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Abstract: The emergent human coronavirus SARS-CoV-2 and its high infectivity rate has highlighted
the strong need for new virucidal treatments. In this sense, the use of photodynamic therapy (PDT)
with white light, to take advantage of the sunlight, is a potent strategy for decreasing the virulence
and pathogenicity of the virus. Here, we report the virucidal effect of PDT based on Hypericum extract
(HE) in combination with white light, which exhibits an inhibitory activity of the human coronavirus
HCoV-229E on hepatocarcinoma Huh-7 cells. Moreover, despite continuous exposure to white light,
HE has long durability, being able to maintain the prevention of viral infection. Given its potent
in vitro virucidal capacity, we propose HE in combination with white light as a promising candidate
to fight against SARS-CoV-2 as a virucidal compound.

Keywords: HCoV-229E; virucide; coronavirus; Hypericum extract; photosensitization

1. Introduction

Coronaviruses (CoVs) are enveloped positive-sense single-stranded RNA viruses that
cause respiratory, gastrointestinal, hepatic and neurological problems in both humans and
animals [1]. Human CoVs (HCoVs) HCoV-NL63, HCoV-229E, HCoV-OC43 and HCoV-
HKU have been described as responsible for respiratory tract infections and common
colds [2,3]. However, SARS-CoV and MERS-CoV, which cause Severe Acute Respiratory
Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), respectively, have
received worldwide attention in recent decades due to their ability to cause outbreaks of
serious infections [4]. Recently, the appearance of a new coronavirus, SARS-CoV-2, the
etiological agent of COVID-19, led the WHO to declare this public health emergency a
pandemic in March 2020. The COVID-19 pandemic is responsible, at the time of writing
this paper, for more than 450 million confirmed cases and more than 6 million deaths
worldwide [5].

The U.S. Food and Drug Administration (FDA) has authorized various antiviral agents
and monoclonal antibodies for the treatment of SARS-CoV-2, which include remdesivir,
paxlovid, molnupiravir, dexamethasone, convalescent plasma-containing neutralizing
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antibodies and bebtelovimab [6]. Nonetheless, these strategies have been authorized for
emergency use only and a concrete and totally effective treatment is still far from being
discovered [7–9]. The virucidal treatments are also crucial to prevent or reduce rates of
viral infections and the lack of effective drugs to play this role against COVID-19 makes the
prompt search for useful virucidal drugs imperative. In this sense, the use of photodynamic
therapy (PDT) can be a valid strategy [10]. PDT is a clinically approved technique, mainly
applied in treating cancerous and non-cancerous diseases. PDT is minimally invasive,
and it is based on the use of three elements: a photosensitizer (PS) compound, a light
of appropriate wavelength and oxygen [11]. Each of these components is not toxic per
se but their combination induces a photochemical reaction that leads to the formation of
reactive oxygen species (ROS), which induce a lethal oxidative effect [12,13]. PDT can be
applied not only in cancerous lesions, but also in the treatment of infectious diseases caused
by several microorganisms, which include bacteria [14,15], fungi [16] and viruses [17].
PDTs used for this purpose are called antimicrobial PDTs (aPDTs). The most frequent
PSs are the pheno-thiazines toluidine blue (TBO) and methylene blue (MB), as well as the
precursors of the protoporphyrin IX (PpIX), aminolevulinic acid (ALA) and its derivate,
methyl-aminolevulinate (MAL) [18]. Regarding viruses, aPDTs have been frequently used
in the treatment of human papillomavirus (HPV), human immunodeficiency virus (HIV)
and herpes simplex virus type 1 (HSV-1) [10,19,20].

Some studies have shown how these therapies may be successful as pre- or post-
treatment against SARS-CoV-2 [21,22]. Treatment with MB exposed to red light led to
several lesions in RNA viruses [23], causing damage to the genome and chemical modifi-
cations. Other in vitro studies and clinical trials corroborated the synergistic effect of this
aPDT in combination with riboflavin [24] or radachlorin [25], since the antiviral activity
of MB or radachlorin against SARS-CoV-2 showed an increase when viral particles were
irradiated with white light [25].

