
micromachines

Article

Ultra Narrow Dual-Band Perfect Absorber Based on a
Dielectric−Dielectric−Metal Three-Layer Film Material

Bin Liu 1,2, Pinghui Wu 3 , Hongyang Zhu 4,* and Li Lv 4,*

����������
�������

Citation: Liu, B.; Wu, P.; Zhu, H.; Lv,

L. Ultra Narrow Dual-Band Perfect

Absorber Based on a

Dielectric−Dielectric−Metal

Three-Layer Film Material.

Micromachines 2021, 12, 1552.

https://doi.org/10.3390/mi12121552

Academic Editor: Kai Xu

Received: 13 November 2021

Accepted: 8 December 2021

Published: 12 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Rural Revitalization Institute, Linyi University, Linyi 276000, China; liubin@lyu.edu.cn
2 Center for International Education, Philippine Christian University, Manila 1004, Philippines
3 Fujian Provincial Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices,

Quanzhou Normal University, Quanzhou 362000, China; phwu@zju.edu.cn
4 School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
* Correspondence: zhuhongyang@lyu.edu.cn (H.Z.); lvli@lyu.edu.cn (L.L.)

Abstract: This paper proposes a perfect metamaterial absorber based on a dielectric−dielectric−metal
structure, which realizes ultra-narrowband dual-band absorption in the near-infrared band. The
maximum Q factor is 484. The physical mechanism that causes resonance is hybrid coupling between
magnetic polaritons resonance and plasmon resonance. At the same time, the research results show
that the intensity of magnetic polaritons resonance is much greater than the intensity of the plasmon
resonance. By changing the structural parameters and the incident angle of the light source, it is
proven that the absorber is tunable, and the working angle tolerance is 15◦. In addition, the sensitivity
and figure of merit when used as a refractive index sensor are also analyzed. This design provides a
new idea for the design of high-Q optical devices, which can be applied to photon detection, spectral
sensing, and other high-Q multispectral fields.

Keywords: dielectric; narrowband; metamaterial perfect absorber; high-Q; tunability

1. Introduction

Metamaterials are composite structures made of artificial unit structures, which can
realize sensing [1,2], photocatalysis [3–5], thermal emitters [6], infrared detection and imag-
ing equipment [7], and other applications [8,9]. Their singular properties are derived from
artificially designed microstructures, rather than determined by the composition of the
materials. The perfect absorption of waves can be achieved by using metamaterials. The
principle is to achieve zero transmission and reflection at the frequency of interest. When
the free space impedance is equal to the metamaterial impedance, the reflection is minimal.
The traditional metamaterial absorber is generally composed of a metal−dielectric−metal
(MDM) structure, and different absorption characteristics are obtained by designing dif-
ferent microstructures on the top metal [10–15]. These MDM structures have a general
feature for the design of plasmon and metamaterial absorbers, with a thin dielectric in-
terval in between, in order to realize the strong plasmon near-field coupling between the
top plasmonic resonator and the bottom metal reflector. Because of the inherent high
optical loss of metals, the resonant absorption bandwidths of the absorbers are relatively
wide [16–23]. In addition, metals are also easy to corrode and oxidize, their structure is
complex, and their preparation costs are relatively high, which limit their applications.
Compared with metal materials, dielectric materials have the characteristics of a simple
structure, stable performance, and low ohmic loss, which are popular in the research of
metamaterials today [24]. In some applications, the difference in absorption bandwidth
determines different effects. For example, broadband absorbers can effectively absorb
electromagnetic energy in a wide range of wavelengths and can be used in fields such
as solar absorbers [25–28]. The narrow-band absorber has a high time coherence, and
this high sensitivity and figure of merit are conducive to applications in refractive index
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sensors and other fields [29–32]. Recently, many researchers have conducted a series of
studies on narrow-band perfect absorbers based on dielectric materials. For example,
Liao et al. recently achieved perfect absorption with an absorption bandwidth of 1.3 nm
through a dielectric structure set on a metal substrate [33]. Another example is that by
adding a layer of Si medium to the surface of the metal grating to form a complementary
structure, Wang et al. proved that adding a layer of Si complementary grating structure
could effectively reduce the absorption bandwidth of the resonance peak [34]. However,
the narrowest absorption bandwidth they achieved was only 5.4 nm.

