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Abstract
The Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeo-
stasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes 
of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) 
damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the 
inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression 
reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin expo-
sure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced 
HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in 
cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS 
accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate 
that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function 
after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-
mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for 
aminoglycosides-induced sensorineural hearing loss in the clinic.

Keywords Aminoglycosides · Hair cells · Apoptosis · Protection · Hippo/YAP signaling pathway · Sensorineural hearing 
loss (SNHL)

Introduction

Hearing loss is one of the most common sensory defects 
in humans. According to the World Health Organization 
(WHO) report in 2018, approximately 466 million people 

suffer from hearing loss worldwide [1]. There are three main 
types of hearing loss—sensorineural hearing loss, conduc-
tive hearing loss, and mixed hearing loss—of which senso-
rineural hearing loss accounts for the vast majority of cases 
[2]. While noise exposure, aging, long-term use of ototoxic 
drugs [3], and viral infection can lead to varying degrees of 
sensorineural hearing loss, irreversible damage to cochlear 
hair cells (HCs) is the fundamental cause of sensorineu-
ral hearing loss [4, 5]. More than 150 drugs have ototoxic 
effects [6, 7], and aminoglycoside antibiotics are one of the 
most common ototoxic drugs causing sensorineural hearing 
loss in the clinic [8]. HCs sense the stimulation of sound 
waves, and mammalian HCs lack regenerative capacity; thus, 
once HCs are damaged, permanent hearing loss is inevitable.

The Hippo signaling pathway was first discovered in the 
study of the Drosophila Warts (WTS) gene mutation in 1995 
[9]. Later studies found that mutations of Salvador (SAV) 
[10], Hippo (HPO) [11], and Mob as tumor suppressor 
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(MATS) [12] could also cause excessive growth of tissues 
and organs. Given their close relationship, these genes are 
collectively referred to as the Hippo signaling pathway [13]. 
In 2005, Yorkie (YKI), a major effector factor, was found 
to play a regulatory role in the Hippo signaling pathway, 
and conditional knockout of YKI was found to inhibit tis-
sue overgrowth caused by mutations of upstream effectors 
such as WTS, SAV, and HPO [14]. Similarly, the Hippo 
signaling pathway is highly conserved in mammals, and its 
core effector factors include Mammalian ste20-like protein 
kinase 1/2 (MST1/2) (same as HPO), large tumor suppressor 
kinase 1/2 (LATS1/2) (same as WTS), and Yes-associated 
protein (YAP) (same as YKI) [15]. As a core effector of the 
Hippo signaling pathway in mammals, conditional knockout 
of YAP can also inhibit cell overgrowth [16]. As the tran-
scriptional coactivator, YAP lacks a domain that can directly 
bind to DNA, so it needs to be combined with downstream 
transcription factors to enter the nucleus and carry out its 
biological functions [17]. Tea domain transcription factor 
(TEAD), a major transcription factor, interacts with YAP 
and plays a regulatory role [18].

The Hippo/YAP signaling pathway has been shown to be 
able to maintain organ size and homeostasis of the internal 
environment by regulating cell proliferation, differentiation, 
and apoptosis, and it is known to play an important role 
in the occurrence and development of cancer [15, 19–23]. 
There are three regulatory mechanisms of YAP that are reg-
ulated by Hippo signaling, namely phosphorylation [24], 
protein–protein interactions [25], and the competitive bind-
ing of VGLL4 to the TEAD transcription factor [26, 27]. 
When the Hippo signaling pathway is on, activated MST1/2 
phosphorylates LATS1/2, leading to the phosphorylation of 
YAP, which then either stays in the cytoplasm or degrades 
[13] and participates in cell apoptosis and differentiation 
[16]. In contrast, when the Hippo signaling pathway is off, 
YAP enters the nucleus after dephosphorylation and forms 
a complex with TEAD to participate in cell proliferation 
[28]. In addition to numerous upstream factors regulating the 
Hippo signaling pathway, the cascade itself has a negative 
feedback regulation system. YAP can increase the expres-
sion of NF2, LAST2, and MST1 by binding to TEAD in the 
nucleus, which has a negative feedback regulatory role on 
YAP [13].

Recently, an increasing number of scholars have found 
that YAP activation plays an important role in organ regen-
eration and regenerative medicine [29]. Indeed, YAP acti-
vation can promote the proliferation of retinal precursor 
cells and the differentiation of pigment cells. In contrast, 
conditional knockout of YAP could reduce cell prolifera-
tion, promote cell apoptosis, and induce pigment deposition 
leading to retinal degeneration in mice [30], indicating that 
the Hippo/YAP signaling pathway plays a critical regula-
tory role in the development of the retina. Other studies 

have also found that YAP knockout not only inhibits bile 
duct proliferation but also enhances hepatocyte necrosis 
and inhibits hepatocyte proliferation, while YAP activation 
prevents cholestasis injury in mice [31]. The loss of YAP in 
the nervous system further aggravates lysophosphatidic acid 
(LPA)-induced hemorrhagic hydrocephalus, which is par-
tially recovered after enhanced YAP expression [32]. Upreg-
ulation of YAP expression has also been found to promote 
the healing of skin wounds [33]. Moreover, enhanced YAP 
activity can protect the myocardium in acute stress injury 
[34]. In kidney disease, podocyte injury leads to podocyte 
death and loss, which results in progressive kidney dam-
age and ultimately kidney failure, and the loss of YAP in 
podocytes further increases Adriamycin-induced podocyte 
apoptosis [35]. All of these studies have demonstrated the 
regulatory role of the Hippo/YAP signaling pathway in tis-
sue protection and regeneration after injury. However, the 
role of the Hippo/YAP signaling pathway in protecting HCs 
against damage in the mouse cochlea remains unclear.