In this context, Hypericum extracts (HE) from the aerial parts of Hypericum perforatum L.
(perennial herbaceous plant), also known as St. John’s wort, have been used to treat various
medical conditions, including microbial infections. The bioactive metabolites of HE have
been reported with naphthodianthones (hypericin and pseudohypericin), phloroglucinols
(hyperforin and adhyperforin) and flavonoids [26,27]. It has been stated that the most
light-dependent components are naphthodianthones (hypericin and pseudohypericin),
while the effect of phloroglucinols is independent of light [26,28,29]. Hypericin shows
several absorption peaks in the visible spectrum (e.g., maximum absorbance at 550 and
588 nm in ethanol) and fluorescence emission at approximately 600 nm in ethanol [30].
This compound is a very promising agent for PDT in the oncology, diagnosis and therapy
of bladder tumor cells, nasopharyngeal cancer, nonmelanoma skin cancer, or cutaneous
lymphoma, among other diseases [31]. Regarding the antimicrobial activity of hypericin,
several extracts have been shown to have an inhibitory effect against Gram-positive and
Gram-negative bacteria and even against Candida albicans with and without light activa-
tion [32]. The virucidal activity of this compound has also been studied against enveloped
viruses including HSV-1, HIV and cytomegalovirus (CMV) [10,19].

Here we report the virucidal effect of aPDT based on Hypericum extract (HE) in com-
bination with white light, which exhibits an inhibitory activity of the human coronavirus
HCoV-229E on hepatocarcinoma Huh-7 cells. In addition, despite continuous exposure
to white light, HE has long durability, able to maintain the prevention of viral infection.
Given its potent in vitro virucidal capacity, we propose HE in combination with white light
as a promising candidate to fight against coronaviruses as a virucidal compound.

2. Materials and Methods
2.1. Cell Cultures

The Huh-7 hepatocarcinoma cell line was generously provided by Dr. Sonia Zúñiga
(CNB-Spanish National Centre for Biotechnology, Madrid, Spain). This cell line was ob-
tained from a liver tumor in a 57-year-old Japanese male and was used to test HCoV-229E
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infection [33]. The Vero cell line (ATCC-CCL81), which was derived from the kidney of an
adult African green monkey (Cercopithecus aethiops) was purchased from the American
Type Culture Collection (ATCC, Manassas, VA, USA). All cell lines were cultured in growth
medium (GM) containing low-glucose Dulbecco’s modified Eagle medium (Life Technolo-
gies, Paisley, UK) supplemented with 5% fetal bovine serum (FBS), 1% (v/v) penicillin G
(50 U/mL) and streptomycin (50 µg/mL) (HyClone Laboratories, Logan, UT, USA). Cells
were maintained at 37 ◦C, in a humidified atmosphere of 5% CO2 (Heraeus HERAcell,
Thermofisher. Waltham, MA, USA).

2.2. Viruses

HCoV-229E-expressing green fluorescent protein (GFP) was generously provided by
Dr. Volker Thiel (University of Bern, Bern, Switzerland). This virus was propagated on
Huh-7 cells and the viral titer of the stocks was calculated by an endpoint dilution assay.
Briefly, sub-confluent monolayers of Huh-7 cells were plated in 96-well tissue culture dishes
and cultured in GM. Serial dilutions (10-1 to 10-9) of HCoV-229E were inoculated onto
replicate cell cultures. Cells were then incubated at 33 ◦C in a humidified atmosphere
containing 5% CO2 for 5 days. Finally, the 50% tissue culture infectious dose (TCID50) per
mL was determined, considering the final dilution that showed cytopathic effect (CPE) and
calculated using the Reed and Muench method [34]. Fluorescence herpes simplex virus
type 1 (HSV-1) named K26-GFP was obtained by fusing GFP to the HSV-1 capsid protein
VP26 [26]. HSV-1 K26-GFP was propagated and titrated by an endpoint dilution assay on
Vero cells and used to obtain comparative results with HCoV-229E.