This paper designs a dielectric−dielectric−metal (DDM) structure. The bottom metal
plate prevents electromagnetic waves from penetrating the structure, so that the transmis-
sion is zero. The intermediate dielectric layer was a SiO2 plane layer, and the frequency
selective surface was a grating structure made of a TiO2 dielectric material. The absorber
achieves dual-band perfect absorption in the near-infrared range. The resonance peaks
are located at 865.295 nm and 967.645 nm, the absorption rates are 97.6% and 99.1%, the
absorption bandwidths are 11 nm and 2 nm, and the Q factors are 79 and 484, respectively.
We analyzed the physical mechanism of its resonance, and also discussed the tunability of
the structure and the tolerance of the working angle. By changing the environment where
the absorber is located, its sensing performance could be analyzed. Our design provides a
new design idea for high-Q optical devices, which can be applied to a variety of high-Q
factor multispectral applications.

2. Structure Design and Numerical Model

Figure 1 shows a schematic diagram of the designed absorber. The substrate adopts a
metal plane layer so that the transmission of the structure is 0, as shown in Figure 2. The
dielectric property parameters are from the experimental data provided by Johnson and
Christy et al. [35]. The intermediate dielectric layer is made of SiO2 with a refractive index
(RI) of 1.45. The top layer is a dielectric grating structure, using TiO2, with a RI of 2.4 [36,37].
As material loss was not considered, the RI of the dielectric material was set to a pure real
number. In the figure, the physical meaning of the structural parameters s indicated by
letters. We used FDTD Solutions software for the simulation. In the simulation process, the
parameters were set as: w1 = 150 nm, w2 = 80 nm, h1 = 150 nm, h2 = 350 nm, h3 = 313 nm,
and px = py = p = 600 nm. By adding time domain monitors, the transmission (T) and
reflection (R) data of the structure could be obtained. According to the formula A = 1-R-T,
the absorption data could be obtained [38–41]. In the simulation process, a plane light
source was used for the incidence, and the x, y, and z directions were the antisymmetric,
symmetric, and PML boundary conditions, respectively.
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Figure 2. Spectra of R, T, and A under TM polarized light.

3. Simulations Results and Discussions

Figure 2 shows the transmission, reflection, and absorption spectra of the absorber.
It can be seen that this absorber can obtain double-band perfect absorption in the near-
infrared band range of 800–1300 nm. The resonance peaks are λ1 = 865.295 nm (absorption
is 97.6%) and λ2 = 967.645 nm (absorption is 99.1%). Their full width at half maximum
(FWHM) was 11 nm and 2 nm, and the Q factors were 79 and 484. It achieved ultra-sharp
resonance light absorption. The absorber had the characteristics of a high Q factor, simple
structure, and easy preparation. It provided a new method for the design of high-Q
optical devices, and could be used in various applications, such as photon detection and
spectral sensing.

Next, we calculated the electromagnetic field distribution in the two resonance modes
to analyze the resonance mechanism. It can be seen from Figure 3a that the electric field
at λ1 was mainly distributed between the slits of the dielectric grating and metal surface.
This shows that under the excitation of incident light, the dielectric layer excited the
plasmon resonance of the metal surface. As the dielectric constants of SiO2 and gold are
very different, the vertical component of the electric field cannot penetrate deep into the
metal, but only exists on the surface of the metal [42,43]. For the electric field distribution
in the top layer medium, it is obvious that there are red dots with concentrated energy,
which indicates that the dielectric grating structure produces magnetic polaritons (MPs),
which is a typical feature of MPs resonance [44,45]. The resonance peak at λ1 is mainly
derived from the plasmon resonance of the metal. This phenomenon can be confirmed
according to the magnetic field distribution in Figure 3b. Figure 3c shows the electric field
distribution at λ2. It can be clearly seen that in this resonance mode, the electric field is
mainly distributed in the dielectric layer and the dielectric grating. The intensity of the
plasmon resonance excited at this time is much smaller than the intensity of the medium
resonance. The strong resonance peak is mainly derived from the MPs resonance supported
by the dielectric material, which can be confirmed by the magnetic field distribution in
Figure 3d. Comparing the electromagnetic field distribution and intensity in the two
modes, it can be seen that the dielectric resonance intensity is far greater than the plasmon
resonance intensity. Therefore, ultra-sharp resonance peaks can be generated in the λ2
resonance mode. Therefore, dielectric nanoparticles also support electric resonance in
metal particles and support MPs resonance. The hybrid coupling between MPs resonance
and the plasmon resonance of metal can produce two sharp absorption peaks.
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Figure 3. (a,b) Distribution of electric and magnetic fields at λ1 = 865.295 nm. (c,d) Distribution
of electric and magnetic fields at λ2 = 967.645 nm. The white dotted lines describe the structure of
the absorber.

