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ABSTRACT: One of the major decisions that germ cells make during their development is whether to differentiate into oocytes or sperm.
In mice, the germ cells’ decision to develop as male or female depends on sex-determining signalling molecules in the embryonic gonadal

environment rather than the sex chromosome constitution of the germ cells themselves. In response to these sex-determining cues,

germ cells in female embryos initiate oogenesis and enter meiosis, whereas germ cells in male embryos initiate spermatogenesis and

inhibit meiosis until after birth. However, it is not clear whether the signalling molecules that mediate germ cell sex determination act in

the developing testis or the developing ovary, or what these signalling molecules might be. Here, we review the evidence for the existence

of meiosis-inducing and meiosis-preventing substances in the developing gonad, and more recent studies aimed at identifying these molecules

in mice. In addition, we discuss the possibility that some of the reported effects of these factors on germ cell development may be indirect

consequences of impairing sexual differentiation of gonadal somatic cells or germ cell survival. Understanding the molecular mechanisms of

germ cell sex determination may provide candidate genes for susceptibility to germ cell tumours and infertility in humans.
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Introduction

Somatic sex determination

Sex determination in mice, as in most mammals, occurs through inheri-
tance of the X and Y sex chromosomes. A number of genes have been
implicated in translating the sex chromosome constitution of the
embryo into sexual differentiation of the gonadal somatic cells (Fleming
and Vilain, 2004; Wilhelm et al., 2007; Matzuk and Lamb, 2008), and
only a simplified outline of somatic sex determination is presented here.
The presence or absence of the Y-encoded male-determining Sry gene
directs the developing gonad to differentiate into either a testis or an
ovary, which in turn directs the sexual development of the rest of the
embryo (Lovell-Badge and Robertson, 1990; Koopman et al., 1991). In
mice, a transient burst of Sry expression in the gonadal supporting cell
lineage at ~10.5 days post-coitum (dpc) directly leads to up-regulation
of the transcription factor Sox9 in XY gonads (Sekido et al., 2004;
Sekido and Lovell-Badge, 2008). Both Sry and Sox9 are necessary and suf-
ficient to differentiate the supporting cell lineage into male Sertoli cells
rather than female granulosa cells (Lovell-Badge and Robertson, 1990;
Koopman et al., 1991; Vidal et al., 2001; Chaboissier et al., 2004). The
Sertoli cells then signal to and masculinize other cell types in the gonad

and adjacent mesonephros to induce testis differentiation. Thus, Sertoli
cells directly or indirectly induce male differentiation of the germ cells,
the testosterone-producing Leydig cells and the peritubular myoid cells
that will surround the Sertoli cells and germ cells to form the testis
cords (Palmer and Burgoyne, 1991; Ross and Capel, 2005). In addition,
nascent Sertoli cells express the signalling molecule Fgf9, which signals
back to the Sertoli cells to maintain up-regulated Sox9 expression and
male development in the supporting cell lineage (Colvin et al., 2001;
Kim et al., 2006). However, it is not clear how Sertoli cells masculinize
some of the other cell types, such as the germ cells, in the developing testis.

In XX embryos, the supporting cell lineage differentiates into female
granulosa cells when Sry expression does not occur. It is not clear
whether other gonadal cell types are directly orindirectly induced to differ-
entiate along a female pathway by the developing granulosa cells, or differ-
entiate as female by default. Whnt signalling molecules such as Rspo/ and
Wht4 are expressed by XX gonadal somatic cells and are required for
female sex determination (Vainio et al., 1999; Chassot et al., 2008).
Rspo! and Wnt4 appear to induce female differentiation at least in part
by down-regulating Sox9 expression in the supporting cell lineage (Kim
et al., 2006; Chassot et al., 2008). Thus, the antagonistic effects of Wnt
signalling molecules and the Sry/Sox9-dependent Fgf signalling molecules
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Figure | Somatic sex determination in mice. Schematic diagram showing differentiation of gonadal supporting cells (green) into male Sertoli cells
(blue) or female pre-granulosa cells (pink). Changes in gene expression driving supporting cell differentiation and the downstream sexual differentiation

of other gonadal cell types are indicated.

drive sexual differentiation of the supporting cell lineage and development
of the gonad down either a male or a female pathway (Fig. 1).

