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Abstract Large herbivores influence ecosystem functioning via their effects on vegetation at

different spatial scales. It is often overlooked that the spatial distribution of large herbivores results

from their responses to interacting top-down and bottom-up ecological gradients that create

landscape-scale variation in the structure of the entire community. We studied the complexity of

these cascading interactions using high-resolution camera trapping and remote sensing data in the

best-preserved European lowland forest, Białowieża Forest, Poland. We showed that the variation

in spatial distribution of an entire community of large herbivores is explained by species-specific

responses to both environmental bottom-up and biotic top-down factors in combination with

human-induced (cascading) effects. We decomposed the spatial variation in herbivore community

structure and identified functionally distinct landscape-scale herbivory regimes (‘herbiscapes’),

which are predicted to occur in a variety of ecosystems and could be an important mechanism

creating spatial variation in herbivory maintaining vegetation heterogeneity.

DOI: https://doi.org/10.7554/eLife.44937.001

Introduction
Spatial patterns in species distribution, abundance and community composition are manifestations

of underlying ecological mechanisms operating at a range of spatial scales (Levin, 1992). These pat-

terns emerge from dynamic interactions between environmental bottom-up, biotic top-down and

biotic parallel factors in combination with stochastic effects. Although the role of bottom-up factors

in shaping species distributions has been intensively studied in recent decades (Elith and Leathwick,

2009; Guisan and Thuiller, 2005), we still know little about the importance of the biotic factors

underlying most spatial patterns. Especially, the role of species interactions, within and across tro-

phic levels, including those involving humans, remain largely unexplored (Darimont et al., 2015;

Schmitz et al., 2017; Wiens, 2011; Worm and Paine, 2016). It has recently been proposed that

community ecology should be ‘rediscovered’ as an integrative study of species interactions and spa-

tial distributions (Schmitz et al., 2017), while accounting for direct and indirect anthropogenic

effects on species distributions and behavior (Berger, 2007; Worm and Paine, 2016).

Large mammalian herbivores influence terrestrial ecosystem structure and functioning

(Gordon et al., 2004; Hobbs, 1996; Schmitz, 2008) via their direct effects on vegetation structure

(Charles-Dominique et al., 2016; Churski et al., 2017; Didion et al., 2009; Hempson et al., 2015;

Kuijper et al., 2010a) and indirect effects on nutrient cycling (Murray et al., 2013). In this way, her-

bivory influences vegetation at large spatial scales, from the local landscape up to the biome level

(Moncrieff et al., 2016; Woodward et al., 2004), and can lead to herbivory-mediated cascading

effects on other trophic levels (Gordon et al., 2004; Palmer et al., 2015; Schmitz, 2008). There is

often strong spatial variation in herbivory impact, resulting from the space use of different functional

groups of herbivores. This spatial variation is driven primarily by the interactive effects of abiotic
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factors, disturbances, forage quality and quantity in combination with life-history traits, such as herbi-

vore body mass (Anderson et al., 2016; Cromsigt et al., 2009; Hempson et al., 2015;

Hopcraft et al., 2010; Ogutu et al., 2010). However, the actual distribution of many herbivores

often differs from the expected distribution derived purely from interactions with bottom-up factors.

This discrepancy results from herbivores also responding to landscape gradients induced by biotic

top-down interactions (Anderson et al., 2010; Hopcraft et al., 2010; Kauffman et al., 2007). In

effect, this landscape of interacting ecological gradients, both bottom-up and top-down, creates

spatial heterogeneity in the availability and suitability of habitats for different large herbivore species

within a community (Cromsigt et al., 2009; Fryxell, 1991; Hopcraft et al., 2010). Thus, to assess

the ecosystem-level impact of large herbivore communities requires full understanding of the factors

driving spatial heterogeneity in their community structure across a landscape (Gordon et al., 2004;

Weisberg and Bugmann, 2003).

Recently, there has been much attention given to the role of large carnivores in structuring eco-

systems via their effects on herbivore communities (Estes et al., 2011; Ripple et al., 2014;

Terborgh et al., 2006). In addition to their density-mediated effects (i.e. impact on prey population

size), behaviorally mediated effects (i.e. impact on prey behavior) on prey species are a crucial mech-

anism explaining the trophic cascades driven by large carnivores (sensu Ripple et al., 2016). Prey

species react to the presence of large carnivores by adjusting their spatio-temporal patterns of land-

scape use (Creel et al., 2005; Kohl et al., 2018; Laundré et al., 2001; Valeix et al., 2009). These

spatial interactions between trophic levels are usually context-dependent and are shaped by the bio-

physical characteristics of a landscape (Kauffman et al., 2007; Schmitz et al., 2017; Valeix et al.,

2009). Many studies have addressed how carnivores affect their prey species, but these have gener-

ally used a single carnivore - single prey species approach, whereas many ecosystems host multiple

carnivore and multiple prey species. In such systems, different carnivore species can create

eLife digest In almost every ecosystem on Earth, communities of herbivores are kept in check

by both predators and the availability of the plants they eat. As herbivores move in response to

these pressures, they shape local plant communities and impact vegetation across entire landscapes.

Yet the role of large plant-eating mammals in structuring ecosystems is often overlooked. Indeed,

most research on this topic has looked at African ecosystems, like open savannahs, and fewer

researchers have studied temperate forests like those found across Europe, Asia and North America.

Bubnicki et al. have now examined factors influencing the distribution of five large herbivore

species and resulting plant communities in Białowieża Forest in eastern Poland, the best-preserved

European lowland forest. Their method involved measuring the cascading interactions of plants and

animals in the forest using cameras set at nearly 900 locations, satellite images and other remote

sensing technologies, and on-the-ground surveys. Added to this were patterns of human activity

inferred from the available data for the study area. This approach allowed Bubnicki et al. to explore

how humans are influencing the forest ecosystem, too.

The analysis revealed that humans are the main factor influencing the movements of carnivorous

predators in Białowieża Forest, but not the herbivores directly. Wolves and lynxes avoided areas

heavily used by humans whereas large herbivores responded primarily to different environmental

factors. Wild boar and bison are influenced by the availability of plant food and preferred habitat for

foraging; moose and roe deer by the features of the landscape, like elevation or openness. The red

deer was the only large herbivore species whose distribution was strongly linked to that of its main

predator, the wolf.

From this, Bubnicki et al. identified distinct areas in the forest which have emerged from the

interactions at play, describing these areas as ‘herbiscapes’ for the herbivores that shaped them.

These findings provide new understanding of the complex ecological processes shaping the

Białowieża Forest and serve as a model to help understand other ecosystems around the world. The

knowledge will also contribute to the ongoing management and conservation of this UNESCO

World Heritage Area.

DOI: https://doi.org/10.7554/eLife.44937.002
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contrasting risk effects (Creel et al., 2017; Preisser et al., 2007; Thaker et al., 2011). Moreover, in

multi-species communities, some prey species perceive more risk than others from a carnivore spe-

cies (Anderson et al., 2016; Laundré et al., 2001; Valeix et al., 2009).

This suggests that spatial distributions of predation-sensitive prey species may be mainly driven

by carnivore top-down effects, whereas distributions of predation-insensitive prey or non-target spe-

cies by gradients in resources availability (Hopcraft et al., 2010). When a community of prey species

consists of ecologically or functionally similar species, changes in the abundance and distribution of

one species may be buffered by another species (Ford et al., 2015; Rosenfeld, 2002). These so-

called redundancy effects, can prevent apex predators from creating trophic cascading effects when

taking the response of the entire herbivore community into account, despite them significantly

impacting one or more prey species (Ford et al., 2015; Liu et al., 2016).

There is a growing awareness that including humans in community studies is critical for improving

our understanding of ecosystem functioning (Darimont et al., 2015; Worm and Paine, 2016) and

for predicting species distributions in increasingly anthropogenic environments. Due to the recovery

of some large carnivore populations and expansion of human populations, carnivores are increas-

ingly sharing landscapes with humans world-wide (Carter and Linnell, 2016; Chapron et al., 2014).