In this study, we used the YAP agonist XMU-MP-1 
(XMU) and the YAP inhibitor Verteporfin (VP) to regu-
late the expression level of YAP and investigated the role 
of the Hippo/YAP signaling pathway in protecting against 
aminoglycoside-induced cochlear HC damage in vitro. We 
found that the Hippo/YAP signaling pathway could regulate 
C-Abl-mediated HC apoptosis and the accumulation of ROS, 
which protects against neomycin-induced HC loss after neo-
mycin injury. Thus, aminoglycoside-induced cochlear HC 
damage could be prevented by regulating the Hippo/YAP 
signaling pathway. This will allow hearing function to be 
preserved and provide a novel therapeutic target for amino-
glycoside-induced sensorineural hearing loss.

Materials and methods

Experimental animals

In this study, we used wild-type (WT) FVB mice from the 
Jackson Laboratory. The mice were raised and provided by 
the Key Laboratory of “Development and Disease-related 
Genes,” Ministry of Education, Southeast University. FVB 
mice are inbred WT mice that have the following charac-
teristics: uniform genetic background, good consistency of 
experimental results, strong reproductive capacity, large lit-
ter size, and low spontaneous tumor rate. Therefore, inbred 
mice are preferred as experimental animals to study gene 
function or disease mechanisms. All animal procedures were 
performed according to the protocols approved by the Ani-
mal Care and Use Committee of Southeast University, and 
were consistent with the National Institutes of Health Guide 
for the Care and Use of Laboratory Animals. All efforts were 
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made to reduce the number of animals used and to minimize 
their suffering.

Tissue culture

Cochleae were dissected from postnatal day (P)3 mice and 
cultured as previously reported [36]. The cochlear sensory 
epithelium was isolated and seeded intact on a glass cover-
slip coated with Cell-Tak (Corning, 354240) and cultured 
in DMEM/F12 (Gibco, 11330-032) supplemented with 2% 
B27 (Invitrogen, 17504-044), 1% N-2 (Invitrogen, 17502-
048), and 50 mg/ml ampicillin (Sigma-Aldrich, P0781) 
[37]. In the experimental group, the cochlear tissues were 
pretreated with 2 μM VP (dissolved in DMSO, Sigma-
Aldrich, SML0534-5ML) or 1  μM XMU (dissolved in 
DMSO, Astatech, 43245) for 12 h. Next, 0.5 mM neomycin 
(Sigma-Aldrich, N6386-5G) was added for 12 h to induce 
HC damage. After neomycin was removed, the tissues were 
allowed to recover in serum-free medium for a further 12 h. 
In the control group, the tissues were recovered in serum-
free medium for 36 h without neomycin, XMU, or VP, and 
the medium was changed every 12 h.

Immunofluorescence

The TUNEL BrightRed Apoptosis Detection Kit (Vazyme, 
A111-03), Anti-Cleaved Caspase-3 antibody (Cell Signal-
ing Technology, 9664S), Mito-SOX Red (Life Technologies, 
M36008), Anti-YAP antibody (Cell Signaling Technol-
ogy, 12395S, 1:400 dilution), Anti-C-Abl antibody (Affin-
ity Biosciences, AF6038, 1:400 dilution), Anti-Myosin7a 
antibody (Proteus Biosciences, 25–6790, 1:1000 dilution), 
Anti-Sox2 antibody (RD, AF-2018, 1:400 dilution), Alexa 
Fluor 488 donkey Anti-Rabbit IgG (Invitrogen, A-21206, 
1:400 dilution), Alexa Fluor 555 donkey Anti-Mouse IgG 
(Invitrogen, A-31570, 1:400 dilution), Alexa Fluor 647 don-
key Anti-Goat IgG (Invitrogen, A-21447, 1:400 dilution), 
and DAPI (Solarbio, C0060, 1:1000 dilution) were used to 
measure apoptotic cells and to stain HCs and nuclei. The 
dissected cochlear tissues were fixed in 4% paraformalde-
hyde (Sigma-Aldrich, 158127) for 1 h, then washed three 
times with PBST (1 × PBS [Sigma, P5493] with 0.1% Tri-
ton X-100 (Solarbio, 1109F0521). After blocking for 1 h in 
medium (10% donkey serum, 0.1% Triton X-100, and 1% 
BSA in PBS at pH 7.2) at room temperature, the samples 
were incubated with primary antibody diluted in PBT-1 
(0.1% Triton X-100, 5% donkey serum, 1% BSA in PBS at 
pH 7.2) overnight at 4 °C. The samples were washed three 
times with PBST and then incubated with the secondary 
antibody diluted in PBT-2 (1% BSA and 0.1% Triton X-100 
in PBS at pH 7.2) for 1 h at room temperature. After incu-
bating with secondary antibody, the samples were washed 
three times with PBST and mounted on glass slides with 

DAKO (DAKO, S3023). Finally, the fluorescence images 
were obtained by a confocal microscope (LSM710, Zeiss, 
Heidelberg).

Western blot

The dissected cochlear tissues were lysed with RIPA Lysis 
Buffer (Protein Biotechnology, PP109) plus Phosphatase 
Inhibitor Cocktails (Roche, 04693132001). The fully 
reacted tissue mixture was centrifuged at 13,000 rpm for 
5–10 min at 4 °C. The supernatant solution was mixed with 
5 × sodium dodecyl sulfate buffer (Beyotime, P0015L) at 
a ratio of 1:4 to obtain a protein sample, and the samples 
were boiled in water for 15 min. Equal amounts of protein 
samples were loaded onto a 10% Tris–glycine SDS-PAGE 
gel, electrophoresed at 120 V for 2 h, and then transferred 
to a 0.2-μm polyvinylidene difluoride membrane (Millipore, 
Immobilon ISEQ00010). Following transfer, the membranes 
were blocked with 5% BSA (Biosharp, 4240), then washed 
three times with 1 × PBST (1 × PBS [Sigma, P5493] with 
0.1% Triton X-100 [Solarbio, 1109F0521]). Protein concen-
trations were measured using a BCA Protein Quantification 
Kit (Protein Biotechnology, PP202), with GAPDH as the ref-
erence protein. Anti-YAP mouse polyclonal antibody (Cell 
Signaling Technology, 12395S, 1:400 dilution), Anti-C-Abl 
rabbit polyclonal antibody (Affinity Biosciences, AF6038, 
1:400 dilution), and GAPDH mouse monoclonal antibody 
(Abcam, ab8245, 1:1000 dilution) were used as primary 
antibodies. Horseradish peroxidase-conjugated goat anti-
rabbit (or anti-mouse) IgG (Abcam, ab6789, ab6721) was 
used as the secondary antibody. The protein signals were 
detected using a SuperSignal West Dura chemilumines-
cent substrate kit (Thermo Fisher Scientific, 34075) on a 
FluorChem M system (ProteinSimple, San Jose, CA, USA).