Germ cell sex determination

The germ cells are one of the main cell types that respond to
sex-determining signalling molecules in the embryonic gonad.
Migrating primordial germ cells reach the genital ridge at ~10.5 dpc
in mice and differentiate into either meiotic oocytes or quiescent pros-
permatogonia depending on the sex of the embryo. Germ cells pro-
liferate during migration and for a few days after colonizing the
gonad in both male and female embryos. The first morphological
sign of sex-specific germ cell development is seen at ~ 3.5 dpc
when female germ cells initiate meiosis. These meiotic oocytes
proceed through the leptotene, zygotene and pachytene stages of
meiotic prophase before birth, then arrest in diplotene until adult-
hood. In contrast, male germ cells do not initiate meiosis in the
embryo, but rather enter a period of quiescence during late embryo-
genesis. After birth, some of the male germ cells will resume mitotic
proliferation and differentiate into spermatogonial stem cells. The
first wave of male germ cells to initiate meiosis will not do so until
around a week after birth (MclLaren, 1984; McLaren, 2003).

The germ cells” decision to develop as male or female depends on
external signals in their surrounding environment rather than the chro-
mosomal sex of the germ cells themselves: XY germ cells can develop
as oocytes in female chimaeric embryos and XX germ cells can
develop as prospermatogonia in male chimaeric embryos (Ford
et al., 1975; Palmer and Burgoyne, 1991). These observations are con-
sistent with the sex-determining activity of the Y chromosome acting
only in the supporting cell lineage and the resulting Sertoli cells influen-
cing sexual differentiation of other gonadal cell types through extra-
cellular signals (Palmer and Burgoyne, 1991). The developmental

timing of the germ cells’ response to sex-determining signals in the
gonad differs between male and female embryos (Fig. 2). Germ cells
in XY gonads commit to spermatogenesis between [|1.5 and
12.5 dpc (McLaren and Southee, 1997; Chuma and Nakatsuji, 2001;
Adams and Mclaren, 2002). Thus, germ cells in |1.5dpc XY
gonads can be induced to sex-reverse and initiate meiosis by
co-culturing on feeder cells, in embryonic lung tissue, and in female
embryonic urogenital ridge tissue (MclLaren and Southee, 1997;
Chuma and Nakatsuji, 2001; Adams and McLaren, 2002). However,
by 12.5 dpc germ cells in XY gonads have responded to the XY
gonadal environment, are committed to differentiate along a male
pathway and will not sex-reverse or initiate meiosis even when
co-cultured in female embryonic urogenital ridge tissue (Adams and
McLaren, 2002). Germ cells in XX gonads appear to commit to oogen-
esis a day later than germ cells in XY gonads commit to spermato-
genesis. Thus, germ cells in 12.5 dpc XX gonads can be induced to
sex-reverse and differentiate into prospermatogonia by co-culture in
male embryonic urogenital ridge tissue, but germ cells in 13.5 dpc
XX gonads continue to differentiate as meiotic oocytes in these con-
ditions (Adams and McLaren, 2002).

The germ cells’ commitment to male development occurs at
around the same time that germ cells and Sertoli cells become
enclosed in the developing testis cords in XY gonads. This has led
to some suggestions that the formation of testis cords may help to
determine germ cell sex by providing a physical barrier that prevents
signalling molecules from reaching the germ cells. However, germ
cells can differentiate into prospermatogonia in the testis interstitium
between testis cords, as well as when testis cord formation is pre-
vented in culture, suggesting that the testis cords are not required
for male germ cell sex determination (MclLaren, 1984; Buehr et dl.,
1993; Yao and Capel, 2002). Thus, germ cell masculinization and
testis cord formation do not appear to be causally linked and their
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Figure 2 Developmental timing of germ cell sex determination. Schematic diagram of when germ cells commit to spermatogenesis and oogenesis
during mouse embryogenesis. Germ cells are sexually bipotential (green) at | 1.5 dpc, and commit to spermatogenesis (blue) between |1.5 and
12.5 dpc in male gonads or to oogenesis (pink) ~ | day later in female gonads. dpc, days post-coitum.

coincidence may simply reflect these events being parallel downstream
consequences of Sertoli cell differentiation.