Humans are also increasingly being considered a coherent part of complex trophic interaction chains

(Darimont et al., 2015; Strong and Frank, 2010; Kuijper et al., 2016). The resulting complex, cas-

cading interactions urgently need to be considered when studying the spatial distributions of herbi-

vores, their effects within the landscape and the functional role large carnivores can play in

landscapes that are becoming increasingly anthropogenic (Kuijper et al., 2016).

In this study, we investigated how the interactive effects of bottom-up and natural top-down fac-

tors (two large carnivore species and humans), determine the landscape distribution and community

composition of five native ungulate species in Białowieża Forest (BF, Poland; Figure 1). BF is

regarded to be one of the best preserved temperate European lowland forest systems and is inhab-

ited by a natural community of large mammals (Jędrzejewska and Jędrzejewski, 1998). In addition,

BF is also embedded within an anthropogenic landscape typical for many terrestrial systems. We

hypothesized that spatial variation in the composition of the large herbivore community is explained

by the interactive effects of species-specific responses to major environmental and risk gradients

operating at the landscape level. We aimed to answer the following questions: 1) Do large carni-

vores have species-specific effects on the distributions of ungulates in our multiple predator-prey

system?, 2) How does human activity mediate predator-prey interactions at the landscape scale?, 3)

Does this lead to ecologically distinct herbivory regimes (sensu Hempson et al., 2015) with differen-

tial vegetation impact at the landscape scale? Using detailed data on species distributions (894 cam-

era trap locations), landscape structure (high-resolution GIS and remote sensing data) and detailed

woody vegetation surveys (385 study plots) along with a novel spatially-explicit hierarchical model-

ling approach we decomposed the spatial variation in herbivore community structure into ecolog-

ically distinct landscape-scale herbivory regimes. With data from a complex, multi-species and

human-influenced system, we aimed to exemplify the functional role that large carnivores and their

herbivorous prey can play in increasingly human-affected ecosystems.

Materials and methods

Study area
The study was carried out in Białowieża Forest (BF) in Poland (c. 580 km2; Figure 1). This harbors a

natural assemblage of central European ungulate species, with red deer (Cervus elaphus) being the

most abundant (6.0 individuals/km2), followed by wild boar (Sus scrofa; 5.4/km2) and roe deer (Cap-

reolus capreolus; 2.0/km2); and European bison (Bison bonasus; 0.5/km2) and moose as the rarest

ungulates (Alces alces; 0.08/km2) (Borowik et al., 2016). Two large carnivores occur in BF: the Eur-

asian lynx (Lynx lynx; c. 15 individuals) and wolf (Canis lupus; 4 packs of 7–12 individuals)

(Jędrzejewski et al., 2002; Schmidt and Kuijper, 2015). Part of BF, the core of Białowieża National

Park (BNP; c. 47 km2), has been strictly protected since 1921. Since this time, human activities such

as hunting and forestry have been banned. In 1996 BNP was enlarged to c. 100 km2. Outside the

national park, the forest is managed by the State Forest Holding, hence timber production takes

place and ungulate hunting is allowed, but here also exists a network of nature reserves (c. 130 km2,
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see Figure 1). For a more detailed description of this area see Faliński and Falińska (1986) and

Jędrzejewska and Jędrzejewski (1998). From a landscape perspective, it is important that the

boundaries of BF ecosystem are well defined. From the west, BF is surrounded by agricultural fields,

and from the north and south by a mosaic of agricultural and fragmented forest landscapes. In the

east, a tall wire-fence along the border with Belarus (built in 1981) prevents movements by ungu-

lates. These conditions create an opportunity to study the spatial distribution of a whole community

of ungulates in a spatially restricted, complex ecosystem with natural predators present and varying

levels of human management and impact.

Camera trapping
In contrast to telemetry, which allows the study of both predator and prey movement patterns by

placing sensors on individual animals, we used point-based camera trapping to record and recon-

struct the distributional patterns of large carnivores and ungulates. We sampled the continuous BF

landscape with camera traps placed randomly with respect to species movements and hypothetical

mechanisms driving their distributions (habitat structure, humans, predator-prey interactions). We

used an intensive, large-scale and high-resolution camera trap network covering the entire study

area to collect detailed, spatially-explicit information on species distributions. We argue that camera

Figure 1. Maps of the study area (left) and camera trapping sampling design (right). On the study area map we marked the major settlements

connected by public roads open for cars.

DOI: https://doi.org/10.7554/eLife.44937.003
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trapping is the most objective and efficient method for collecting this type of spatially-explicit com-

munity data. This kind of study would be inherently impossible to do with telemetry: to record the

spatial patterns we were looking for, the entire populations of each species had to be observed

simultaneously. Moreover, because of logistical and financial limitations and ethical issues (related to

live-trapping of protected species in Europe) it would be practically impossible to obtain sufficient

data for all the studied species of large herbivores and carnivores using telemetry. We used digital

trail cameras (Ecotone SGN-5210A) triggered by passive infrared sensors with a detection angle of

c. 35˚ and range of c. 20 m. After detection, with a time lag of c. 1 s, a photograph was taken and

the camera recorded a 60 s video. When an animal stayed, this procedure was repeated without trig-

ger delay. During low-light conditions, cameras switched to a stealth infrared mode. Cameras were

attached to a tree at a height of c. 1 m at locations with a clear view of at least 20 m. Whenever pos-

sible, we randomly chose an acceptable place to mount a camera as close as possible to the loca-

tions given by coordinates pre-computed prior to the field work.

Ungulate survey
We quantified the spatial distribution of the ungulate community by using a spatially extensive, high-

resolution network of camera traps. The data were collected over 2 years (May 2012 - May 2014) of

intensive camera trapping in all seasons, except for days with the strongest winter conditions (snow-

ing heavily or temperatures below �20˚C). We conducted 34 trapping sessions, each lasting 14 days

on average. During each session between 30 to 40 camera traps were pseudo-randomly deployed in

different parts of the forest and within a minimum distance of 100 m from the nearest roads (both

paved and unpaved), large clearings and settlements. Additionally, we kept a minimum distance of

100 m between all camera locations. The coordinates for all locations were pre-computed prior to

the field work in QGIS software (QGIS Development Team, 2017). In total, we collected data at >1

k sites. However, because of logistical errors, camera failures, stealing of equipment and heavy

snowing in winter (leading to blocked view and uninterpretable gaps in data) we had to exclude >100

sites (~10%) from further analysis. Finally, we used data collected at 894 sites, covering the whole BF

landscape (Figure 1).

Carnivore survey
Large carnivores generally tend to have a higher detection probability at forest roads and trails

(Cusack et al., 2015) because they often prefer to move along linear landscape structures

(Zimmermann et al., 2014) and/or to increase the probability of encountering prey

(Whittington et al., 2011). This specific space use resulted in a very low trapping rates of both carni-

vores (wolf and lynx) during the ungulate survey (Appendix 1—table 1), when camera traps were

placed randomly in the forest. Hence, to better quantify the space use of the two large carnivores

we ran an additional camera trapping survey in September-October 2015. We deployed 73 camera

traps on the sides of forest roads across the whole landscape for one month (Figure 1). The core

areas of wolf pack territories are related to the locations of breeding dens (Jędrzejewski et al.,

2001). During the reproductive season (spring-summer) the spatial distribution of a wolf pack is

restricted to their core area, whereas outside this period they regularly return to it

(Jędrzejewski et al., 2001). In August-September, pups begin to travel with other pack members

and move more widely through their territory, returning to the core of their territory on a regular

basis (Jędrzejewski et al., 2001). Lynx have a similar, typical pattern of movements whereby females

restrict their movements in May-July, while tending their kittens (Schmidt, 1998). Therefore, late

summer-autumn is the best period to quantify the space use of both carnivores at the landscape

scale.