2.3. Compounds

The Hypericum extract (HE) (Farmaquímica Sur, Málaga, Spain), is a commercial con-
trolled hydrophilic extract obtained as a lyophilized powder of Hypericum perforatum. The
extraction solvent was water-ethanol (8:1), with less than 10% of maltodextrin as an excip-
ient. The extract had 0.35% hypericin according to the UV titer. Further product details
are shown in the attached data sheet provided by the suppliers in the supplementary
material. A stock solution was prepared at 0.30% (w/v) in water, and subsequently s tested
at 1 µg/mL and 2 µg/mL, in phenol red-free DMEM supplemented with 2% (v/v) FBS.
Maury’s article indicated that 2 µg/mL HE did not induce toxicity in the absence of light,
whereas higher concentrations did, and so this concentration was selected [26]. Methy-
lene blue (MB) (Merck Chemicals, Darmstadt, Germany) was used as a positive control
(0.25 µg/mL in DMEM). Stock solutions were prepared in distilled water at a concentration
of 10 mg/mL. The stocks were then diluted in phenol red-free DMEM supplemented with
2% (v/v) FBS to the desired final concentrations.

2.4. Cell Viability Assay

The cytotoxic effects of aPDT (MB/HE plus white light) on Huh-7 and Vero cells were an-
alyzed by a colorimetric MTT assay (Roche Cell Proliferation Kit I, Roche, Basel, Switzerland).
When the cultured cells reached an approximate 60–70% confluence, they were subjected
to three different treatments: (a) incubation with the PS alone for 1 h–MB (0.25 µg/mL) or
HE (1–2 µg/mL) [26]; (b) irradiation at 13.2 J/cm2 with white light (420–700 nm,
90 mW/cm2); (c) subjection to the aPDT (MB/HE plus white light) under the same condi-
tions as in the treatment with the PS alone. After 24 h of different treatments, cells were
incubated with a final concentration of 0.5 mg/mL of MTT solution in a humidified atmo-
sphere for 4 h at 37 ◦C. The resulting formazan precipitate was dissolved with 10% SDS in
0.01 M of HCl and absorbance was measured at 595 nm using a plate reader (SpectraFluor,
Tecan, Männedorf, Switzerland). The readouts obtained from the MTT assay were further
normalized to the control value of non-irradiated and non-treated cells, where the viability
value was set to 100%.
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2.5. Treatments and Infections

HCoV-229E and HSV1 K26-GFP were mixed with either HE (1 or 2 µg/mL) or MB
(0.25 µg/mL) for 1 h in 100 µL of red-free DMEM supplemented with 2% FBS in dark.
During the treatment, the compounds were irradiated or not with a white light source
(420–700 nm, 90 mW/cm2) at a dose of 13.2 J/cm2, 15 min before the treatment time was
over. The light source was placed under the culture plates so that viruses were irradiated
directly from below, avoiding any possible shielding effects exerted by the culture medium
or the treatments. The temperature reached in the vial after light exposure did not exceed
36 ◦C. Then, Huh-7 and Vero cells cultured at 80% of confluence in 96-well plates were
infected with the treated or mock-treated mixture at a multiplicity of infection (m.o.i) of 0.5
or 1 with HCoV-229E or HSV-1 K26-GFP, respectively (Figure S1), for 1 h. Subsequently, the
infected cells were rinsed twice with PBS and maintained in DMEM with 10% FBS at 35 ◦C,
in a humidified atmosphere of 5% CO2. The infectivity was determined by qualitative
methods, such as CPE and observation of virus-GFP signal using the Zeiss Axiovert
200 inverted microscope (Carl Zeiss, Oberkochen, Germany).