The timing of the germ cells’ decision to differentiate as male or
female also coincides with the appearance of germ cells with a distinc-
tive histological appearance that have been described as both post-
mitotic and pre-meiotic (Hilscher et al., 1974; MclLaren, 1984,
2003). These post-mitotic/pre-meiotic germ cells are present in
both male and female embryonic gonads around 12.5—13.5 dpc
(McLaren, 1984, 2003) and represent cells in transition between the
end of a mitotic cell cycle and the start of a meiotic cell cycle (Hilscher
et al., 1974; Wartenberg et al., 1998). Interestingly, both male and
female germ cells initiate expression of some meiotic genes at
~12.5dpc, but while female germ cells then undergo pre-meiotic
DNA replication and proceed through meiotic prophase, male germ
cells do not initiate meiosis and meiotic gene expression gradually
diminishes (Di Carlo et al., 2000; Chuma and Nakatsuji, 2001;
McLaren, 2003). The induction of at least some aspects of meiotic
gene expression in male and female germ cells at ~ 2.5 dpc suggests
that the initial transcriptional activation of these meiotic genes occurs
independently of the sex-determining cues present in the XY gonadal
environment that allow germ cells to commit to spermatogenesis at
this stage.

Evidence for masculinizing and feminizing
factors regulating germ cell

sex determination

The somatic environment of the embryonic gonad could potentially
influence germ cell sex determination through masculinizing factors
in the testis-promoting germ cells to initiate spermatogenesis rather
than a default female pathway; or through feminizing factors in the
ovary-promoting germ cells to initiate oogenesis rather than a

default male pathway; or through masculinizing and feminizing
factors in testes and ovaries, respectively (Fig. 3).

Conceptually, these masculinizing and feminizing factors may each
comprise one or multiple signalling molecules that induce different
aspects of sex-specific germ cell behaviour in male and female
embryos. However, as the initiation or prevention of meiosis has
often been used to monitor sex-specific differentiation of germ cells,
studies have focused on whether a feminizing meiosis-inducing sub-
stance (MIS) and/or a masculinizing meiosis-preventing substance
(MPS) direct sex-specific germ cell behaviour in the embryonic
gonads (Fig. 3). Unfortunately, many of these organ co-culture
studies are contradictory and open to alternative interpretations. Evi-
dence for an MIS mainly implicates the mesonephros as its source: in
cultured hamster ovaries, or grafted mouse embryonic ovaries, pre-
meiotic germ cells only initiate meiosis if the mesonephros is
present, although the germ cells do not sex-reverse in the absence
of the mesonephros (Byskov, 1974; O and Baker, 1976). Organ
co-culture experiments suggest that the mesonephros-derived MIS
can induce germ cell sex-reversal in embryonic testes (Byskov and
Saxén, 1976; O and Baker, 1976; Byskov, 1978a), but this is typically
accompanied by poor development of testis cords, which may indicate
impaired Sertoli cell differentiation. If an MPS exists, its expression
would depend on Sertoli cell function; therefore, the meiosis seen in
these co-culture experiments may be an indirect consequence of a
mesonephros-derived factor impairing Sertoli cell gene expression,
differentiation or survival.

Some of the early studies reporting a male MPS to counteract the
putative mesonephros-derived MIS present in both male and female
embryos describe a factor that causes meiotic germ cells to arrest
during meiotic prophase in organ co-culture experiments (Byskov and
Saxén, 1976), an activity that may be related to the degenerative
effects that the male gonadal environment has on germ cells that are
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Figure 3 Potential mechanisms for germ cell sex determination. Schematic diagram outlining models for how the embryonic gonadal environment
could determine germ cell sex. (A) Using a female MIS only. (B) Using a male MPS only. (€) Using both a female MIS and a male MPS. Green indicates
sexually bipotential germ cells, blue indicates commitment to spermatogenesis and pink indicates commitment to oogenesis. dpc, days post-coitum.

already in meiosis rather than a putative MPS activity that prevents germ
cells from initiating meiosis (Evans et al., 1982; Dolci and De Felici, 1990).
However, although some organ co-culture experiments do suggest that a
diffusible male MPS can prevent pre-meiotic ovarian germ cells from initi-
ating meiosis (Evans et al., 1982), it is not clear whether this is a direct
effect on the germ cells or an indirect consequence of testicular
factors disrupting somatic cell gene expression, differentiation or survival
in the developing ovary. In contrast to the putative MIS, any putative MPS
would appear to originate from the gonad itself rather than the mesone-
phros as removing the mesonephros from | 1.5 dpc XY gonads does not
prevent the germ cells from developing into male prospermatogonia in
culture (Buehr et al., 1993).