The ungulate and carnivore surveys were conducted during different time periods, with different

sampling intensities (May 2012 to May 2014 versus September to October 2015, respectively) and

using different camera placement strategies. To check if our results were not spatio-temporally con-

founded because of these differences, we ran the same model for all ungulate species using only a

subset of the camera trap data covering a 3-month period (August - October) matching the period

of the carnivore survey as closely as possible (the models did not converge for data from only one or

two months). The obtained results were similar to those based on the full dataset (Appendix 1: Figs.

S36-S37); we thus chose to use the full dataset, which provided a larger sample size and better
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spatial coverage of the study area, both of which are needed for making robust inferences using

complex hierarchical spatial models such as ours (see Statistical model section). Moreover, between-

season variation in the trapping rate of ungulates was directly accounted for in the model. Lastly, all

the studied ungulate species are non-migratory; in other words, there is no large (landscape)-scale

seasonal movement of ungulates in BF (Jędrzejewska and Jędrzejewski, 1998; Kamler et al.,

2008; Podgórski et al., 2013). The winter distribution of European bison is to a large extent driven

by the location of supplementary feeding sites. This results in concentration of bison at these loca-

tions during the winter season.

Data processing
After downloading camera trap data, both ungulates and wolf datasets were organized and classi-

fied using TRAPPER software (Bubnicki et al., 2016). Species, sex, age and group size were deter-

mined for every recorded image or video containing an observation of focal species. We defined the

independence interval between successive captures (i.e. event; see Meek et al., 2014) as five

minutes.

Statistical model
General description
We developed a hierarchical multi-scale spatial model to quantify landscape use by large carnivores

and ungulates. Our model was built upon the previous work of Royle (2004) and Royle et al.

(2007), who described a class of Binomial-Poisson N-mixture models for spatially replicated counts

collected during multiple (discrete) surveys at each site (Royle, 2004) and further applied these

models in a spatially explicit context (Royle et al., 2007). Following the later work of Guillera-

Arroita et al. (2011); Guillera-Arroita et al., 2012), we expanded this approach to a continuous

case where counts are described using the Poisson instead of binomial distribution. This approach is

more suitable for camera traps and unmarked populations (as in our case), as multiple detections of

the same individuals are allowed, accounting within a single modeling framework for both false-neg-

atives (‘imperfect detection’) and false-positives (‘double counts’).

Moreover, the Poisson distribution intensity parameter (g in the next section), when multiplied by

the number of (arbitrarily defined) sampling occasions, can be interpreted as the trapping rate, and

also corrects for unequal effort amongst sampling locations (offset). Both the Binomial-Poisson

N-mixture model and its continuous variations allow for estimating species abundances at monitored

sites (Nj in the next section), assuming sampling locations are independent and that the observed

system is closed (i.e. no changes in abundance at the site during repeated surveys). In other words,

site abundances are treated as independent random variables distributed according to some mixing

distribution, for example Poisson or Negative Binomial (Royle, 2004).

Usually, to ensure independence between sampling locations (i.e. no shared individuals) a dis-

tance larger than the average home range of focal species is preferred. This does not apply to our

high-resolution camera trapping study as both the average distance between neighbouring sampling

locations and size of landscape grid cells chosen for predictions (500 x 500 m) are much smaller than

home and daily ranges of all ungulates and both carnivores. This specific sampling strategy was

designed to capture and model the fine-scale, continuous variation in the use of the landscape by all

studied species. Thus, following Royle (2004) we view the site-specific abundance as a random

effect and relax the assumption of sampling site independence by interpreting Nj as the relative den-

sity that is the number of individuals using a given landscape grid cell during a sampling period

rather than an absolute value of abundance. A similar interpretation has been used in many occu-

pancy studies (Cusack et al., 2017; Efford and Dawson, 2012; Latif et al., 2016), where the proba-

bility of site occupancy has been interpreted as the probability of site use. We used the Negative

Binomial distribution as the prior distribution for N to accommodate extra-Poisson variation not

explained by the included covariates and spatial random effects (see Formal description below).

Lastly, we assumed the system to be closed (i.e. no significant changes in ungulate and carnivore dis-

tributions and demographies) during the sampling period (2 years for ungulates and 1 month for car-

nivores). This is a reasonable assumption since the landscape surrounding BF creates natural

boundaries (see description of the study area) and the hunting intensity is relatively low and constant

over the years (Zbyryt et al., 2018).
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Formal description
Let us consider a landscape divided into j ¼ 1; 2; :::;G grid cells of equal sizes and

i ¼ 1; 2; :::; S sampling locations monitored with camera traps for di days each, where each grid cell

can contain zero, one or multiple camera trap locations. This results in a multi-scale design where

smaller subunits (camera trap sites) are nested within larger units (grid cells) (Kery and Royle,

2016). Counts, yi, are Poisson random variables given by

yijNj i½ � ~Poisson Nj i½ �gidi
� �

(1)

where the intensity parameter is a product of Nj i½ �, the number of individuals using a landscape grid

cell j during a study period, gi, the expected detection (trapping) rate per sampling occasion (here 1

day) and di, the number of sampling occasions (days) during a survey at a camera trap location i. In

the state-space formulation of our hierarchical model Nj is the Negative Binomial distributed latent

variable

Nj ~NegBin lj;f
� �

(2)

with the parameter lj being the expected number of individuals using a landscape grid cell j and

f the dispersion parameter. Both parameters, lj and gi can depend on covariates describing

for example environmental gradients (at different scales), biotic interactions and seasonal differences

in species activity level. This variation can be modelled using standard generalized linear regression

techniques using log-link functions

log gið Þ ¼ x
0

gibg þ �i (3)

log lj
� �

¼ x
0

ljbl (4)

where x
0

g� and x
0

l� are transposed rows of design matrices Xg and Xl, respectively, b� are vectors of

linear predictor coefficients and �i are identically and independently distributed iidð Þ camera trap

measurement errors. It is necessary to note that, while the linear predictor of lj explains the variation

in data arising from the ecological processes, the linear predictor of gi (detection/trapping rate)

deals with both the ecological (e.g. habitat selection, movement, seasonal activity levels) and obser-

vational processes (e.g. detection issues, camera failures). In the latter case, informative and ecolog-

ically meaningful covariates are needed to disentangle these otherwise confounded sources of

variation. In order to directly account for the potential spatial dependence between landscape grid

cells (i.e. to capture all the spatial variation not explained by the included covariates) we introduced

spatial random effects (“spatial residuals”) into the linear predictor of lj:

log lj
� �

¼ x
0

ljbl þ!j (5)

where !¼ !1; :::;!Gð Þ is the realization of a Gaussian spatial process on a discrete (gridded) spatial

domain. Specifically, we implemented a Restricted Spatial Regression model (RSR) (Hughes and

Haran, 2013; Johnson et al., 2013), which is the restricted version of the intrinsic Conditional Autor-

egressive (iCAR) model. The RSR model was developed to solve the issue of confounding between

the spatial process and the fixed-effects covariates in spatial regression models. The byproduct of

this solution is its computational efficiency, as the RSR model is a reduced dimension model.

Specification
The model as described above was fitted to our camera trapping data of the wolf and lynx and each

of the five ungulate species. To model the intensity of landscape use (lj in Equation 5), we overlaid

a grid of 2303 cells 500 m per side (25 ha each) over the study area. Based on this grid we compiled

a set of spatial (raster) covariates describing the ecologically relevant (sensu Elith and Leathwick,

2009) environmental and human-induced gradients (Figure 2). For GIS data processing, we used

QGIS (QGIS Development QGIS Development Team, 2017) and GRASS GIS (Neteler et al., 2012)

open source software. We standardized (scaled) all covariates, by subtracting the mean and dividing

the result by the SD of the original variables. Finally, we ensured that the Pearson correlation
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coefficient for all pairs of included covariates was lower than 0.7 (Appendix 1—figure 1). For more

details about all spatial (raster) covariates and the processing of GIS and remote sensing data see

Appendix 1.