2.6. Photosensitizers-Degradation

The photo-degradation of HE and MB was evaluated according to the infection rate.
For this, PSs alone (2 µg/mL HE, 0.25 µg/mL MB) were pre-irradiated for 1 or 3 h with
white light (420–700 nm, 90 mW/cm2) in phenol red-free DMEM supplemented with 2%
FBS. After that, HCoV-229E was mixed with each PS for 1 h in the dark, and 15 min before
the end of the treatment, the PSs with the viruses were exposed to 13.2 J/cm2 of white light.
Subsequently, Huh-7 cells at 80% of confluence were infected with the treatment mixture
at an m.o.i of 0.5 with HCoV-229E. The effectiveness of PSs was evaluated 48 h after the
infection by virus titration (Figure S2).

2.7. Flow Cytometry

For flow cytometry analysis, HCoV-229E was treated as described in Section 2.5. At
48 h post-infection (h p.i), cells were dissociated by incubation with 0.05% trypsin/0.1%
EDTA (Invitrogen, Carlsbad, CA, USA) at room temperature, washed and fixed in 4%
paraformaldehyde for 15 min. Subsequently, cells were rinsed and resuspended in PBS.
The analysis of the viral GFP signal was performed using a FACSCalibur Flow Cytometer
(BD Biosciences, San Jose, CA, USA).

2.8. Statistics

At least three biological replicates were performed for each assay. A Mann–Whitney
U-test for independent measures was performed to compare the mean values of each data
set, and p-values < 0.05 were classified as statistically significant (using Prism software
v8.0.1, GraphPad Software, Inc., San Diego, CA, USA).

3. Results
3.1. Effect of aPDT in Vero and Huh-7 Cells

Before evaluating the virucidal properties of HE, its effects on cell viability with and
without subjection to white light irradiation (420–700 nm, 90 mW/cm2) were assessed
by an MTT assay in Vero and Huh7 cells. As a positive control, the well-known MB
photosensitizer was used. Figure 1 shows the effects on cell viability induced by HE at
two different concentrations (1 and 2 µg/mL) and MB with and without subjection to white
light irradiation (420–700 nm, 90 mW/cm2) at a dose of 13.2 J/cm2, as well as the effects on
cell viability of the irradiation with white light alone in Vero and Huh-7 cells. None of the
treatments reduced cell survival by more than 5%. Therefore, treatment with aPDT showed
no effect on cell viability.
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Cell toxicity was evaluated by MTT assay and calculated as the percentage of viability compared to
untreated cells; columns represent the mean viability (n = 3) ± S.D. after exposure to the compounds.

3.2. Effect of Irradiated and Non-Irradiated HE and MB against HSV-1 Infection

To study the effect of these PSs on viral infection, Vero cells were cultured in 24-well
tissue plates and infected or mock-infected with HSV-1 K26-GFP. Prior to infection, the
virus was incubated with MB (0.25 µg/mL) or HE (1–2 µg/mL) in GM for 45 min. Then
samples were infected with HSV-1 and some of them were irradiated with white light
(13.2 J/cm2), and finally, all were incubated for 15 min at room temperature under dark
conditions. The immunofluorescence images reported no significant difference in viral
infection between Vero cells infected with the viruses treated or non-treated with the PS
under dark conditions (Figure 2a). Nevertheless, a reduction in viral infection was observed
when Vero cells were infected with irradiated MB-treated virus, and no CPE was observed
during brightfield microscopy (Figure 2b) or the fluorescence images (Figure 2c). On the
other hand, the virus incubated with irradiated HE showed no difference in infection
compared to the irradiated sample without PS. In this case, the brightfield images show a
remarkable CPE in the Vero cells infected with the virus previously treated with irradiated
HE (Figure 2b). In addition, the GFP signal of HSV-1 K26-GFP was also detectable in the
fluorescence images after irradiated HE-treated virus infection (Figure 2c).