Thus, it is not clear whether many of the often contradictory organ
co-culture studies assaying MIS and MPS activity are analysing direct
effects on germ cell development or indirect consequences of chan-
ging somatic cell gene expression, differentiation or survival in the
gonad. In addition, it can also be difficult to distinguish whether
changes in the number of meiotic germ cells reflect changes in pre-
meiotic or meiotic germ cell survival rather than changes in the
number of germ cells initiating meiosis (McLaren, 1984). Moreover,
studies performed in culture systems that do not recapitulate the
normal development of both male and female germ cells can add to
the confusion over how germ cell sex is determined. As a conse-
quence there is, at present, little conclusive in vitro evidence that
either a putative MIS or a putative MPS can directly influence germ
cell sex determination and further work is needed to demonstrate
whether one or both of these factors exists.

In vivo evidence for the activity of an MIS or an MPS in germ cell
sex determination is also somewhat inconclusive. The observation
that meiotic gene expression occurs in an anterior—posterior
wave in developing ovaries (Menke et al.,, 2003; Yao et al., 2003)
provides some in vivo evidence consistent with a mesonephros-
derived MIS diffusing into the anterior embryonic ovary. Alterna-
tively, this wave of gene expression may reflect preferential coloni-
zation of the anterior gonad by the most advanced migrating germ
cells. Interestingly, the spatial distribution of meiotic oocytes within
the developing human ovary is not consistent with a mesonephros-
derived MIS diffusing into the anterior ovary in this species (Childs
et al., 2008).

If an MIS is required for mouse germ cells to initiate meiosis, its
activity cannot be restricted to embryonic ovaries as ectopic germ
cells in the adrenal gland initiate meiosis (Zamboni and Upadhyay,
1983), and germ cells cultured with lung tissue, with feeder cells or
even in a feeder-free system also initiate meiosis (MclLaren and
Southee, 1997; Chuma and Nakatsuji, 2001; Farini et al., 2005).
Indeed, groups of meiotic oocytes are present inside and outside
the testis cords in the anterior region of the testis in normal mouse
embryos (Byskov, 1978b; Yao et al., 2003), suggesting that any MIS
must also be present in the anterior embryonic testis. Interestingly,
ectopic germ cells and cultured germ cells initiate meiosis at around
the same developmental stage as ovarian germ cells (Zamboni and
Upadhyay, 1983; McLaren and Southee, 1997; Chuma and Nakatsuji,
2001). Thus if a widely expressed MIS exists, a cell-autonomous timing
mechanism must regulate when germ cells respond to that external
signal. Alternatively, this timing mechanism may simply trigger germ
cells to initiate meiosis and develop as female by default without
any requirement for an external MIS.

In vivo evidence for an MPS mainly comes from the observation that
ectopic germ cells in the mesonephros of male embryos usually differ-
entiate into prospermatogonia and are prevented from initiating
meiosis (McLaren, 1984). In contrast, ectopic germ cells in a female
mesonephros initiate meiosis (McLaren, 1984). These data suggest
that a diffusible MPS in the embryonic testis can influence germ cell
development in the adjacent mesonephros and is difficult to reconcile
with germ cell sex determination being regulated solely by a
mesonephros-derived MIS. Thus the MIS-only model for germ cell
sex determination (Fig. 3A), and variants of the MIS-only model
where the local testicular environment protects the germ cells from
the action of the diffusible mesonephros-derived MIS, may not be
operating in mice.

New developments

Molecular candidates for factors involved
in germ cell sex determination

Recent studies have attempted to identify molecular candidates for the
putative MIS and MPS. The finding that the retinoic acid (RA)-inducible
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Stra8 gene is expressed in female germ cells from 12.5 dpc, and that
Cyp26b 1, which encodes an enzyme that metabolizes RA, is expressed
in male gonads from 12.5 dpc has led to the role of RA in germ cell sex
determination being investigated (Bowles et al., 2006; Koubova et dl.,
2006). In male and female embryos, RA appears to be synthesized in
the mesonephros and diffuses into the adjacent gonad, where metab-
olism by Cyp26bl in the male gonad generates a difference in RA
levels between the sexes (Bowles et al., 2006). The behaviour of
RA in the developing urogenital system has clear parallels with the
putative mesonephros-derived MIS, and the widespread distribution
of RA in the embryo and in serum-containing culture systems,
would be consistent with the MIS acting in these diverse embryonic
locations and culture systems (Bowles and Koopman, 2007).