Specification - wolf and lynx model
Based on existing knowledge (Kuijper et al., 2015; Schmidt et al., 2009; Theuerkauf et al., 2003)

both carnivore species in the Białowieża forest utilize the entire landscape, although with clear spa-

tial patterns in the intensity of use. Previous work in this study area has shown that this is primarily

determined by human related factors (Theuerkauf et al., 2003). In BF tourist traffic concentrates

mainly within the central parts of the forest where roads (open for the public and cars) connect the

three major settlements in the area, that is Hajnówka, Białowieża and Narewka (see Figure 1 and

Appendix 1—figure 3). For the reasons above, the following raster layers were chosen as landscape

covariates likely to influence carnivore space-use: distance to major settlements, distance to touristic

trails, density of touristic infrastructure (POIs), density of protected areas (BNP and nature reserves)

and elevation (Figure 2). Elevation was included as in this flat landscape the lowest, often swampy

areas are the least accessible for humans and could therefore be preferred by the wolf and lynx. We

interpreted the parameter l as large carnivore space use intensity and included rasters with pre-

dicted values of lj for both species as covariates in all models for ungulates. We assumed that from

Figure 2. Maps of candidate landscape-scale covariates for the ungulate and carnivore models representing environmental and human-related

landscape gradients. All covariates were scaled and zero-centered prior to modelling. POIs – density of tourist infrastructure. When selecting covariates

for the final models we ensured that the Pearson correlation value for all pairs of included covariates was lower than 0.7 (Appendix 1—figure 1).

DOI: https://doi.org/10.7554/eLife.44937.004
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a prey perspective, lj is proportional to the predator encounter rate, hence it quantifies potential

risk as perceived by ungulates.

Specification - ungulate model
To explain the variation in the landscape-scale distribution of ungulates, we considered three envi-

ronmental gradients primarily related to major biophysical properties of the forest environment that

are known to affect space use of ungulates at multiple scales: percentage of landscape openness,

Figure 3. Spatial distribution of large carnivores is determined by human activity. (a, d) Estimated parameters for the wolf and lynx models, (b, e) maps

of the predicted variation in their landscape use (relative density surfaces) and (c, f) fitted spatial random effects (SRE). Specifically, panels (b) and (e)

present the spatial predictions for the parameter l, which is the expected number of individuals using a given landscape grid cell (25 ha pixel) during

the sampling period (see the general and formal description of the model in the Materials and methods section). The fitted values of SRE are deviations

from 0 at log-scale. The SRE captured all spatial variation not explained by the covariates included in the model, indicating parts of the landscape for

which higher (“hot-spots”) or lower (“cold-spots”) activities of species were observed in the data than was predicted by the “fixed” part of the model.

On panels (a) and (b) we additionally marked in bold the credibility intervals (quantile based) at which the estimated parameter values differed from 0

(for the level 2.5–97.5%, there is a 0.95 probability that the true parameter value lies within this range). The full posterior distribution for each parameter,

together with its numerical description can be found in Appendix 1—figures 26–27).

DOI: https://doi.org/10.7554/eLife.44937.005
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tree stand canopy height and percentage share of coniferous species (Churski et al., 2017;

Jedrzejewska et al., 1994; Kuijper et al., 2009; Kuijper et al., 2010a; Figure 2). For landscape

openness and percentage share of coniferous species, we additionally included their quadratic

effects, allowing for the existence of an optimum value for each variable (e.g. species preference for

a mixed forest or for intermediate levels of canopy closure). The other covariates included were

potential predation risk variables (space use of large carnivores) and two human-related landscape

gradients, namely distance to all settlements and density of protected areas (BNP and nature

reserves; Figure 2). Additionally, we computed the same set of environmental covariates but with a

higher resolution (100 m) and used them to model variation in detection rate (gi in Equation 4) at

camera trap sites. Here, we assumed that a part of this variation comes from a resource selection

process operating at a scale smaller than the landscape unit we defined (see e.g. Johnson, 1980),

influencing at-site detection rates and observed counts in the end. Another source of variation is

species movement behavior and activity level, which can both change between seasons. To control

for these temporal effects, we considered a quadratic function of temperature and snow cover as

covariates for detection rate.

Implementation
The models were implemented within a Bayesian framework in Python using PyMC 2.3.6 software

(Patil et al., 2010). We used Markov chain Monte Carlo (MCMC) for inference and sampled from

the posterior distributions with Metropolis-Hastings and Adaptive Metropolis step methods, both

available in PyMC. To speed up the model and improve the MCMC convergence, we marginalized

out the latent variable N and implemented the integrated likelihood function (Guillera-

Arroita et al., 2012; Royle, 2004 ). To make the integration over N values finite, we assumed 100

as the maximal possible number of individuals using a single grid cell j (25 ha). We defined the priors

for the linear predictor coefficients b� as diffuse normal priors N 0; 10�3ð Þ. The priors for the measure-

ment errors �i were given by N 0; 1=s2ð Þ with the hyper-parameter s ~U 0; 100ð Þ (Gelman and Hill,

2006). We followed Royle et al. (2007) and we chose the gamma distributed prior G 0:1; 0:1ð Þ for

the precision parameter of the RSR model.

The reason for not choosing a vague prior for this parameter (as e.g. in Johnson et al., 2013) was

that we expected the spatial covariates included in the models would not account for all the spatial

dependence alone. Part of this (unexplained) variation is likely related to species movement behavior

occurring at multiple spatial scales. It is also commonly known that the variance components are

poorly identified in these types of models (Royle et al., 2007). To obtain posterior distributions of

parameters, we ran a MCMC sampler with three chains for 500,000 iterations each (removing the

first 400.000 as a burn-in phase of the sampling process) and with the thinning parameter set to 20

to avoid autocorrelation between samples. The convergence was assessed through visual inspection

of MCMC trace plots and Gelman–Rubin diagnostics provided by the PyMC software. We evaluated

the fit of the models through visual inspection of standard model diagnostics plots (see Appen-

dix 1—figures 28–35). We used posterior predictive distribution and Bayesian ‘p-value’ to assess

the goodness of fit of each model (Kery and Royle, 2016). The source code of our models is avail-

able at https://github.com/mripasteam/herbiscapes/ (Bubnicki et al., 2019; copy archived at

https://github.com/elifesciences-publications/herbiscapes).

Ungulate community-level analysis
We explored the distribution of ungulates across the landscape, as predicted by species-specific

models, in the context of the community. First, the spatial overlap between species was evaluated

by means of pairwise Pearson correlations of their relative density surfaces. Next, we converted

ungulate relative densities to herbivore biomass using the following average weights per species:

red deer female 90 kg, red deer male 150 kg, roe deer 20 kg, wild boar 80 kg, moose 200 kg and

European bison 400 kg (Borowik et al., 2016; Jedrzejewska et al., 1994). Total biomass was esti-

mated as the sum of each species’ biomass for each landscape cell (25 ha pixel) in our prediction

grid. We further calculated and mapped the index of the functional diversity of the entire ungulate

community (FDis; Laliberté and Legendre, 2010) using the R statistical software (Core Team, 2019)

and the R package FD v.1.0–12. The FDis was calculated based on the predicted relative densities of

all ungulates and the following species-specific traits: body mass, diet type and gut type. The FDis is
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the mean distance in multidimensional trait space of individual species to the centroid of all species.