3.3. Virucidal Effect of HE against HCoV-229E

The virucidal effect of HE against HCoV-229E was analyzed in the Huh-7 cell line. This
cell culture grows in a monolayer, does not present an autofluorescence signal (Figure 3a)
and is susceptible to infection by HCoV-229E. Huh-7 cells were cultured in 24-well plates
and infected or mock-infected with HCoV-229E at an m.o.i of 0.5. Prior to infection, the
virus was treated as described above. Fluorescence microscopy performed at 48 h p.i.
did not report differences in the viral GFP signal in Huh-7 cells infected with HCoV-229E
and previously treated with non-irradiated PSs, compared to untreated cells under dark
conditions (Figure 3b). In contrast, a more significant decrease in infection was noted in cells
when the virus was treated with irradiated HE. The infection was qualitatively decreased
when the virus was treated with 1 µg/mL of irradiated HE, and it was considerably reduced
with 2 µg/mL of irradiated HE -prior to infection, showing a dose-dependent virucidal
effect (Figure 3b). HE presented a value of half the maximum inhibitory concentration
(IC50) of 1.37 ± 0.2 µg/mL (Figure S4). The virucidal effect of MB against HCoV-229E was
also corroborated, with an undetectable infection signal after the treatment of the virus
with the irradiated compound (the brightfield is shown in Figure S3).
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Figure 2. Effect of HE and MB in Vero cells alone or in combination with white light and infected
with HSV-1 K26-GFP. Fluorescence (a,c) and brightfield images (b) of Vero cells monolayers infected
with HSV-1 K26-GFP at an m.o.i. of 1. The virus was preincubated with 0.25 µg/mL of MB or
1–2 µg/mL of HE and irradiated or not with 13.2 J/cm2 of white light. Fluorescence microscopy
images (a,c) show GFP signal corresponding to viral infection and brightfield images (b) report the
CPE at 24 h p.i. Scale bars correspond to 100 µM in (a,b). Images in section (c) were taken at 10X focus.

The virucidal effect of HE against HCoV-229E was evaluated by flow cytometry.
Huh-7 cells were cultured in a 24-well plate and infected or mock-infected with the treated
virus with PSs, as described above. The results showed how the infection of cultures
was significantly reduced after the virus was treated with the aPDT (1 h with the PSs in
dark + 13.2 J/cm2 white light) (Figure 4a,b). Huh-7 cellular cultures infected with the
virus without PS that were irradiated (13.2 J/cm2) or kept under dark conditions (0 J/cm2),
revealed a percentage of GFP-HCoV-229E signal close to 37%. This percentage decreased to
less than 1% in cells infected with irradiated MB-treated virus, and to 15% in cells infected
with irradiated HE-treated virus.
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Figure 3. Effect of HE and MB in Huh-7 cells alone or in combination with white light and infected
with HCoV-229E at an m.o.i of 0.5. (a) Fluorescence (left) and phase-contrast (right) images of Huh-7
cell morphology cultured in a monolayer and susceptible to HCoV-229E infection or mock of infection.
Images were taken them at 20X. (b) Fluorescence images of the inhibition of HCoV-229E infection
in Huh-7 cells induced by MB (0.25 µg/mL) and HE (1 µg/mL and 2 µg/mL) after irradiation or
no irradiation with 13.2 J/cm2 of white light. HE and MB were incubated with the virus for 45 min.
Subsequently, the samples were irradiated or non-irradiated and re-incubated for an additional
15 min. Immunofluorescence images were taken 48 h p.i. and GFP signal corresponds to infected
cells. Images were taken at 10X focus. Scale bar corresponds to 100 µM.
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when the cells were infected only with the irradiated HE inoculum and the viruses were 
added, whereas cells infected with pre-irradiated HE and the virus together showed low 
infection rates (Figure 5a). The infection was quantified by flow cytometry, supporting the 
same results (Figure 5b). 

Figure 4. Inhibition of HCoV-229E infection (which expresses GFP) in Huh-7 cells induced by the
PSs HE and MB and determined by flow cytometry. HCoV-229E was incubated with either MB
(0.25 µg/mL) or HE (2 µg/mL) for 45 min. Subsequently, the samples were irradiated or not at
13.2 J/cm2 and re-incubated for an additional 15 min. Huh-7 cells were then infected with these
samples at an m.o.i. of 0.5. Quantification of the infection was performed after 48 h p.i. by flow
cytometry. (a) Plots obtained using FACScalibur Cytometer showed a decrease in the peak of GFP
signal in Huh-7 cells after infection with irradiated PSs. (b) Bars show the percentage of GFP signal.
Values are reported as the mean ± S.D. (n = 3; ** p < 0.005; *** p < 0.001).