Several lines of experimental evidence support RA being an MIS.
Culturing female gonads with RA receptor antagonists is reported
to prevent Stra8 expression (Bowles et al., 2006; Koubova et dl.,
2006) and germ cell meiosis (Bowles et al., 2006). Culturing male
gonads with exogenous RA, or Cyp26 inhibitors, induces ectopic
Stra8 expression (Bowles et al., 2006; Koubova et al., 2006) and
germ cell meiosis (Bowles et al., 2006). Also, meiotic germ cells
have been reported in Cyp26b!~’~ embryonic testes (MacLean
et al., 2007). The difference in RA levels between male and female
embryonic gonads has therefore been proposed to regulate germ
cell sex determination (Bowles and Koopman, 2007).

However, although culturing female gonads with RA receptor antag-
onists in a serum-free culture system abolishes Stra8 expression
(Bowles et al., 2006), the histology suggests that any reduction in
the number of meiotic germ cells is caused primarily by the loss of
germ cells, rather than germ cell sex-reversal. Culturing | 1.5 dpc
female gonads with RA receptor antagonists in a serum-containing
culture system inhibits Stra8 expression without the widespread loss
of germ cells (Koubova et al., 2006). However, the role of Stra8 in
the initiation of meiosis appears to be modified by genetic background
(Baltus et al., 2006; Anderson et al., 2008; Mark et al., 2008), and it is
not clear if meiosis is prevented or delayed in these cultures, or if the
germ cells sex-reverse and develop as prospermatogonia. Interest-
ingly, a region of the Stra8 promoter containing the RA-response
elements can drive transgene expression in male germ cells in the
adult testis, but not in meiotic oocytes, suggesting that currently unde-
fined elements of the Stra8 promoter located outside the
RA-response elements may play a role in expressing Stra8 in meiotic
oocytes (Sadate-Ngatchou et al., 2008).

Furthermore, although increasing RA levels in 12.5 dpc male gonads
cultured in a serum-free system induces Stra8 expression (Bowles et dl.,
2006), the morphology of the germ cells in | 1.5 dpc male gonads cul-
tured in these conditions more closely resembles apoptosis than
meiosis. Similar experiments performed in a serum-containing system
found that only ~ 1% of the germ cells in the | |.5 dpc male gonads cul-
tured with RA or Cyp26 inhibitor were in meiosis, whereas the remain-
ing ~99% were male prospermatogonia (Best et al., 2008). Increasing
RA levels in 12.5 dpc male gonads also induces Stra8 expression, but
meiotic chromosome condensation is not observed (Koubova et dl.,
2006). The failure of RA to induce meiosis in 12.5 dpc embryonic
testes is not surprising as germ cells have become committed to sper-
matogenesis by this stage (Adams and Mclaren, 2002). Thus, RA
appears to be able to alter gene expression, but may not be able to
induce meiosis in the developing testis.

Much of the data supporting the hypothesis that RA is an MIS is
open to similar caveats described for the data supporting the existence
of a mesonephros-derived MIS (MclLaren, 1984). Specifically, does
changing RA levels influence the survival of pre-meiotic or meiotic
germ cells under the experimental conditions tested, rather than the
initiation of meiosis; and does manipulating RA levels affect germ
cell behaviour directly or indirectly through altering the gonadal
somatic cells?

The possibility that RA primarily influences germ cell survival is sup-
ported by studies on cultured primordial germ cells, on cultured
embryonic ovaries and in the embryo (Koshimizu et al, 1995;
Morita and Tilly, 1999). Both these studies found that RA stimulates
germ cell proliferation and promotes germ cell survival. Germ cells
in male and female gonads appear to use different molecular pathways
to regulate both proliferation and survival (Kasai et al., 2003;
Molyneaux et al., 2003; DiNapoli et al., 2006; Tanaka et al., 2000).
Perhaps, some of the reported effects of adding RA receptor
antagonists to cultured embryonic ovaries reflect endogenous RA
having a role in germ cell proliferation or survival in female embryos.