It can account for species abundances by shifting the position of the centroid toward the more abun-

dant species and weighting distances of individual species by their relative abundances

(Laliberté and Legendre, 2010). The input data for a FDis calculation are 1) a matrix with species

traits and 2) a matrix with relative densities that describe how much weight to assign to each individ-

ual observation. We compiled a six row (species) by three column (traits) matrix with one quantitative

and two qualitative traits, namely body mass, gut type and diet type (Appendix 1—table 2).

By means of hierarchical cluster analyses (Lê et al., 2008), we grouped all landscape grid cells (25

ha each) with similar values of FDis, and total and species-specific biomass into clusters representing

ecologically distinct landscape-scale herbivory regimes, or ‘herbiscapes’. Specifically, following the

approach of Hempson et al. (2015), we used the R package FactoMineR v.1.39 (Lê et al., 2008)

and its HCPC (hierarchical clustering on principle components) function. The HCPC requires that

PCA (principal component analysis) is performed on variables prior to clustering, which limits the

impact of covariance amongst variables on the subsequent clustering algorithm. To build the cluster

tree, we used HCPC default values for the metric (Euclidean distance) and method (Ward’s) parame-

ters. Similarly to Hempson et al. (2015), the number of clusters was determined by assessing the

inertia (i.e. change in within cluster homogeneity) gained by cutting the tree at different levels and

the ecological interpretability of the resulting clusters. Eventually, we split the cluster tree into five

independent clusters (Appendix 1—figure 2).

The hierarchical clustering analysis allowed us to learn how the combined effect of predation risk

and resource quality translates into the composition and abundance of the ungulate community and,

in consequence, into the diversification of herbivory pressure on the ecosystem.

Vegetation analysis
Using an independent vegetation dataset from a large-scale inventory of tree regeneration (part of

the LIFE+ ForBioSensing project, contract number LIFE13 ENV/PL/000048), we tested if the pre-

dicted variation in the landscape-scale distribution of large herbivores, synthesized into ecologically

distinct herbivory regimes that is herbiscapes, affects tree browsing intensity and regenerating tree

species composition. We used data collected in 2017 at 385 plots spread randomly across the entire

BF. Each plot contained two concentric sub-plots: 1) with a radius of 1.3 m (area of 5 m2) at which all

trees with height <30 cm excluding seedlings were recorded, and 2) with a radius of 2.52 m (area of

20 m2) at which all trees with height �30 cm and diameter at breast height <2 cm were recorded.

Additionally, each individual tree was checked for any sign of fresh or 1-year-old browsing of its

main shoot. The <30 cm tree sapling community is structured mainly by bottom-up factors (and/or

forest management practices) and only minimally influenced by ungulate herbivory (Kuijper et al.,

2010a), whereas the �30 cm tree sapling community is within the foraging height class preferred by

ungulate herbivores (Kuijper et al., 2013) and is therefore largely structured by ungulate top-down

factors (Kuijper et al., 2010a; Kuijper et al., 2010b).

Based on this data, for each plot we calculated the cumulative browsing intensity index,

expressed as the proportion of browsed individual trees out of all tree saplings � 30 cm, and the dif-

ference between the two tree height classes in the proportional shares of Carpinus betulus (Carpi-

nus) and Acer platanoides (Acer). The latter two parameters represent a measure of recruitment

from the sapling-bank (<30 cm) to the taller size-class (�30 cm). This process is to a great extent

driven by large herbivores in the studied system (see Kuijper et al., 2010a and Churski et al.,

2017). We specifically focused on the response of two contrasting species, Carpinus and Acer. While

both species are palatable and strongly selected by the ungulate community (see Churski et al.,

2017), Carpinus is highly browsing-tolerant (a typical ‘brown-world’ species sensu Churski et al.,

2017) and Acer is highly-sensitive to ungulate browsing (a typical ‘green-world’ species). Long-term

exclosure studies have also shown that Carpinus typically increases while Acer decreases in domi-

nance in response to ungulate herbivory (Kuijper et al., 2010a). As both species are very common

throughout the forest, we see them as suitable indicator species for the impact of ungulate herbivory

on tree species composition. We explained the variation in the calculated parameters by fitting sim-

ple linear models with two interacting factors: herbiscape and reserves. The latter was added to

account for potential differences in forest structure (see Jedrzejewska et al., 1994) and ungulate

behaviour (see Kamler et al., 2008) between protected and unprotected areas in BF.
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Results

Large carnivores
The main factor associated with the space use of both large carnivore species was human activity, as

indicated by the positive effect of distance to major settlements on their spatial distributions (Fig-

ure 3). For the wolf, the density of protected areas was another important variable related to its

landscape use. Wolves more often used large nature reserves (including BNP) than parts of the land-

scape dominated by managed forest. There was no statistically important effect of elevation, dis-

tance to touristic trails and density of touristic infrastructure on landscape distribution of neither the

wolf nor lynx. However, wolves tended to use lower areas more intensively. For the lynx there was a

clear tendency to use parts of the landscape further away from major human settlements; however,

this effect was less evident than for wolf (the credible intervals overlapped at zero, Figure 3D). The

density of protected areas had no effect on lynx distribution.

To test the quality of our predictions, we compared them with existing radio-tracking data from

collared wolves collected over 20 years ago (1994–1999) in BF. This showed that our model fitted to

the camera trapping dataset (471 wolf detections) not only conforms to the general pattern of the

wolves’ space use determined by telemetry 20 years ago, but also reflects the wolves’ response to

ongoing environmental changes in the study area. See the Appendix 1 and Figure 4 for more

details.

Ungulates – landscape use
In contrast to the other ungulates, the red deer, the main prey of the wolf (Jędrzejewski et al.,

2002), was the only species whose landscape use was associated with that of wolves (Figures 4 and

5). The predicted relative densities of both red deer females and males were lowest in parts of the

landscape intensively used by wolves, and this effect was more pronounced for females. Lynx distri-

bution was not related to the landscape use of any ungulate species. Red deer females were also

positively associated with protected areas (BNP and nature reserves) and mixed deciduous forest

with an intermediate level of landscape openness (Figure 4). Red deer males showed similar tenden-

cies, but these factors were not statistically important predictors of their landscape distribution.

Instead, red deer males showed a negative association with distance to human settlements, which

could have resulted from their more intensive use of open meadows surrounding settlements, espe-

cially during the rutting period. Forage habitat availability was the main factor associated with wild

boar distribution, as indicated by its clear association with closed-canopy and deciduous species

dominated forest stands (as indicated by the strong negative effect of coniferous species dominated

forest stands; Figure 4). The presence of deciduous forest was also the main factor positively associ-

ated with the distribution of bison, followed by proximity to human settlements (as indicated by the

negative association with distance to human settlements). The latter is likely related to the presence

of meadows surrounding settlements, which provide optimal foraging habitats for bison

(Bocherens et al., 2015; Cromsigt et al., 2012). The moose was the only species whose landscape-

scale distribution was positively associated with low elevation areas (river valleys and wetlands). Roe

deer were positively associated with intermediate levels of landscape openness. However, no other

predictors that we used were related to the distribution of roe deer, which may be due to the low

density of this species in our study system. All ungulate species except red deer males showed some

level of remaining spatial auto-correlation not explained by the raster covariates included in the

models (Figure 6). The spatial random effects were particularly large for the bison, whose spatial dis-

tribution in BF is strongly influenced by supplementary winter feeding and use of open areas outside

the forest throughout the year (Kowalczyk et al., 2011). An interesting hot-spot of unexplained vari-

ation in distribution of bison and red deer females was the south of the national park, in an area

without hunting and rich old-growth deciduous stands and with known higher densities of deer

(Jędrzejewska et al., 1997).