To confirm that the direct effect of HE as a PDT against HCoV-229E takes place at the
time of irradiation, and in order to rule out any side effects at the time of pre-incubation,
HE without virus was irradiated and then mixed with it in the cells. Infection was positive
when the cells were infected only with the irradiated HE inoculum and the viruses were
added, whereas cells infected with pre-irradiated HE and the virus together showed low
infection rates (Figure 5a). The infection was quantified by flow cytometry, supporting the
same results (Figure 5b).
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formed with 2 µg/mL HE and virus at an m.o.i of 0.5. Huh-7 cells were infected with a 10-fold dilu-
tion of this mixture. In all conditions, cells were left in culture medium after 1 h of viral adsorption, 
washed with PBS and quantification of the infection was performed at 48 h p.i. by flow cytometry. 
Bars show the percentage of GFP signal. Values are reported as the mean ± S.D. (n = 3; *** p < 0.001). 
Images in (a) section were taken at 10X focus.  

After the virucidal effect was demonstrated with the HE and white light, we won-
dered whether this PS had a high rate of photodegradation. To evaluate this, we pre-irra-
diated the PSs (0.25 µg/mL MB and 2 µg/mL HE) for 1 and 3 h with white light. Subse-
quently, we used the pre-irradiated PSs for aPDT against HCoV-229E (1 h with the PSs in 
dark + 13.2 J/cm2 white light). Figure 6a shows fluorescence microscopy images of the in-
fectivity of HCoV-229E in Huh-7 cells (m.o.i. 0.5) under different conditions. The PSs alone 
did not induce significant differences with the mock infection, as in previous results. The 
aPDT (1 h with the PSs in dark + 13.2 J/cm2 white light) induced a significant decrease in 
the virus titer. These reductions were not modified when we used the pre-irradiated PSs 
(Figure 6a). This means that HE and MB remain effective as PSs after 1 and 3 h of white 
light irradiation (the brightfield microscopy images are shown in Figure S5). 

Figure 5. aPDT activity of HE in Huh-7 cells against HCoV-229E. Inhibition of HCoV-229E infection
in Huh-7 cells induced by HE determined by fluorescent microscopy (a) and flow cytometry (b).
Several conditions were assayed to demonstrate the virucidal activity of aPDT (HE + white light):
(1) Infection with HCoV-229E; (2) HCoV-229E was incubated with HE during 1 h prior to infection;
(3) HCoV-229E was incubated with HE for 45 min, irradiated with white light at 13.2 J/cm2 and
re-incubated for an additional 15 min, prior to infection; (4) HE was irradiated with white light at
13.2 J/cm2 and added to HCoV-229E at the time of infection. For this experiment, pretreatment
was performed with 2 µg/mL HE and virus at an m.o.i of 0.5. Huh-7 cells were infected with a
10-fold dilution of this mixture. In all conditions, cells were left in culture medium after 1 h of viral
adsorption, washed with PBS and quantification of the infection was performed at 48 h p.i. by flow
cytometry. Bars show the percentage of GFP signal. Values are reported as the mean ± S.D. (n = 3;
*** p < 0.001). Images in (a) section were taken at 10X focus.

After the virucidal effect was demonstrated with the HE and white light, we won-
dered whether this PS had a high rate of photodegradation. To evaluate this, we pre-
irradiated the PSs (0.25 µg/mL MB and 2 µg/mL HE) for 1 and 3 h with white light. Subse-
quently, we used the pre-irradiated PSs for aPDT against HCoV-229E (1 h with the PSs in
dark + 13.2 J/cm2 white light). Figure 6a shows fluorescence microscopy images of the
infectivity of HCoV-229E in Huh-7 cells (m.o.i. 0.5) under different conditions. The PSs
alone did not induce significant differences with the mock infection, as in previous results.
The aPDT (1 h with the PSs in dark + 13.2 J/cm2 white light) induced a significant decrease
in the virus titer. These reductions were not modified when we used the pre-irradiated PSs
(Figure 6a). This means that HE and MB remain effective as PSs after 1 and 3 h of white
light irradiation (the brightfield microscopy images are shown in Figure S5).