The possibility that RA primarily influences gonadal somatic cells
rather than germ cells is particularly relevant for developing testes
as any treatment that inhibits Sertoli cell differentiation would
indirectly cause XY germ cells to sex-reverse and initiate meiosis.
Even in the absence of experimental treatments, Sertoli cell differen-
tiation may be somewhat impaired in cultured gonads: although
['1.5 dpc XX and XY urogenital ridges develop as ovaries or testes,
respectively, in a serum-containing culture system, cultured 0.5 dpc
XY urogenital ridges contain meiotic oocytes and do not develop
testis cords (Buehr et al., 1993). 11.5 dpc urogenital ridges cultured
in a serum-free system may also have some problems with Sertoli
cell differentiation: Stra8, which is female-specific in embryonic
gonads (Menke et al., 2003), is expressed at similar levels in XX and
XY control gonads cultured in this serum-free system (Bowles et al.,
2006), possibly reflecting impaired Sertoli cell differentiation and/or
impaired Cyp26b| expression. Any treatment that further impairs
the differentiation, proliferation or survival of Sertoli cells in culture
is therefore likely to indirectly trigger germ cell sex-reversal.

RA can induce homeotic transformations and alter cell identity in
various developmental systems (Kessel and Gruss, 1991; Duester,
2008) and can severely impair Sertoli cell survival or differentiation
in cultured rat embryonic testes (Li and Kim, 2004). It is not clear if
the number of Sertoli cells is reduced in studies suggesting that increas-
ing RA in cultured embryonic testes induces germ cell meiosis. Thus,
reports suggesting that increasing RA levels in cultured embryonic
testes induce germ cell meiosis may be detecting the indirect conse-
quences of impaired Sertoli cell differentiation, proliferation or
survival.

Although RA has been proposed to act as an MIS, the experimental
evidence for this comes mainly from organ culture experiments where
it can be difficult to separate the direct effects of RA on germ cells
from its effects on gonadal somatic cells. Exogenous RA is not
required for germ cells to initiate meiosis in a feeder-free culture
system (Farini et al., 2005), although it remains to be determined
whether the serum in this system contributes physiologically relevant
levels of RA (Bowles and Koopman, 2007). Further development of
this type of sophisticated culture system should allow the role of RA
in inducing germ cell meiosis to be tested directly.
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The finding that meiotic germ cells are present in Cyp26bl "~
knockout embryonic testes provides some support to RA being an
MIS (MacLean et al., 2007). However, the apparent abundance of
aberrant mitotic germ cells in Cyp26bl ’~ embryonic testes
(MacLean et al., 2007) may indicate that reducing RA levels primarily
allows prospermatogonia to become quiescent after germ cell sex has
been determined, a possibility that is supported by organ culture
experiments (Trautmann et al., 2008). As some meiotic germ cells
can be present in wild-type embryonic testes (Byskov, 1978b; Yao
et al, 2003) and RA promotes survival of meiotic oocytes in vivo
(Morita and Tilly, 1999), it would be informative to quantify the pro-
portion of meiotic and non-meiotic germ cells in Cyp26b! "/~
embryonic testes to assess the magnitude of any germ cell sex reversal
caused by this mutation.

One piece of data that is difficult to reconcile with mesonephros-
derived RA acting as an MIS is that ectopic germ cells found in the
mesonephros of male embryos usually develop as prospermatogonia
and are prevented from initiating meiosis (McLaren, 1984). Recent
evidence that secretion of an MPS occurs in the developing testis
has come from pharmacological inhibition of membrane trafficking
in embryonic testis cultures. Transient treatment of [1.5dpc
embryonic testes with a reversible inhibitor of secretion was suffi-
cient to induce XY germ cells to sex-reverse and develop as
meiotic oocytes enclosed in testis cords (Best et al., 2008). Sertoli
cell differentiation and cord formation were not overtly disrupted
by this treatment. Furthermore, this germ cell sex-reversal does
not appear to result from altering RA levels as directly increasing
RA did not induce germ cell sex-reversal in embryonic testes
cultured in this system (Best et al., 2008). Thus, the action of an un-
identified male MPS, which is probably secreted by the Sertoli cells,
appears to be important for germ cell sex determination. Secretion
of this MPS by embryonic Sertoli cells may be facilitated by changes
that occur in the membrane trafficking pathway during Sertoli cell
differentiation (Best et al., 2008).