Ungulates – detection rates
At the scale of single camera trap sites (1 ha), increased canopy openness led to higher detection

rates of red deer and moose (Figure 7). This could be explained by cameras having better detection

in open areas (Marcus Rowcliffe et al., 2011) and/or a preference of these species to forage in
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canopy gaps (Churski et al., 2017; Kuijper et al., 2009). Red deer females were associated with

even larger canopy gaps, whereas for red deer males and moose there was an optimum value of

canopy openness, above which the detection rate started to decrease. Roe deer followed a similar

pattern as red deer but there was no statistical support for this result. At-site detection rate of wild

boar was highest in deciduous forest patches with relatively closed canopies (in line with

Kuijper et al., 2009). However, wild boar, as well as red deer, roe deer and bison were also rela-

tively frequently detected at forest patches dominated by coniferous tree species, indicating a

Figure 4. Spatial distribution of each ungulate species was related to a unique combination of bottom-up and top-down factors. (a) Estimated effects

of covariates explaining the spatial variation in the parameter l, which is the expected number of individuals using a given landscape grid cell (25 ha

pixel) during the sampling period (i.e. the relative density; see the general and formal description of the model in the Materials and methods section).

In bold, we marked the credibility intervals (quantile based) at which the estimated parameter values differed from 0 (for the level 2.5–97.5%, there is

0.95 probability that the true parameter value lies within this range). The full posterior distribution for each parameter, together with its numerical

description can be found in Appendix 1. (b) For easier interpretation of the effects of landscape openness and percentage share of coniferous species

(together with their quadratic terms and assuming an average level for the other covariates), we plotted predictions of the relative density for each

species and for each variable. The values of the covariates were scaled and zero-centered before making predictions; thus 0 corresponds to the

average value of a given covariate. The full posterior distribution for each parameter, together with its numerical description can be found in

Appendix 1—figures 14–25).

DOI: https://doi.org/10.7554/eLife.44937.006
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context-dependence in the selection of small habitat patches. For example, as forage availability

changes between seasons, deciduous patches may be preferred in the green season while conifer-

ous patches in winter. Temperature affected detection rate non-linearly by influencing the activity

level of red deer males, with the optimum at the yearly average temperature. In the case of the wild

boar the highest detection rates were found at high temperatures, coinciding with their reproductive

period in summer. And in case of the moose, the highest activity level was found at moderately high

temperatures. The bison was the only species whose detection rate was strongly affected by snow

cover. Winter supplementary feeding causes bison to aggregate near feeding stations or outside BF

(Kowalczyk et al., 2011), hence dramatically decreasing their detection rate in other parts of the

forest.

Figure 5. Only red deer (the major wolf prey) showed a negative spatial association with parts of the landscape intensively used by wolves, whereas

distributions of other species were shaped by bottom-up factors. The maps show substantial variation in predicted landscape use for the five studied

ungulate species (relative density surfaces). Specifically, this figure presents the spatial predictions for the parameter which is the expected number of

individuals using a given landscape grid cell (25 ha pixel) during the sampling period (see the general and formal description of the model in the

Materials and methods section). The predictions are based on the parameter estimates presented in Figure 3 and include the spatial random effects

(see Figure 4).

DOI: https://doi.org/10.7554/eLife.44937.007
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Ungulates – spatial overlap
All ungulate species except moose showed some level of pairwise positive spatial associations as

indicated by the Pearson correlation of their relative density surfaces predicted by the models (Fig-

ure 8). However, the strength of these associations was relatively low, indicating substantial spatial

variation in the structure of the whole community. Unsurprisingly, the strongest overlap in space was

between red deer females and males. However, the estimated correlation (0.71) was far from a ‘per-

fect’ overlap, indicating red deer are sexually segregated in space in BF (see Kamler et al., 2008).

The relatively high spatial overlap between red deer males and roe deer (0.58) likely resulted from

their utilization of similar parts of the landscape, often close to the forest edge and large clearings

with human settlements. The moose was a clear exception showing a negative spatial association

with all other ungulate species. This indicates that the moose has a specific (spatial) niche in our

Figure 6. All ungulate species except red deer males showed some level of remaining spatial auto-correlation not explained by the raster covariates

included in the models. The maps show the fitted spatial random effects (SRE) for the models of five studied ungulate species. The SRE are deviations

from 0 at log-scale. The SRE captured all spatial variation not explained by covariates included in the model, indicating parts of the landscape for which

higher (‘hot-spots’) or lower (‘cold-spots’) activity of species was observed in the data than predicted by the ‘fixed’ part of the model. The SRE were

particularly large for the bison, whose spatial distribution in BF is strongly influenced by supplementary winter feeding and the use of open areas

outside the forest during the year.

DOI: https://doi.org/10.7554/eLife.44937.008
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system, strongly associated with low lying areas like river valleys and wetlands (see Figures 2, 4 and

5). Interestingly, when comparing the surfaces of spatial random effects, there was a relatively strong

positive spatial association (0.59) between bison and wild boar (Figure 6). A possible explanation for

this pattern may be that wild boar are attracted to supplementary food at bison feeding stations,

where next to hay and silage, beetroots are provided for bison (Kowalczyk et al., 2011).

Functional diversity and hierarchical clustering analysis
When mapped, both the estimated total biomass of the ungulate community and the functional

diversity index (FDis) showed distinct patterns across the studied landscape (Figure 9). Interestingly,

the lowest values of both parameters were associated with coniferous-dominated tree stands at

higher elevations (Figures 2 and 5) belonging to the least productive parts of this landscape

(Faliński and Falińska, 1986; Kwiatkowski, 1994). By means of hierarchical cluster analyses, we fur-

ther grouped all landscape grid cells (25 ha each) with similar values of FDis, and the total and spe-

cies specific biomasses. We identified five clusters, characterized by different sets of risk-related and

environmental factors and composed of different sets of ungulate species (Figure 10). The ‘red’ clus-

ter (id = 1) was characterized by high wolf and lynx use and low quality foraging habitat (low eleva-

tion, mixed tree stands with large shares of coniferous tree species, Figure 10B). In terms of

ungulate biomass, this cluster was dominated by moose, red deer and wild boar (Figure 10C). How-

ever, red deer relative density was the lowest out of all five clusters. The total ungulate biomass in

this cluster was low but the FDis value was relatively high (Figure 10D). A large part of the ‘red’

Figure 14. Scatter plot showing how wolves, by affecting the spatial distribution of red deer, re-structured the composition of the entire community of

large herbivores. The predicted biomass of red deer (both sexes, X axis) is shown as a share of the total biomass of the entire community of ungulates.

Each dot on the plot is a 25 ha landscape pixel. In color, we marked relative wolf encounter risk (scaled values of the parameter l) as predicted by the

model fitted to the wolf camera trapping data. We interpreted the parameter l as large carnivore space use intensity and assumed that from a prey

perspective, l is proportional to the predator encounter rate. The dashed line is a reference line indicating the y=x relationship.

DOI: https://doi.org/10.7554/eLife.44937.016
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cluster was spatially associated with the lowest elevated areas, that is marshlands and river valleys

(compare Figure 10A with Figure 2). The ‘green’ cluster (id = 3) was characterized by high predator

presence and high-quality foraging habitat (moderate elevation, mixed tree stands with large shares

of deciduous tree species), which increased the numbers of seemingly risk-insensitive species like

wild boar and bison. Red deer males, which had a less pronounced negative spatial association with

wolves than females (Figure 4), also had a higher biomass in this cluster than in the ‘red’ one. More-

over, the ‘green’ cluster was characterized by low values of total biomass and high values of FDis.

Figure 7. Factors influencing detection rates of ungulate species. (a) Estimated effects of covariates explaining the variation in the parameter g, which is

the expected (daily) detection (trapping) rate at a single camera trap site (see the general and formal description of the model in the main text in the

Materials and methods section). The spatial covariates were calculated at a pixel resolution of 100 m (1 ha) and the temporal covariates were calculated

as the average value for the whole period of camera trapping at a given location. In bold, we have marked the credibility intervals (quantile based) at

which the estimated parameter values differ from 0 (for the level of 2.5–97.5 %, there is a 0.95 probability that the true parameter value lies within this

range). The full posterior distribution for each parameter, together with its numerical description can be found in Appendix 1. (b) For easier

interpretation of the effects of canopy openness, the percentage share of coniferous species and temperature (together with their quadratic terms and

assuming an average level for other covariates), we plotted predictions of the detection rate for each species and for each variable. The values of the

covariates were scaled and zero-centered before making predictions; thus 0 corresponds to the average value of a given covariate. The full posterior

distribution for each parameter, together with its numerical description can be found in (Appendix 1—figures 14–25).