Quantitative real‑time PCR (qPCR)

Total RNA was extracted from 8 to 10 whole cochleae 
using TRIzol Reagent (Protein Biotechnology, PR910). The 
integrity of the RNA samples was evaluated by the A260/
A280 ratio, and the samples were reverse transcribed to 
cDNA using the Revert Aid First Strand cDNA Synthesis 
kit (Thermo Fisher Scientific, K1622). The qPCR was per-
formed on an Applied Biosystems CFX96 real-time PCR 
system (Bio-Rad, Hercules, CA, USA) using the FastStart 
Universal SYBR Green (Rox) qRT–PCR Master Mix (Roche 
Life Science, 4913850001). The qRT–PCR conditions were 
set as follows: 15 s denaturation at 95 °C followed by 40 
cycles of denaturation at 95 °C for 15 s, annealing at 60 °C 
for 60 s, and extension at 72 °C for 20 s. β-actin was used 
as the housekeeping gene for control. The concentration 
and purity of RNA and cDNA were determined with a 
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Fig. 1  The expression and localization of YAP in mouse cochlear 
HCs. A The cochleae were dissected from P3 WT mice, and immu-
nolabeled with Myosin7a (green), Sox2 (blue), and YAP (red). Immu-
nofluorescence staining showed that the expression and localization 
of YAP in the P3 WT mouse cochlea under a 5 × microscope. B 
Western blot results showed that YAP was strongly expressed in the 
mouse cochlea and brain. C Immunofluorescence staining showed 
the expression and localization of YAP in the P3 WT mouse coch-
lea under a 63 × microscopy. D Immunofluorescence staining showed 
the expression and localization of YAP in the P30 WT mouse cochlea 
under a 63 × microscope. C, D Immunofluorescence staining showed 
that YAP was expressed in the cytoplasm of cochlear HCs. E RT-
PCR results showed that YAP was strongly expressed in the mouse 
cochlea and brain. HC hair cell, SC supporting cell; Scale bar: A: 
200 μm; C, D: 10 μm. N = 5

Nano-Drop (Thermo Fisher, 2000). The primer sequences 
are shown in Table 1.

Cell counts

In the neomycin-treated groups, we counted the number of 
Myosin7a + HCs that remained under a 40 × microscope. 
The same procedure was used to quantify cleaved cas-
pase-3 + /Myosin7a + cells, TUNEL + /Myosin7a + cells, 
and MitoSOX Red + /Myosin7a + cells. In all experiments, 
only one cochlea from each mouse was used for immuno-
fluorescence and quantification; therefore, n represents the 
number of mice examined.

Statistical analysis

Data are shown as the mean ± the standard error of the mean 
(S.E.M). Statistical analyses were conducted using Micro-
soft Excel and GraphPad Prism 7 software. The counting 
data and qPCR data were statistically analyzed by GraphPad 
Prism 7, while ImageJ was used to count the number of 
cells in the immunofluorescence map, where the image size, 
layer, and contrast could be modified. Two-tailed, unpaired 
Student’s t tests were used to determine statistical signifi-
cance when comparing two groups, and one-way ANOVA 
followed by a Dunnett multiple comparison test was used 
when comparing more than two groups. p values < 0.05 were 
considered statistically significant. The experimental data 
and images were recombined and typeset using Adobe Illus-
trator software. Each experiment was repeated at least three 
times to ensure the accuracy and reliability of the experi-
mental results (n ≥ 3). The number of replicates is indicated 
in each figure legend.

Results

Expression and localization of YAP in mouse 
cochlear HCs

To determine the role of the Hippo/YAP signaling path-
way in cochlear HC injury protection, we first studied the 
expression and localization of YAP (a core effector of Hippo 
signaling pathway) in the mouse cochlea. We dissected the 
cochleae from postnatal day (P)3 and P30 WT mice and 
immunolabeled them with the HC marker Myosin7a, the 
supporting cell (SC) marker Sox2, and DAPI to label the 
DNA. We first observed the cochlear basilar membrane 
under a 5 × microscope (Fig. 1A). Immunofluorescence 
staining showed that YAP was expressed in the cytoplasm of 
cochlear HCs (Fig. 1C, D). Western blot and RT-PCR dem-
onstrated that YAP was strongly expressed in the P3 mouse 
cochlea and brain (Fig. 1B, E). These results suggested that 

Table 1  The primer sequences 
were used in this study

Gene Forward sequence (5′–3′) Reverse sequence (5′–3′)