Pharmaceutics 2022, 14, 2364 10 of 15Pharmaceutics 2022, 14, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 6. Evaluation of the photodegradation of HE and MB. (a) Fluorescence microscopy images 
of Huh-7 cells infected at an m.o.i of 0.5 with HCoV-229E (which expresses GFP) and treated with 
MB (0.25 µg/mL) or HE (2 µg/mL). (b) Virus titer plot compared positive control of infection without 
aPDT. The different conditions are: (I) positive control infection without aPDT; (II) PSs alone; (III) 
aPDT (1 h with PSs in dark + 13.2 J/cm2 white light); (IV) pre-irradiation of PSs for 1 h followed of 
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ing of their genetic material [36,37]. Their clinical application is mostly against skin, mu-
cous and dental infections, due to the difficulty of applying the light in interstitial areas 
because of its limited penetration [38]. Here, we propose HE as a PS in combination with 
white light as a virucidal compound against HCoVs. HE is approved by the EMA for clin-
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Figure 6. Evaluation of the photodegradation of HE and MB. (a) Fluorescence microscopy images
of Huh-7 cells infected at an m.o.i of 0.5 with HCoV-229E (which expresses GFP) and treated with
MB (0.25 µg/mL) or HE (2 µg/mL). (b) Virus titer plot compared positive control of infection
without aPDT. The different conditions are: (I) positive control infection without aPDT; (II) PSs alone;
(III) aPDT (1 h with PSs in dark + 13.2 J/cm2 white light); (IV) pre-irradiation of PSs for 1 h followed
of aPDT; columns represent the mean titer ± S.D. (n = 3) (*** p < 0.001).

4. Discussion

Despite the speed at which several vaccines against emergent SARS-CoV-2 have been
approved, there are still no effective protective treatments against this virus. The develop-
ment of new virucidal or antiviral treatments to combat HCoVs is a crucial strategy [35].
MB and TBO have been used in aPDT for quite a few years as a great option for antibiotic
and antifungal treatments [18]. Moreover, aPDTs have been used to fight viral infections,
as phenothiazines can photoinactivate viral particles via the oxidative damaging of their
genetic material [36,37]. Their clinical application is mostly against skin, mucous and
dental infections, due to the difficulty of applying the light in interstitial areas because
of its limited penetration [38]. Here, we propose HE as a PS in combination with white
light as a virucidal compound against HCoVs. HE is approved by the EMA for clinical
uses [39], so its application for example as a hand disinfectant, would be very feasible and
even more so in these times when the use of natural botanical extracts is so widespread [40].
However, hypericin alone is not yet approved by the EMA. Although it may be better to
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use hypericin as a PS, the fact that we have observed this potent virucidal activity with HE
is very important. Therefore, we do not consider it essential for the purpose of this work
to identify the components of the HE, other than knowing that it contains 0.3% hypericin,
which is the percentage usually contained in the HE [29].