DOI: https://doi.org/10.7554/eLife.44937.009
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This cluster in the landscape, mainly covered remote areas of low human activity and high use by

wolf, and occurred in protected areas (BNP and nature reserves). The ‘blue’ cluster (id = 2) was char-

acterized by moderate use by predators and low-quality foraging habitat (high elevation, coniferous

Figure 8. There was substantial spatial variation in the structure of the ungulate community, as indicated by the weak spatial associations between

species. The pairwise spatial overlap between the studied ungulate species is presented as the Pearson correlation heatmap of their relative density

surfaces predicted by the models (a) and fitted spatial random effects (b).

DOI: https://doi.org/10.7554/eLife.44937.010

Figure 9. Maps of estimated total biomass [kg/pixel] and functional diversity (FDis). Both variables, together with

species-specific biomass raster layers, were used in the hierarchical clustering analysis. Interestingly, the lowest

values of both parameters were largely associated with coniferous-dominated tree stands at higher elevations

(compare with Figure 2), often re-planted after extensive clear-cuts from the past and belonging to the least

productive parts of this landscape (Faliński and Falińska, 1986; Kwiatkowski, 1994).

DOI: https://doi.org/10.7554/eLife.44937.011
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dominated tree stands), and had the lowest values of both total biomass and FDis. However, the

wolf used these areas less intensively than the ‘red’ and ‘green’ clusters, and the biomass of red

deer was higher than in those high wolf use clusters. The ‘purple’ cluster (id = 4) was characterized

by low use by predators and high-quality foraging habitat (high elevation, mixed tree stands with

large share of deciduous tree species), and was dominated by red deer. Both sexes of red deer were

at their most abundant in this cluster, which covered areas of high human activity and the lowest use

by wolf. These seemingly ‘safe’ parts of the landscape were also characterised by high-quality habi-

tat for red deer – a mosaic of deciduous and mixed tree stands at higher elevations and relatively

close to forest edges and large clearings surrounding human settlements. The roe deer was also spa-

tially associated with this cluster. The ‘orange’ cluster (id = 5) was characterized by moderate use by

predators and high-quality foraging habitat (moderate elevation, deciduous dominated tree stands)

and had the highest values of total biomass and FDis. This cluster was dominated by the bison - the

main grazer and largest species in our system. Also, the wild boar was at its highest relative density

Figure 10. Spatial variation and functional diversity of a herbivore community within a temperate forest herbivome, decomposed into landscape-scale

herbivory regimes – herbiscapes. (a) The spatial distribution of the five identified clusters (‘herbiscapes’) based on hierarchical clustering on the

principal components analysis. (b) The distribution of identified clusters in the space of the first two principal components. (c) Tukey-like boxplot

comparing the species-specific and total biomass in each of the identified clusters. (d) Tukey-like boxplot comparing the functional diversity index (FDis)

of the ungulate community between the identified clusters. The boxplots show median values and the lower and upper hinges correspond to the first

and third quartiles. The colors of clusters are consistent amongst all figures. Each data point on panel (b) corresponds to a 25 ha pixel mapped on

figure (a). On panel (b), for ease of interpretation, we additionally plotted (blue arrows) the major environmental and risk-related gradients in the study

area which were used as covariates in the ungulate models.
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in this cluster. It is worth mentioning that a large part of this cluster was in the southern part of Biało-

wieża National Park, comprising some of the best preserved parts of this forest.

Spatial patterns in herbivores and impact on woody vegetation
The highest proportions of browsed trees were found in herbiscapes 3, 4 and 5 (Figure 11c), which

are characterized by high values of total ungulate biomass and/or high functional diversity index

Figure 11. The patterns of browsing intensity and the composition of regenerating tree species differ between herbiscapes and between the protected

and managed parts of the BF landscape. (a, b) The mean differences between the two tree height classes (saplings < 30 cm and �30 cm) in the

proportional shares of Acer platanoides (Acer) and Carpinus betulus (Carpinus). The numbers on top of both figures are the proportions of plots

without a single individual of each species. (c) The cumulative browsing intensity index, expressed as the proportion of browsed individual trees out of

all tree saplings � 30 cm. The numbers on top of this figure are the proportions of plots with no browsing. Panels (a), (b) and (c) show the values

predicted by the fitted linear models with two interacting factors: herbiscape (six levels) and reserves (two levels coded as 0: unprotected areas and 1:

protected areas). The error bars are standard errors of the mean. (D) The mean proportions of selected tree species (saplings < 30 cm and �30 cm) out

of the entire pool of the main regenerating trees recorded at the sampled plots, showed for the herbiscapes and protected (R1) and unprotected (R0)

areas separately. The value on top of each stacked bar is the number of plots used to calculate the mean proportion. Cb: Carpinus betulus, Ap: Acer

platanoides, Tc: Tilia cordata, Qr: Quercus robur, Pa: Picea abies, Ot: other species (Betula pendula, Sorbus aucuparia, Fraxinus excelsior, Alnus

glutinosa, Populus tremula, Pinus sylvestris, Ulmus).

DOI: https://doi.org/10.7554/eLife.44937.013
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(FDis). These three herbiscapes covered the more fertile parts of the landscape dominated by pro-

ductive deciduous and mixed forests (Figure 10B) with abundant tree regeneration dominated by

Acer platanoides and Carpinus betulus (Acer and Carpinus hereinafter, Figure 11d). The variation in

browsing intensity between the herbiscapes was reflected in the recruitment patterns towards taller

tree sapling size classes (>30 cm) of Acer and Carpinus. In accordance with previous experimental

exclosure studies in BF (Churski et al., 2017; Kuijper et al., 2010a; Hedwall et al., 2018), the pro-

portion of the palatable but browsing intolerant Acer in the community of regenerating trees

decreased as herbivore pressure increased (Figure 11a,d). In contrast, the palatable but highly

browsing-tolerant Carpinus, showed the opposite pattern (Figure 11b,d). These supposedly herbi-

vore-driven shifts in the species composition of regenerating trees were most pronounced in nature

reserves, whereas areas outside the reserves broadly showed the same patterns but less closely fol-

lowed the observed patterns in cumulative browsing intensity.

Discussion
Our results show how variation in spatial distribution in a community of large herbivores in a temper-

ate forest ecosystem can be explained by species-specific associations with major ecological gra-

dients operating at the landscape scale. This creates ecologically distinct landscape-scale herbivory

regimes (‘herbiscapes’), which are interactively driven by both environmental bottom-up and biotic

top-down (large carnivores) factors in combination with human-driven (cascading) effects. In addi-

tion, our analyses suggest that these herbiscapes differ in browsing intensity and impact on vegeta-

tion, indicated by the changing proportions of recruitment of browsing-sensitive versus browsing-

tolerant tree species (Figure 12).

Spatial heterogeneity in the landscape distribution of large herbivores
All ungulates in our study showed specific, non-uniform distributional patterns that were associated

with species-specific combinations of bottom-up and/or top-down forces, including predation,

human presence, availability of resources and the (bio)physical properties of the landscape (Figures 4

and 5). The substantial spatial variation in each of these landscape components, when combined,

resulted in an aggregated, non-uniform pattern of landscape distribution of all ungulates, as pre-

dicted by Fryxell (1991) and Hopcraft et al. (2010). The spatial distribution of each species (Fig-

ure 5) followed a characteristic shape of a hollow or sigmoidal curve (Figure 13) when plotted as a

graph of ranked relative densities predicted for each 25 ha landscape pixel. This pattern of spatial

variation in abundance of different populations has been shown to be universal over large spatial

domains and for different taxa (Brown et al., 1995). Our study contributes to this finding by show-

ing that similar spatial patterns can be observed within a population and within a local landscape.