One potential candidate for an MPS in the developing testis is leu-
kaemia inhibitory factor (LIF), a cytokine that signals through the
gpl30 receptor family. The addition of LIF has been shown to
prevent germ cell meiosis, even in feeder-free culture, and LIF is
more highly expressed in embryonic testes than the embryonic
ovaries (Chuma and Nakatsuji, 2001; Farini et al., 2005). However,
it is not clear whether female germ cells exposed to exogenous LIF
sex-reverse and differentiate into male prospermatogonia or follow
some other developmental fate. Male embryos carrying mutations in
the gp130 receptor have fewer germ cells at 3.5 dpc than wild-type
embryos, but at present there is no evidence of germ cell sex-reversal
in gp |30-deficient embryos (Molyneaux et al., 2003). Another poten-
tial candidate for an MPS in the developing testis is Fgf9. Mutations in
Fgf? cause male-to-female germ cell sex reversal in XY embryos, but
as Fgf9 plays a role in supporting cell sex determination it is not clear
whether Fgf9 mutations influence germ cell sex determination directly
or indirectly (Colvin et al., 2001). Similarly mutations in Rspo/, which
antagonises Fgf signalling in supporting cell sex determination, induce
female-to-male germ cell sex reversal in XX embryos (Chassot
et al., 2008). Elegant genetic experiments will be required to dissect
out any direct effects that mutations in Fgf9 and Rspo/ have on
germ cell sex determination from their effects on supporting cell sex
determination.

Although the molecular identity of the MPS is not yet clear, one of
the downstream targets of this factor is likely to be Nanos2. Nanos2 is
expressed in male but not female germ cells from 13.5 dpc, and
although Nanos2 /~ germ cells normally undergo apoptosis in
embryonic testes, Nanos2 ’~ Bax ’~ germ cells that cannot initiate
apoptosis were found to be in meiosis in 17.0 dpc XY embryos (Tsuda
et al., 2003; Suzuki and Saga, 2008). Nanos2 /~ Bax /™ germ cells
express Stra8 in an embryonic testis environment, suggesting that
Nanos2 represses Stra8 during male germ cell development (Suzuki
and Saga, 2008). It is not clear whether RA, or some other develop-
mental signal, induces Stra8 expression in the Nanos2 '~ Bax /~
testes. Furthermore, ectopic expression of NanosZ in female germ
cells down-regulates Stra8 expression, prevents meiosis and appears
to direct ovarian germ cells down a male developmental pathway
(Suzuki and Saga, 2008). As Nanos2 appears to be an important reg-
ulator of germ cell sex determination, any signalling molecules that
induce Nanos2 expression in germ cells in the developing testis
would presumably act as an MPS and determine male germ cell sex.
It is therefore clearly of significant interest to elucidate how Nanos2
expression is induced in germ cells developing in embryonic testes.

Implications

Germ cell sex determination, infertility
and cancer

The main clinical consequence of defects in germ cell sex determi-
nation during human fetal development is likely to be infertility.
Mutations in genes involved in the primary sex determination decision
in the supporting cell lineage such as SRY, SOX9 and WNT4 may lead
to XX germ cells differentiating as male or XY germ cells differentiat-
ing as female as a consequence of somatic sex-reversal in the gonad
(Fleming and Vilain, 2004). Such sex-reversed patients are typically
infertile and have azoospermic testes or streak ovaries that contain
few germ cells. The atypical sex chromosome constitution of sex-
reversed germ cells is likely to cause problems during gametogenesis
that lead to germ cell death (Speed, 1986; Burgoyne et al., 1992;
Alton et al., 2008), and hence the significant reduction in the
number of germ cells seen in human sex-reversed patients.

One might predict that defects in the germ cell sex determination
machinery could cause germ cell sex-reversal in the absence of
somatic sex-reversal resulting in the appearance of XX prospermato-
gonia in developing ovaries or XY meiotic oocytes in developing
testes. However, the sex-reversed germ cells would presumably
encounter problems caused by their atypical sex chromosome consti-
tution, in addition to the survival problems associated with being in an
inappropriate gonadal environment. Therefore, mutations in the germ
cell sex determination machinery are likely to resolve into agametic
gonads and cause infertility in human patients. It will be of interest
to discover whether any cases of human infertility are caused by
mutations in some of the genes and pathways recently implicated in
germ cell sex determination.

