associated with adverse outcome of glioma 
patients. In the meantime, overexpression of DIRAS3 promotes 
glioma cell proliferation and invasion via EGFR-AKT signalling 
pathway.31 Our study was identical to the opinion that DIRAS3 
was correlated with poor prognosis of GBM and was a risk factor 
for GBM survival. As a member of lectin family, LGALS8 (galec-
tin-8) plays key roles in various cellular processes, such as autoph-
agy, cytoskeletal rearrangement, immunity and inflammation,32-35 
as well as tumour progression.36 LGALS8 can recognize lysosome 
damage and promote autophagy through inhibiting mTOR activ-
ity.37 Remarkably, LGALS8 may serve as prognostic biomarkers in 
cancers. The expression level of LGALS8 is associated with recur-
rence of gastric cancer, urothelial carcinoma of the bladder and 
clear cell renal cell carcinoma.38-40 In glioma, LGALS8 enhances the 
capacities of proliferation and migration and inhibits apoptosis of 
GBM cells.41 Consistent with our results, another research shows 
that GBM patients with higher expression level of LGALS8 have 
poorer prognosis.42 Mitogen-activated protein kinase 8 (MAPK8), 
also known as JNK1, belongs to JNK kinase family that consists of 
three members: JNK1, JNK2 and JNK3.43 JNK directly binds and 
promotes phosphorylation of several transcription factors, such 
as NFAT, c-Jun and JunB, and regulates multiple biological pro-
cesses, including immune cell differentiation, inflammation, can-
cer progression and especially programmed cell death.43-45 JNK 

Character

Training cohort (n = 241) Validation cohort (n = 160)

NO. of patients % NO. of patients %

Risk score

Median −1.5709 −1.5603

Range −2.8081 to −0.8840 −2.8778 to −0.8396

Age, y

Median 58.5 59.5

Range 19 to 89.3 20.4 to 88.6

IDH status

Mutant 19 7.8838 10 6.2500

Wild-type 222 92.1162 150 93.7500

Radiotherapy

Yes 178 73.8589 115 71.8750

No 63 26.1411 45 28.1250

Chemotherapy

Yes 176 73.0290 114 71.2500

No 65 26.9710 46 28.7500

TA B L E  1   Demographics and 
clinicopathologic characteristics of 
patients in training cohort and validation 
cohort for construction and evaluation of 
the nomogram

F I G U R E  6   Construction of a nomogram for predicting 1-, 3- and 5-y survival of GBM. A, B, Univariate and multivariate Cox regression 
analyses evaluated the contribution of each variable to GBM survival in the training cohort. C, A nomogram for predicting 1-, 3- and 
5-y survival rate of GBM patients was established. D, E, ROC curves evaluated the efficiency of the nomogram for predicting 1-, 3- and 
5-y survival in the training cohort (D) and validation cohort (E). F-H, Calibration curves showed the probability of 1- (F), 3- (G) and 5-y 
survival (H) between the prediction and the observation in the training cohort. I-K, The calibration curves for predicting patients' survival at 
1- (I), 3- (J) and 5-y survival (K) in the validation cohort
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F I G U R E  7   Functional roles of the risk signature. A, B, GSVA showed the biological processes (A) and KEGG pathways (B) associated 
with the risk signature. C, The risk signature-related KEGG signalling pathway based on DEGs between low-risk and high-risk groups using R 
package “clusterProfiler”. D, MAPK signalling pathway map downloaded from the KEGG database was marked according to DEGs
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can trigger apoptosis, promote necroptosis, involve in non-ca-
nonical pyroptotic signalling and induce autophagy by different 
molecular mechanisms.46 It has been reported that JNK1 affects 
chemosensitivity of colon cancer cells by regulating autophagy.47 
In glioma cells, JNK1/c-JUN signalling pathway enhances the tran-
scription of CHAC1 which induces cell death and serves as a target 
of TMZ.48 Conformed to a DNA microarray data,49 our study also 
suggested that MAPK8 was a protective factor for GBM patients' 
survival. The fourth gene in our study is signal transducing adap-
tor molecule (STAM), which is a kind of phosphorylated tyrosine 
protein with distinctive structures containing a Src homology 3 
(SH3) domain and an immunoreceptor tyrosine-based activation 
motif (ITAM).50 STAM can be stimulated by various cytokines and 
growth factors, such as IL-4, IL-2, GM-CSF and PDGF, and be in-
volved in DNA synthesis, c-myc induction, T cell development and 
neural cell survival.50-52 STAM is reported to be overexpressed in 
locally advanced cervical cancer.53 And another report shows that 
STAM may be responsible for regulating proliferation of gastric 
cancer.54 The research on STAM in GBM has not been reported 
yet, and it needs to be further explored.

Previously, there was a report about an autophagy-related gene 
signature in glioma.55 According to the PCA and GSEA results that 
autophagy-related genes were differentially distributed between 
GBM and LGG and preferred to enrich in GBM, we purposefully 
developed a prognostic signature with the four autophagy-related 
genes in GBM. The results showing in ROC curves that the AUCs of 
the risk signature for 1-, 3- and 5-year survival prediction were larger 
than those of IDH1, MGMT promoter and CIMP status indicated 
the risk signature was more accurate for predicting the survival of 
GBM patients. In molecular function, we found the risk signature 
was correlated with apoptosis, necrosis, immunity and inflammatory 
response that were closely related to autophagy. Correspondingly, 
KEGG pathway analysis suggested that the risk signature was in-
volved in MAPK signalling pathway. MAPK signalling pathway is 
essential for cell proliferation, differentiation and programmed cell 
death and regulates the balance of apoptosis and autophagy.56,57 
These results indicated the risk signature might serve as a thera-
peutic target for GBM. Another innovation in our study was that a 
nomogram that combined the risk signature and clinicopathological 
factors (IDH1 status, age and experience of radiotherapy or chemo-
therapy) was established for predicting 1-, 3- and 5-year survival 
rate of GBM patients. ROC curves and calibration plots validated 
an efficient performance of the nomogram. However, there were 
some deficiencies in our study. Firstly, the data came from several 
databases with limited sample size. Secondly, the prognostic fac-
tors in the nomogram did not contain the extent of GBM surgical 
resection which is a cardinal factor associated with GBM progno-
sis.58 Therefore, more samples with detailed clinical information will 
be collected to make up for these shortcomings and assess the effi-
ciency of the nomogram in future study.

In summary, our study identified four autophagy-related genes 
that were associated with GBM survival. Based on the four genes, 
a risk signature was established and proved to be an independent 

prognostic factor for GBM patients. On molecular function, the risk 
signature was found to be correlated with apoptosis, necrosis, im-
munity and inflammation response and MAPK signalling pathway. 
Furthermore, we developed a nomogram integrating the risk signa-
ture with several clinicopathological factors (IDH1 status, age and 
experience of radiotherapy or chemotherapy), which was validated 
to perform better for predicting 1-, 3- and 5-year survival.
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