YAP ACC CTC GTT TTG CCA TGA AC TGT GCT GGG ATT GAT ATT CCGTA 
C-Abl AGC CGC TTC AAC ACT CTG G ACA CCG TAG ATA GTG GGC TTG 
Bax TGA AGA CAG GGG CCT TTT TG AAT TCG CCG GAG ACA CTC G
Caspase8 ATG GCG GAA CTG TGT GAC TCG GTC ACC GTG GGA TAG GAT ACA GCA 
Apaf1 AGT GGC AAG GAC ACA GAT GG GGC TTC CGC AGC TAA CAC A
FADD GCT CCA GAA TGG GCG AAG TAA ACG GAT GTG CGG AGG TAA AAA 
Bcl-2 GTC GCT ACC GTC GTG ACT TC CAG ACA TGC ACC TAC CCA GC
TEAD-2 GAA GAC GAG AAC GCG AAA GC GAT GAG CTG TGC CGA AGA CA
Lats1 AAA GCC AGA AGG GTA CAG ACA CCT CAG GGA TTC TCG GAT CTC 
P73 GCA CCT ACT TTG ACC TCC CC GCA CTG CTG AGC AAA TTG AAC 
β-actin ACG GCC AGG TCA TCA CTA TTG AGG GGC CGG ACT CAT CGT A
Nqo1 AGG ATG GGA GGT ACT CGA ATC AGG CGT CCT TCC TTA TAT GCTA 
Gsr TGC ACT TCC CGG TAG GAA AC GAT CGC AAC TGG GGT GAG AA
Glrx AGT CTG GAA AGG TGG TCG TG CCA TTA GCA TGG CTG GAC GA
Sod1 GGA GCA AGG TCG CTT ACA GA AGT GAC AGC GTC CAA GCA AT
Alox15 GGC TCC AAC AAC GAG GTC TAC AGG TAT TCT GAC ACA TCC ACCTT 
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YAP plays an important role in the development of HCs in 
the mouse cochlea, and may be involved in the regulation 
of related physiological processes in the inner ear, which 
provides a basis for further study.

The Hippo pathway is activated and the expression 
of YAP is decreased in cochlear HCs after neomycin 
treatment

We next explored the expression of YAP and Hippo target 
genes in the cochlear HCs after neomycin treatment. We 
dissected the cochleae from P3 WT mice and cultured them 
with 0.5 mM neomycin for 12 h (Fig. 2A). Both immuno-
fluorescence and western blot results showed that the expres-
sion of YAP was decreased in the HCs after neomycin injury 
(Fig. 2B, D). qPCR results revealed that the expressions 
of YAP and the Hippo downstream target gene TEAD-2 
were significantly downregulated after neomycin treat-
ment (Fig. 2C). These results demonstrated that the Hippo 
pathway was activated in the cochlear HCs after neomycin 
injury, indicating that the Hippo/YAP signaling pathway 
is a protective physiological mechanism against neomycin 
injury.

YAP overexpression protects 
against neomycin‑induced HC loss in vitro

To investigate the protective role of the Hippo/YAP signal-
ing pathway against neomycin-induced HC loss, we used the 
YAP agonist XMU and the YAP inhibitor VP in two inde-
pendent in vitro experiments. First, cochlear tissues from P3 
WT mice were cultured with XMU (5 μM) or VP (5 μM) for 
36 h (Fig. 2A). Immunofluorescence staining demonstrated 
upregulated expression of YAP in the XMU-treated group 
and downregulated expression of YAP in the VP-treated 
group. The HCs were lost after VP treatment (Fig. 2B). Both 
XMU and VP dissolve in DMSO, and it was necessary to 
find an appropriate drug concentration because excessive 
concentrations are cytotoxic and will lead to cell apopto-
sis, which will affect the experimental results. To explore 
the optimal concentration of XMU and VP, we dissected 
the cochleae from P3 WT mice and cultured them with dif-
ferent concentrations of XMU and VP for 36 h (Fig. 2A). 
qPCR results showed that XMU-treated groups had signifi-
cantly higher expression of YAP and the Hippo downstream 
target gene TEAD-2 than the control group, while the VP-
treated group had significantly lower expression of YAP and 
TEAD-2 than the control group. Compared to 2 μM and 
5 μM, the optimal concentration of XMU was 1 μM, and the 
optimal concentration of VP was 2 μM compared to 1 μM 
and 5 μM. Therefore, we chose 1 μM XMU and 2 μM VP 

pretreatment for 12 h under the treatment conditions in the 
following experiments (Fig. 3B, C).

We next used 1 μM XMU or 2 μM VP to pretreat the 
cochleae for 12 h before neomycin exposure. We then treated 
the cultured cochleae with 0.5  mM neomycin together 
with 1 μM XMU or 2 μM VP for the next 12 h. Finally, 
we removed neomycin and treated the cultured cochleae 
with 1 μM XMU or 2 μM VP for another 12 h (Fig. 3A). 
The cochleae were immunolabeled with the HC marker 
Myosin7a and the DNA marker DAPI after culturing the 
cochleae with different treatments. Immunofluorescence 
staining showed that the XMU/neomycin-treated group had 
significantly less HC loss than the neomycin-only group. In 
contrast, the VP/neomycin-treated group had significantly 
greater HC loss than the neomycin-only group (Fig. 3D, E). 
These results demonstrate that YAP overexpression could 
protect against neomycin-induced HC loss in vitro.

The Hippo/YAP signaling pathway regulates 
neomycin‑induced HC apoptosis in vitro

We also sought to determine the mechanism by which the 
Hippo/YAP signaling pathway protects against neomycin-
induced HC loss. Previous studies have reported that neo-
mycin kills HCs by inducing apoptosis, in which TUNEL 
and cleaved-caspase3 were used as markers of aminogly-
coside-induced HC apoptosis [38–41]. Therefore, immuno-
fluorescence staining with TUNEL and cleaved-caspase-3 
was performed to detect apoptotic cochlear HCs after dif-
ferent treatments. The immunofluorescence results showed 
that the numbers of cleaved-caspase3 + /Myosin7a + and 
TUNEL + /Myosin7a + double-positive cells per 100 mm of 
the cochlea in the middle turn were significantly increased in 
the neomycin-treated group compared to the control group 
(Fig. 4A–D). In additon, the numbers of cleaved-caspase3 + /
Myosin7a + and TUNEL + /Myosin7a + double-positive cells 
in the XMU/neomycin-treated group were significantly 
reduced compared to those in the neomycin-only group. In 
contrast, when cochleae were pretreated with VP the num-
bers of cleaved-caspase3 + /Myosin7a + and TUNEL + /
Myosin7a + double-positive cells were increased compared 
to those in the neomycin-only group (Fig. 4A–D).