Another consequence of germ cell sex reversal in humans is
increased susceptibility to germ cell tumours. XY female sex-reversed
patients exhibit a high incidence of gonadoblastomas, a mixed germ
cell-somatic cell tumour that appears to originate from sex-reversed
XY oogonia/oocytes (Cools et al., 2006). Furthermore, carcinoma
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in situ, the non-malignant precursor of seminomatous and non-
seminomatous testicular germ cell tumours, has also been proposed
to originate from impaired or delayed germ cell differentiation
during fetal testis development (Skakkebak et al., 2001; Oosterhuis
and Looijenga, 2005). In particular, environmental or genetic factors
that disrupt the communication between Sertoli cells and germ cells
during fetal development may be causative factors for the develop-
ment of testicular germ cell tumours in adult life. Carcinoma in situ
cells express molecular markers and phenotypic characteristics associ-
ated with post-migratory germ cells, but these cells do not appear to
have differentiated correctly down the male developmental pathway
to spermatogonia (Skakkebak et al., 2001; Oosterhuis and Looijenga,
2005). It will be interesting to determine whether mutations in genes
involved in communication between Sertoli cells and germ cells in
mouse embryogenesis turn out to be risk factors for testicular germ
cell tumours in humans.

Germ cell sex and aneuploidy in humans

Sexual differentiation of the germ cells has additional repercussions for
human genetic disease; in that some types of de novo chromosomal
abnormalities are transmitted through male and female germlines
with significantly different frequencies. For example, aneuploidy,
which can cause miscarriage, infertility and conditions such as
Down’s syndrome in humans, is present in human oocytes at a
~ 10-fold higher frequency than in human sperm (Hassold and Hunt,
2001). The incidence of aneuploidy in human gametes is also influ-
enced by age in addition to sex. In men, ~2% of sperm are aneuploid
and this modestly increases around 2-fold with age mainly due to sex
chromosome aneuploidies (Sloter et al., 2004). The effect of maternal
age on aneuploidy is far more dramatic: among women in their early
20s ~2% of all clinically recognized pregnancies are trisomic, but this
increases to >35% towards the end of a woman’s reproductive life
span. As many aneuploid embryos do not survive long enough to
become clinically recognized pregnancies, the incidence of trisomic
pregnancies is likely to be significantly lower than the frequency of
aneuploidy in mature oocytes (Hassold and Hunt, 2001).
Aneuploidies arise from errors in chromosome segregation during
meiosis, and there are two significant differences in the timing and
regulation of meiosis between the sexes that might contribute to
the high rate of aneuploidy in older human oocytes. First, male
germ cells proceed through meiosis without interruption in adult
men, whereas female germ cells initiate meiosis in the embryo and
remain arrested in meiotic prophase for decades until hormonal stimu-
lation prior to ovulation. During the oocytes’ meiotic arrest, homolo-
gous chromosomes are physically held together as bivalents by
crossover events and cohesion between the DNA molecules. The
gradual loss of these physical connections between homologous
chromosomes during the prolonged meiotic arrest, and/or age-
dependent defects in the machinery involved in aligning and segregat-
ing the homologous chromosomes on the meiotic spindle upon
resumption of meiosis, could contribute to the high rates of aneu-
ploidy in older females by causing mis-segregation of meiotic chromo-
somes (Hassold and Hunt, 2001; Jones, 2008). Second, at least in
mouse models, female germ cells appear to respond less stringently
than male germ cells to abnormalities that can arise during meiotic
chromosome synapsis and segregation (Morelli and Cohen, 2005;

Jones, 2008). These differences in the timing and regulation of
meiosis between male and female germ cells may contribute to the
sex-bias in aneuploidy rates in humans.

As sex-specific differences in meiosis are likely to influence the inci-
dence of aneuploidy in human gametes, it is of interest to understand
the differences between male and female meiosis at a molecular level.
These differences may well be consequences of gene expression
cascades initiated when germ cells respond to the embryonic
gonadal environment to make their sex-determining decision. There-
fore, understanding how germ cells in the embryonic gonad change
their gene expression profiles and cell biology in response to sex-
determining cues to embark down a male or a female developmental
pathway should provide insight into how this fundamental decision in
germline development impacts on the aetiology of some types of
human genetic disease.
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