Figure 4a–d shows the change of the absorption spectrum after transforming the
geometrical parameters of the metamaterial absorber. Figure 4a shows the change of the
absorption spectrum when the width of the grating stripe is changed. As the width in-
creases, both resonance peaks show a red shift. For the resonance peak at λ1, the absorption
remains basically unchanged, while the absorption at λ2 shows a trend of first increasing
and then decreasing. Because the resonance peak in this mode is mainly caused by the
MPs resonance of the dielectric grating, the width of the grating has a greater influence on
the resonance peak at λ2. Figure 4b shows the change of the absorption spectrum when the
pitch of the grating stripes is changed. As the distance increases, the resonance wavelength
at λ1 produces a blue shift. The resonance wavelength at λ2 produces a red shift, and
when the distance exceeds 80 nm, the absorption begins to decrease. Therefore, there is
a critical value for the grating fringe pitch. Figure 4c shows the change of the absorption
spectrum when the height of the grating stripe is changed. For the resonance peak in the
λ1 mode, the resonance wavelength first shifts red and then blue as the height increases,
and when h3 = 353 nm, the absorption rate is the lowest, dropping to about 84%. For the
resonant peak in λ2 mode, the resonant peak only shows a red shift. When h3 changes
in the range of 273 nm to 313 nm, perfect absorption can still be maintained. Therefore,
the height of the dielectric grating also has a critical value. When it is greater than the
critical value, the absorption of the absorption peaks in both modes will be greatly reduced.
Figure 4d shows the change of the absorption spectrum when the period of the absorber
unit structure is changed. Only when the period is 600 nm, the two absorption peaks can
achieve perfect absorption. Interestingly, when the period is 560 nm, only the resonance
peak of the λ1 mode exists. These results all show that the absorber is tunable, and different
absorption functions can be achieved by changing the structural parameters. When the
structural parameters are changed, the impedance of the absorber will change, and it
cannot match perfectly with the impedance of free space, so it will be manifested by the
reduction of absorption or the movement of the absorption peak.
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As the designed grating was a one-dimensional structure (extends infinitely along
the Y direction), we only studied the working angle tolerance under TM polarized light,
as shown in Figure 5. The research results show that the structure could only maintain
good absorption characteristics in the range of a 0–15◦ incident angle, and its absorption
peaks position, absorption intensity, and absorption bandwidth remain unchanged. This
indicates that within this range, the structure was insensitive to the incident angle.
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Finally, in order to analyze the sensing performance of the designed dual-band perfect
metamaterial absorber, with the other parameters unchanged, we calculated the absorption
spectrum under different environmental RIs. The results are shown in Figure 6a. When
the RI increases, the resonance peaks at λ1 and λ2 both show a red shift, the absorption
at λ1 increases slightly, while the absorption at λ2 shows a downward trend. For the
resonance peak at λ1, the resonance wavelength changes from 865.295 nm to 867.825 nm,
and the change is only 2.53 nm. For the resonance peak at λ2, the resonance wavelength
changes from 967.645 nm to 975.824 nm, and the amount of change is 8.179 nm. The
resonance wavelengths of the absorber under different RIs were extracted and numerically
fitted. Figure 6b,c shows the results. It can be clearly seen from the figure that for the
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two resonance modes, there is a linear relationship between their resonance wavelength
and RI. Analyzing the sensitivity (S = ∆λ/∆n) and figure of merit (FOM = S/FWHM) of
the two modes can get S1 = 50 nm/RIU and S2 = 165 nm/RIU, and FOM1 = 5 1/RIU and
FOM2 = 83 1/RIU [46–50], respectively. It can be seen that the absorber has a good sensing
performance and can be used in refractive index sensors and other fields. Comparing
the performance parameters of our proposed absorber with the previous work, as shown
in Table 1, it clearly shows the advantage of a high Q factor [51–54]. Therefore, it is also
suitable for various high-Q factor multi-spectral applications, such as photon detection,
spectral sensing, and other fields.
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Table 1. Comparison of the maximum FOM and Q value of the absorber reported in this paper with
the results of the dual-band absorber reported by other works.

Reference [51] [52] [53] [54] Proposed

FOM (max) (1/RIU) 16.54 26.67 44.5 12.16 83

Q (max) 19.8 23.33 123.45 71.42 484

4. Conclusions

In general, this article achieved dual-band narrowband absorption by designing a
dielectric structure on a metal substrate, and obtained a high Q factor of 484. The ultra-sharp
light absorption comes from the hybrid coupling between MPs resonance and plasmon
resonance. The research results show that the absorber is tunable. When the size and height
of the top dielectric grating and the unit structure period are changed, the position and
intensity of the resonance peak will change. The maximum working angle tolerance can
reach 15◦. The sensitivity and FOM of the two resonance modes are S1 = 50 nm/RIU and
S2 = 165 nm/RIU, and FOM1 = 5 1/RIU and FOM2 = 83 1/RIU, respectively. It has a good
sensing performance. It can be applied to high Q factor multi-spectral applications, such as
photon detection, sensor filtering, and other fields.
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