We next performed qPCR to explore the expression level 
of apoptosis-related genes in the cochlea after different treat-
ments. The qPCR results demonstrated that the expression 
of the pro-apoptotic genes Caspase8, Bax (Bcl-2-associated 
X protein), and Apaf1 (Apoptotic Peptidase Activating Fac-
tor 1) was significantly increased after neomycin treatment 
compared to that of the control group, and the expression of 
the anti-apoptotic gene Bcl-2 (B Cell Leukemia/Lymphoma 
2) was significantly decreased compared to that in the con-
trol group (Fig. 4E). Furthermore, the YAP inhibitor VP 
significantly upregulated the expression of the pro-apoptotic 
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Fig. 2  The Hippo pathway is activated and the expression of YAP 
is decreased in cochlear HCs after neomycin treatment. A The dis-
sected cochleae were cultured in vitro with different treatments. In the 
neomycin-treated group, the cochleae were allowed to recover for the 
first 12 h, treated with 0.5 mM Neomycin for the next 12 h, and then 
allowed to recover again for another 12  h. In the VP-treated group, 
the cochleae were cultured with 5 μM VP for 36 h without neomy-
cin. In the XMU-treated group, the cochleae were cultured with 5 μM 
XMU for 36  h without neomycin. B Immunofluorescence staining 
showed that the expression level of YAP was decreased in the HCs 

after neomycin treatment compared with the control group and that 
the expression of YAP was upregulated in the XMU-treated group 
and downregulated in the VP-treated group. The HCs were lost after 
VP treatment. C qPCR results revealed that the expression of YAP 
and the Hippo downstream target gene TEAD-2 was significantly 
downregulated after neomycin treatment. D Western blot results 
showed that the expression of YAP was decreased in the HCs after 
neomycin injury. *p < 0.05, **p < 0.01, ***p < 0.001, n = 3. Scale 
bars = 20 µm
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Fig. 3  YAP overexpression protects against neomycin-induced HC 
loss in vitro. A Schematic diagram of drug addition in tissue culture 
(divided into four groups). B, C The mRNA levels of YAP were ana-
lyzed by qPCR after culturing with different concentrations of XMU/
VP under the same conditions. The results showed that the optimal 
concentration of XMU was 1  μM and the optimal concentration of 
VP was 2  μM. D Immunofluorescence staining with Myosin7a and 
DAPI in the apical, middle, and basal turns of the cochlear basilar 
membrane after different treatments. E Quantification of the num-
bers of Myosin7a + / DAPI + double-positive cells in D showing that 
the XMU-treated group had significantly reduced HC loss after neo-
mycin treatment. *p < 0.05, **p < 0.01, ***p < 0.001, n = 4. Scale 
bars = 20 µm

◂

genes Caspase8, Bax, and Apaf1, and reduced the expres-
sion of the anti-apoptotic gene Bcl-2. The expression of the 
pro-apoptotic genes Caspase8, Bax, and Apaf1 was signifi-
cantly decreased, and the expression of the anti-apoptotic 
gene Bcl-2 was increased when the cochleae were treated 
with the YAP agonist XMU (Fig. 4F). Taken together, the 
above results suggested that the Hippo/YAP signaling path-
way could regulate neomycin-induced HC apoptosis in vitro.

The Hippo/YAP signaling pathway regulates the ROS 
levels in cochlear HCs after neomycin injury

Previous studies have reported that aminoglycoside-
induced accumulation of ROS is closely related to HC 
apoptosis in the mouse cochlea [42–44]. Mito-SOX Red is 
a redox fluorophore that selectively detects mitochondrial 
superoxide and can be used to evaluate the ROS levels in 
different treatment groups [45–48]. To determine the rela-
tionship between HC loss and oxidative stress in the mouse 
cochlea, we dissected and cultured the cochleae from P3 
WT mice and then treated them with neomycin together 
with XMU or VP (Fig. 5A). We used Mito-SOX Red to 
detect the ROS levels in cochlear HCs by immunofluores-
cence staining. The immunofluorescence results showed 
that the number of Mito-SOX + /Myosin7a + double-pos-
itive cells per 100 mm of the cochlea in the middle turn 
was significantly increased in the neomycin-treated group 
compared to that in the control group (Fig. 5B, C). Addi-
tionally, the number of Mito-SOX + /Myosin7a + double-
positive cells in the XMU/neomycin-treated group was sig-
nificantly less than that in the neomycin-treated group. In 
contrast, when the cochleae were pretreated with VP, the 
number of Mito-SOX + /Myosin7a + double-positive cells 
was increased compared to that in the neomycin-treated 
group (Fig. 5B, C). We next conducted qPCR to inves-
tigate the expression level of redox-related genes in the 
mouse cochlea after different treatments. We found that the 
expressions of the antioxidant genes Nqo1 (NAD (P) H: 
Quinone Oxidoreductase 1), Gsr (Glutathione reductase), 
Glrs (Glutaredoxin), and Sod1 (Superoxide dismutase 1) 
were significantly decreased after neomycin treatment 

compared to the control group, and the expression of the 
pro-oxidant gene Alox15 (Arachidonate 15-Lipoxyge-
nase) was significantly increased in the neomycin group 
compared to the control group (Fig. 5D). In addition, the 
expression of the antioxidant genes Nqo1, Gsr, Glrs, and 
Sod1 was significantly increased, and the expression of the 
pro-oxidant gene Alox15 was decreased when the coch-
leae were pretreated with XMU compared to the neomy-
cin group (Fig. 5D). These results demonstrated that the 
Hippo/YAP signaling pathway regulates the accumulation 
of ROS in cochlear HCs after neomycin injury.