First, the MTT assay reported that HE and the aPDT (HE + with light) does not exert
any cytotoxic effects in the cell lines tested. Therefore, we proceeded to evaluate the
effectiveness of irradiated HE as aPDT against HSV-1 and HCoV-229E. The fluorescence
assay of the Vero cells infected with HSV-1 performed in this study did not show any
effect of HE against the virus. The opposite results were obtained by Spitzer et al., where a
virucidal effect against HSV-1 was observed with treatments of HE ranging from 3.12 to
50 µg/mL [41]. Higher concentrations of HE and exposure to white light [42] could explain
the disparity in the results obtained. The exposure of HE to white light did not produce
any different results in cells infected at an m.o.i. of 1. Another study showed a reduction of
HSV-1 infectivity from 0.5 log to 3.8 log in Vero cells at an m.o.i of 0.01 after the virus was
in contact with HE [43]. This result indicates a possible virucidal effect of HE against HSV-1
when the virus dilution is 100-fold higher compared with our conditions of infection. In
this study, cells infected at an m.o.i. of 1 with HSV-1—a standard concentration for viral
assays—and pretreated with 1–2 µg/mL of HE showed a CPE and viral GFP-signal similar
to infected cells without an aPDT ones. MB is one of the most widely used PSs against
various infectious agents with a high rate of effectiveness even in the absence of light-
induced activation [25,44]. However, we used a much lower concentration of MB compared
to other studies describing its virucidal effect under dark conditions (3 to 0.25 ug/mL) to
avoid this effect [45]. Consistent with previous studies [37,46], MB was used as a positive
control of the virucidal effect of PDT. Parallel treatments with 0.25 µg/mL MB were carried
out under the same conditions as the HE treatments. MB showed a virucidal effect against
HSV-1 infection at an m.o.i of 1 on both non-irradiated and irradiated PS, being highly
effective after the 13.2 J/cm2 of irradiation.

Otherwise, the infection caused by HCoV-229E was significantly reduced after the
treatment of the virus with aPDT (HE + with light). The inhibition of the infection is
HE-dose-dependent, evidencing the direct relationship between the irradiated HE and
the inhibition of the virus. This effect is reproducible only after irradiation with white
light. In fact, the lack of inhibition of HSV-1 and the necessary presence of light for an
adequate virucidal function against this HCoV excludes the possible effect of HE on virus
membrane destabilization [42,43]. The results obtained in this work are complementary
to those obtained by Delcanale et al. [47], where the affinity of HE for the membrane
of HCoV-22E is demonstrated and perhaps HE could play a possible role in it at higher
concentrations or in different settings. Several studies of HE or Hypericin as a treatment
against different HCoVs are focused on the disruption of the main proteinase (Mpro)
function of the virus [48,49]. Mpro is an enzyme that plays an essential role in the first
steps of infection on the translated viral RNA [50]. Previous in silico studies, where the
potential interaction between the PS and Mpro was demonstrated [49,51], had been already
confirmed in vitro, obtaining a decrease in viral infection [38,52].

Whereas other studies performed post-HCoVs-infection-treatment demonstrated an
antiviral effect of hypericin targeting 3CL [52], where the compound is maintained through-
out the infection, we propose a treatment prior to infection, using HE as a PS of aPDT,
together with white light irradiation, as a virucidal compound. An early pretreatment with
irradiated HE could present a complementary effect against the virus. In the presence of
white light and oxygen, HE generates superoxide radicals that can derive into hydroxyl
and peroxyl radicals, and single oxygen molecules which could block or inactivate viral
particles [30,41,53] as is demonstrated in other studies. It has been observed how these
superoxide radicals damage the genome of RNA viruses [23]. RNA viruses, such as HIV1,
HIV2, and Dengue virus suffered hypericin photosensitive damage on their genome, dis-
turbing the viral RNA and blocking or inhibiting viral growth and breeding [54,55]. It
should be noted that one of the main advantages of using HE as a PS is that it is effective
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with the administration of white light, since daylight or sunlight is the main source of light
outdoors [56]. Furthermore, we have demonstrated that even when HE is exposed to white
light for 3 h, its phototoxic capacity is not inhibited, which shows that despite continuous
exposure to white light, HE has long durability, being able to maintain the inhibition of
viral infection.

5. Conclusions

In conclusion, the virucidal activity of HE in combination with white light, as aPDT
against HCoV-229E infection in vitro it been demonstrated for the first time in this study. In
contrast to an antiviral effect, this photosensitizing damage would affect the virus prior to its
entry into cells. Our hypothesis of damage to the virus genome by the superoxide radicals
is a feasible approach for future studies. In this regard, the use of photodynamic therapy
with white light, to take advantage of sunlight, is a promising strategy for decreasing the
virulence and pathogenicity of the virus. As we proposed in this research, future studies
would be necessary to unravel the effect of superoxide radicals in the virus genome and to
better understand the virucidal effect of HE.
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