C‑Abl expression is regulated by the Hippo/YAP 
signaling pathway in cochlear HCs after neomycin 
exposure

It has been reported that the Hippo/YAP signaling pathway 
prevents DNA damage-induced apoptosis through inhibition 
of the non-receptor tyrosine kinase C-Abl (Abelson murine 
leukemia viral oncogene) [49]. YAP activates pro-apoptotic 
genes along with p73 under conditions of DNA damage, and 
C-Abl promotes the association of YAP with p73, which 
induces apoptosis [50]. This program switching is mediated 
by C-Abl via phosphorylation of YAP at the Y357 residue 
[51, 52]. To investigate the relationship between C-Abl 
expression and neomycin-induced HC apoptosis in the 
mouse cochlea, we first verified the expression and locali-
zation of C-Abl by immunofluorescence staining, which 
showed that C-Abl was expressed in the nuclei of cochlear 
HCs (Fig. 6A). We next investigated the C-Abl expression 
in neomycin-treated cochleae and XMU/neomycin-treated 
cochleae. After 12 h of neomycin treatment, intense nuclear 
C-Abl staining was observed in neomycin-treated cochleae 
compared to the control cochleae, indicating active C-Abl 
signaling in response to neomycin exposure (Fig. 6B, C). 
Moreover, the immunofluorescence staining intensity of 
C-Abl was significantly decreased in XMU/neomycin-
treated cochleae compared to neomycin-treated cochleae 
(Fig. 6B, C). qPCR and western blot results showed that 
C-Abl expression was significantly increased in neomycin-
treated cochleae compared to control cochleae, and was 
significantly decreased in XMU/neomycin-treated cochleae 
compared to neomycin-treated cochleae (Fig. 7B–D). These 
results suggest that C-Abl expression is increased in coch-
lear HCs after neomycin exposure and that C-Abl expression 
in cochlear HCs is regulated by the Hippo/YAP signaling 
pathway.

YAP overexpression inhibits C‑Abl‑mediated HC 
apoptosis in cochlear HCs after neomycin damage

Our initial findings suggested that C-Abl plays an impor-
tant role in neomycin-induced HC apoptosis. To confirm 
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Fig. 4  The Hippo/YAP signaling pathway regulates neomycin-
induced HC apoptosis in vitro. A Immunofluorescence staining with 
TUNEL and Myosin7a in the middle turn of the cochlear basilar 
membrane after different treatments. C Immunofluorescence stain-
ing with cleaved-Caspase3 and Myosin7a in the middle turn of the 
cochlear basilar membrane after different treatments. B and D Quan-
tification of the numbers of TUNEL + / Myosin7a + double-positive 
cells and cleaved-Caspase3 + / Myosin7a + double-positive cells in 
(A and C). The numbers of TUNEL + / Myosin7a + double-positive 
cells and cleaved-Caspase3 + / Myosin7a + double-positive cells were 
significantly increased in the neomycin-treated group compared with 
the control group. Moreover, the numbers of apoptotic cells were sig-
nificantly increased by VP treatment and decreased by XMU treat-
ment. E The mRNA levels of apoptosis-related genes were analyzed 
by qPCR after neomycin treatment. F The mRNA levels of apopto-
sis-related genes were analyzed by qPCR in the VP-pretreatment 
group and XMU-pretreatment group after neomycin injury. *p < 0.05, 
**p < 0.01, ***p < 0.001, n = 3. Scale bars = 20 µm

◂

the role of C-Abl in neomycin-induced HC apoptosis, we 
first dissected and cultured the cochleae from P3 WT mice 
and then treated them with neomycin together with XMU 
or VP (Fig. 7A). Immunofluorescence staining and west-
ern blot results demonstrated that C-Abl expression was 
significantly increased after neomycin treatment, and sig-
nificantly decreased after pretreatment with XMU, indi-
cating that YAP inhibits C-Abl activity (Figs. 6C, 7B). 
We also performed qPCR to explore the expression level 
of C-Abl signaling downstream genes in the cochlea after 
different treatments. The qPCR results demonstrated that 
the expression of the pro-apoptotic genes C-Abl and p73 
was significantly increased after neomycin treatment com-
pared to the control group (Fig. 7C). Simultaneously, the 
expression of the pro-apoptotic genes C-Abl and p73 was 
significantly increased after pretreatment of cochleae with 
the YAP inhibitor VP compared to the neomycin-only group. 
In contrast, the expression of the pro-apoptotic genes C-Abl 
and p73 was significantly decreased when the cochleae were 
treated with the YAP agonist XMU (Fig. 7D). Thus, YAP/ 
p73-dependent apoptosis requires phosphorylation by C-Abl, 
which is in agreement with the findings of previous stud-
ies [53, 54]. In conclusion, neomycin-induced HC apopto-
sis was mediated by C-Abl, and YAP overexpression could 
inhibit C-Abl-mediated HC apoptosis in cochlear HCs after 
neomycin damage.

Discussion

The Hippo signaling pathway is a highly evolutionarily con-
served signaling pathway that was first discovered in Dros-
ophila, and it is the most recently discovered member of the 
known signaling pathway families involved in the control 
of tissue development and organ size [21, 22]. The Hippo 

signaling pathway controls organ size by regulating cell pro-
liferation, apoptosis, and stem cell self-renewal [55–57]. The 
core components of the Hippo signaling pathway include 
serine/threonine kinase cascades, transcriptional coactiva-
tors, and transcription factors. YAP is a key transcriptional 
coactivator downstream of the Hippo signaling pathway. Due 
to the activation of upstream kinases such as MST1/2 and 
LATS1/2, YAP phosphorylation occurs on the serine resi-
dues of five consistent HXRXXS motifs in vitro and in vivo 
[16, 58, 59]. YAP phosphorylation is located at the S127 
site and interacts with 14-3-3 to inhibit the transcriptional 
activity of YAP, and this causes YA to remain in the cyto-
plasm and participate in the regulation of cell apoptosis. In 
contrast, when upstream kinases are inactivated, unphospho-
rylated YAP can bind to downstream TEAD family members 
(such as TEAD1-4) to enter the nucleus and participate in 
the regulation of cell proliferation, differentiation, and cell 
survival [60]. Protein phosphatase-1 specifically dephospho-
rylates YAP at S127 and promotes the nuclear accumulation 
and transcriptional activity of YAP [61]. Enhancing YAP 
expression contributes to wound repair and tissue regenera-
tion after inflammatory injury [62].

Hearing loss is a common clinical sensory disorder 
affecting 466 million people worldwide and occurs mainly 
as a result of HC damage. Ototoxic drugs, viral infections, 
genetic susceptibility, aging, and noise can all lead to irre-
versible sensorineural hearing loss. Ototoxic drugs, espe-
cially aminoglycosides, cause permanent hearing loss in 
approximately half a million people each year in the USA 
[63]. Aminoglycosides enter HCs through specific mem-
brane channels and endocytosis, and accumulate to cytotoxic 
levels, ultimately resulting in HC death [64, 65]. Because 
HCs do not have regenerative capacity in mature mammals, 
protection against HC damage is critical to maintaining hear-
ing function. An increasing number of studies have focused 
on the mechanisms and therapeutic approaches of HC loss 
caused by ototoxic drugs [66], and the Hippo/YAP signaling 
pathway has been shown to play an important regulatory role 
in the repair and regeneration of tissues such as the eyes, 
brain, kidney, heart, liver, and skin [30–35]. Unfortunately, 
there are few studies on the role of the Hippo/YAP signal-
ing pathway in auditory organs. Recently, YAP has been 
reported to be required for HC proliferation and differentia-
tion in the inner ear [67–69]. However, whether the Hippo/
YAP signaling pathway is required for HC survival has not 
been previously investigated.

To further explore the specific role and regulatory 
mechanism of the Hippo signaling pathway in HC dam-
age protection in the mouse cochlea, we first verified the 
expression and localization of YAP in the mouse cochlea. 
We dissected cochleae from P3/P30 WT mice and cultured 
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them in vitro. The immunofluorescence results showed that 
YAP was expressed in the cytoplasm of cochlear HCs, which 
is consistent with the biological characteristics of YAP, in 
which, under normal conditions, YAP remains in the cyto-
plasm and is targeted for degradation [70]. We next used 

the aminoglycoside drug neomycin to specifically damage 
HCs to construct an HC injury model. We found that the 
expression of YAP was decreased after neomycin injury. 
Hippo/YAP signaling pathway was activated by XMU in 
cochlear HCs after neomycin treatment, indicating that the 

Fig. 5  The Hippo/YAP signaling pathway regulates the ROS lev-
els in cochlear HCs after neomycin injury. A Schematic diagram of 
drug addition in tissue culture (divided into four groups). B Immu-
nofluorescence staining with Mito-SOX and Myosin7a in the middle 
turn of the cochlear basilar membrane after different treatments. C 
Quantification of the numbers of Mito-SOX + / Myosin7a + double-
positive cells in (B). The numbers of Mito-SOX + / Myosin7a + dou-

ble-positive cells were significantly increased in the neomycin-treated 
group compared with the control group. In addition, the neomycin-
induced oxidative stress was significantly increased by VP treatment 
and decreased by XMU treatment. D The mRNA levels of redox-
related genes were analyzed by qPCR in the neomycin-only group 
and the XMU-pretreatment group after neomycin injury. *p < 0.05, 
**p < 0.01, ***p < 0.001, n = 3. Scale bars = 20 µm
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Hippo/YAP signaling pathway is a protective physiological 
mechanism against neomycin injury.

We hypothesized that neomycin-induced HC loss could 
be prevented by regulating the expression level of YAP. To 
verify this hypothesis, we used the YAP agonist XMU and 
the YAP inhibitor VP to upregulate and downregulate the 
expression level of YAP, respectively. The pharmacokinetic 
characteristics of XMU could specifically inhibit the activity 
of MST1/2 in mice [71, 72], leading to activation of down-
stream YAP. VP has been used as a photosensitizer for pho-
todynamic therapy, which has been approved by the Food 
and Drug Administration for treating age-related macular 
degeneration, pathological myopia, and neovascularization 
due to putative ocular histoplasmosis [73]. A recent high-
throughput drug screening study reported that VP could 
inhibit the transcriptional activation of YAP-TEAD, lead-
ing to inhibition of cell proliferation and cell survival, and 
promotion of cell apoptosis [74].

In this study, we also found that the optimal concentration 
of XMU was 1 μM and that the optimal concentration of VP 
was 2 μM. The appropriate concentration of XMU or VP 
was used to pretreat the dissected cochleae, which were then 
cultured with neomycin in vitro. The immunofluorescence 
results showed that HC loss was significantly increased 
after neomycin injury compared to the control group. XMU 
significantly reduced the neomycin-induced HC loss, and 
VP significantly increased the neomycin-induced HC loss, 
indicating that neomycin-induced HC loss was significantly 
decreased after upregulation of YAP and increased after 
downregulation of YAP. These results are consistent with 
those of previous studies in other tissues such as the retina, 
brain, liver, kidney, and heart [30–35], all of which indicated 
that YAP plays a vital role in HC damage protection.

Several pathways are involved in aminoglycoside-induced 
HC damage, including cell apoptosis and oxidative stress 
[75, 76]. Previous studies have demonstrated that one of the 
most common causes of HC death is the production of ROS 
[77]. Oxidative stress inhibits the endogenous antioxidant 
systems of the cochlea, leading to excessive production of 
ROS, disrupting redox balance, triggering mitochondrial 
depolarization, and activating caspase-3-mediated apopto-
sis [78, 79]. In our study, we used MitoSox to detect the 
levels of ROS. Our results showed that XMU significantly 
reduced the ROS levels in cochlear HCs after neomycin 
exposure compared to the neomycin-only group, indicat-
ing that the Hippo/YAP signaling pathway can regulate 
the ROS levels. We next used TUNEL and Caspase-3 to 
label the apoptotic cells. The immunofluorescence results 
showed that the numbers of Myosin7a + /TUNEL + and 
Myosin7a + /Caspase3 + double-positive cells in the XMU/

neomycin-treated group were significantly decreased com-
pared to the neomycin-only group. In addition, the results 
of RT-qPCR demonstrated that the expression of the pro-
apoptotic genes caspase-8, Bax, and Apaf1 was significantly 
decreased, while the expression of the anti-apoptotic gene 
Bcl-2 was significantly increased after XMU treatment. This 
suggests that the Hippo/YAP signaling pathway can regulate 
caspase-mediated apoptosis in cochlear HCs after neomy-
cin injury. Activation of YAP inhibits HC apoptosis, while 
inhibition of YAP promotes HC apoptosis. In conclusion, 
the Hippo/YAP signaling pathway protects against neomy-
cin-induced HC damage by reducing the ROS levels; thus, 
decreasing caspase-mediated cell apoptosis. However, this 
is not the sole mechanism responsible for aminoglycoside-
induced HC death.

YAP acts as a tumor suppressor by activating p73 (a 
member of the downstream p53 family) in response to DNA 
damage. YAP binds to the PPPY motif of p73 through its 
WW domain and acts as a transcriptional coactivator of 
p73; thus, inducing the transcription of pro-apoptotic genes 
such as Bax [80]. C-Abl (Abelson murine leukemia viral 
oncogene) is a non-receptor tyrosine kinase that is activated 
to phosphorylate p73 at the Tyr99; thus, supporting the 
p73-dependent induction of apoptosis. At the same time, 
activated C-Abl also phosphorylates YAP at the Tyr357, and 
tyrosine-phosphorylated YAP accumulates on the targeted 
apoptotic gene promoter, where it preferentially binds to 
p73. Therefore, C-Abl-mediated phosphorylation of YAP 
increases the binding affinity of YAP to p73 by inhibiting 
the transcriptional activity of YAP-TEAD; thus, activating 
the pro-apoptotic target protein and transforming the activity 
of YAP from anti-apoptotic to pro-apoptotic [51, 52, 81]. 
To further investigate the effect of the C-Abl/ p73 transduc-
tion pathway in neomycin-induced HC damage in the mouse 
cochlea, we first verified the expression and localization of 
C-Abl. Immunofluorescence results showed that C-Abl was 
strongly expressed in the nucleus of HCs. In the follow-
ing in vitro experiment, we observed the changes in major 
effector factors, such as C-Abl, YAP, TEAD, and p73, in 
different treatment groups at the RNA and protein levels. We 
found that the expression of C-Abl and p73 was significantly 
increased, while the expression of YAP and TEAD were 
decreased after neomycin injury. These findings indicate 
that neomycin exposure activates C-Abl and phosphoryl-
ates downstream YAP and that the phosphorylation of YAP 
leads to interaction with p73 and subsequent cell apoptosis 
and loss of HCs. Furthermore, YAP overexpression inhibited 
the activation of C-Abl; thus, inhibiting C-Abl-mediated cell 
apoptosis and suggesting that C-Abl-mediated HC apoptosis 
is regulated by the Hippo signaling pathway.
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Fig. 6  C-Abl expression is regulated by the Hippo/YAP signaling 
pathway in cochlear HCs after neomycin exposure. A The coch-
leae were dissected from P3 WT mice, and immunolabeled with 
Myosin7a (green), Sox2 (blue), and C-Abl (red). Immunofluores-
cence staining showed the expression and localization of C-Abl in 
the P3 WT mouse cochlea under a 63 × microscope, and C-Abl was 
expressed in the nuclei of cochlear HCs. B Schematic diagram of 
drug addition in tissue culture (divided into three groups). C Immu-
nofluorescence staining with C-Abl and Myosin7a in the middle 
turn of the cochlear basilar membrane after different treatments. The 
expression of C-Abl was significantly increased in the neomycin-
treated group and decreased in the XMU/neomycin-treated group. 
*p < 0.05, **p < 0.01, ***p < 0.001, n = 3. Scale bars = 20 µm

◂ Conclusion

In summary, we present the first investigation into the role 
of the Hippo/YAP signaling pathway in HC damage protec-
tion in the mouse cochlea. We showed that downregulated 
YAP expression increased neomycin-induced HC loss, and 
that YAP overexpression decreased neomycin-induced HC 
loss. We next demonstrated that the Hippo/YAP signaling 
pathway could regulate C-Abl-mediated HC apoptosis and 
ROS levels, which protects against neomycin-induced HC 
loss after neomycin exposure. Our results suggest that the 

Fig. 7  YAP Overexpression inhibits C-Abl-mediated HC apoptosis in 
cochlear HCs after neomycin damage. A Schematic diagram of drug 
addition in tissue culture (divided into four groups). B The cochleae 
were dissected from P3 WT mice used for Western blot experiment. 
Western blot showed that the expression of C-Abl was significantly 
increased in the neomycin-treated group and decreased in the XMU/

neomycin-treated group. C, D The mRNA levels of C-Abl signal-
ing downstream genes were analyzed by qPCR in the different treat-
ment groups. The qPCR results showed that XMU downregulated the 
expression of C-Abl and p73 and that VP upregulated the expression 
of C-Abl and p73. *p < 0.05, **p < 0.01, ***p < 0.001, n = 3. Scale 
bars = 20 µm
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Hippo/YAP signaling pathway plays an essential role in HC 
damage protection and thus represents a novel therapeutic 
target for aminoglycoside-induced HC injury.
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