The shape of these ranked-abundance curves is informative for the properties of a given continuous

(landscape) surface (Rocchini and Neteler, 2012), for example the sigmoidal curve of wild boar indi-

cates a highly heterogeneous distribution with many hot and cold spots (high and low use), whereas

the hollow curve of moose indicates a rather homogeneous distribution at low density with only

some hot-spots.

Interestingly, the degree of spatial aggregation of different ungulate species in our study system

was not related to their body size. This contrasts with studies from African savannas where larger

herbivore species were more evenly distributed over the landscape than the smaller species

(Cromsigt et al., 2009; du and Owen-Smith, 1989). The two largest herbivores in our study system,

the European bison and moose, showed highly aggregated landscape distributions. The moose was

strongly associated with lower elevation habitats (i.e. river valleys and wetlands), whereas landscape

use by bison was strongly related to locations of supplementary winter feeding and open areas

inside the forest, which are distributed sparsely within the study area and often associated with

anthropogenic activity. The distribution pattern of bison could also be the result of partial migrations

outside the forest in winter (Kowalczyk et al., 2013; Kowalczyk et al., 2011). This mainly human-

driven distribution of bison was also manifested in the largest values for unexplained spatial variation

in the model output (fitted spatial random effects, Figure 6).

The distributions of all species, when combined, revealed substantial spatial variation in the com-

position of the entire ungulate community (Figure 10). To our knowledge this is the first empirical

study presenting a synthesized, high-resolution and spatially explicit approach (sensu Royle et al.,
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2007) combining bottom-up and top-down factors to explain the landscape-scale variation of an

entire large herbivore community in a temperate forest ecosystem. Including both resource- and

predator-related factors was critical for achieving this goal as they can operate simultaneously and

interactively (Anderson et al., 2010; Fryxell, 1991; Hopcraft et al., 2010). Similar studies in African

ecosystems have shown that the distribution and diversity of a community of large herbivores can be

driven by bottom-up (e.g. habitat heterogeneity; Cromsigt et al., 2009), top-down (e.g. anthropo-

genic fire; Klop and Prins, 2008) or interactive effects of both factors (e.g. distance to water and

settlements; Ogutu et al., 2010). More recent studies, also from African ecosystems, have extended

this approach by including predation-related factors, revealing the trade-offs native ungulates make

to cope with changes in forage availability, human disturbance and predation risk (Schuette et al.,

2016) and showing that a top predator can have species-specific spatial associations with herbivores

(Anderson et al., 2010). For example, the latter study showed that lions were positively associated

with large-bodied migratory ungulates but negatively associated with smaller non-migrants. Most

comparably to our study, Anderson et al. (2016) used an extensive network of camera traps and a

spatially-explicit occupancy modeling framework to quantify the spatial distribution of African

savanna herbivores. Interestingly, they quantified pairwise interactions between all modeled species

demonstrating the emergence of strong positive spatial associations among a diverse group of

savannah herbivores. This is in line with our results where all ungulates except moose showed posi-

tive spatial associations. However, in our study, these spatial associations were rather weak, indicat-

ing substantial spatial variation in the structure of the ungulate community. Our contribution to all

the above studies is a high-resolution picture of the spatial structure of an entire community of large

Figure 12. Graphical abstract presenting the steps taken to reveal the relationships uncovered in this study.

Image credit: Lisa Sánchez Aguilar

DOI: https://doi.org/10.7554/eLife.44937.014

Bubnicki et al. eLife 2019;8:e44937. DOI: https://doi.org/10.7554/eLife.44937 22 of 68

Research article Ecology

https://doi.org/10.7554/eLife.44937.014
https://doi.org/10.7554/eLife.44937


herbivores that incorporates both bottom-up and predation- and human-related top-down factors.

We believe one of our major points of novelty is in providing information on these spatial interac-

tions for a temperate ecosystem.

The effect of large carnivores on the spatial structure of the large
herbivore community
The red deer was the only species whose landscape use was associated with that of large carnivores,

with lower red deer presence in areas with higher wolf use. This is in line with other studies that

have shown that predator top-down effects can work selectively on some members of large herbi-

vore communities (Sinclair et al., 2003; Valeix et al., 2009) and have a complex and context-spe-

cific nature especially in multiple-prey and multiple-predator systems (Davies et al., 2016;

Moll et al., 2016). However, wolves, by seemingly affecting the spatial distribution of red deer (see

Figure 13. Ranked relative densities predicted for all ungulate species and for each 25 ha landscape pixel. All plots follow a characteristic shape of a

hollow or sigmoidal curve (Brown et al., 1995; Rocchini and Neteler, 2012) indicating a non-uniform, heterogenous distribution of all studied species.

DOI: https://doi.org/10.7554/eLife.44937.015
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below), one of the dominant species in BF, re-structured the composition of the entire community of

large herbivores (Figure 14) and increased the degree of its spatial heterogeneity (Figure 10).

The red deer is the main prey species for wolves in our study area and experiences the highest

predation pressure by wolves, in contrast to the European bison, moose and roe deer, which com-

prise only a small proportion of their diet, and wild boar, which is a secondary prey species

(Jędrzejewska et al., 1997; Jędrzejewski et al., 2002). Hence, this might explain why the the red

deer was also the species that seemed to react most strongly to the space use of its main predator.

The most intensively used part of a wolf territory (on an annual basis) is related to the location of

their dens during the reproductive period, and is generally far from human settlements

(Jędrzejewski et al., 2001; Kuijper et al., 2015). These high wolf use areas likely only have higher

predation rates during the reproductive period (Kuijper et al., 2013). Over the rest of the year,

wolves move more widely across their territories (Jędrzejewski et al., 2001) and kills may be distrib-

uted more widely across annual wolf territories. Hence, the areas that seemed to be avoided by red

deer are not necessarily areas with the highest predation risk on an annual basis. This finding adds

to the growing recognition that prey species perceive risk based on various factors such as the space

use of large carnivores and physical landscape and not necessarily by kill site distribution

(Kohl et al., 2018; Gaynor et al., 2019).

The distributional pattern of red deer was similar for both sexes (one independent model was fit-

ted for each), but females had a stronger negative association with wolf space use than males. This

indicates that females are more sensitive to wolf presence than males and is consistent with the

selective killing of this sex and juveniles by wolves in our study system (Jędrzejewski et al., 2000;

Jędrzejewski et al., 2002). These apparent effects of wolf space use on red deer distribution could

have resulted from both non-lethal (behaviorally mediated) as well as lethal (density-mediated)

effects. With our data we were not able to distinguish between these two mechanisms, although

previous studies have shown that non-lethal risk effects play an important role in affecting the

responses of red deer at both fine- and large-scales in this system (Kuijper et al., 2015;

Kuijper et al., 2013; Kuijper et al., 2014).

In contrast to the red deer, environmental bottom-up factors, particularly landscape topography

and resource availability (natural or supplemented by humans), had the strongest associations with

the spatial distribution of the other, less predation-sensitive ungulate species (Figures 4 and

5). Although the wild boar is a secondary prey species for wolves (Jędrzejewski et al., 2002), its

high abundance during t study period means that predation by wolves contributed little to its annual

mortality (Jędrzejewska et al., 1997). This may explain why we did not observe a negative associa-

tion between wild boar and wolf space use. Moreover, a previous study of ours found that the wild

boar displayed behaviour suggesting it perceived no predation risk in response to the presence of

fresh wolf or lynx scats (Kuijper et al., 2014; Wikenros et al., 2015).

Our results seem contrary to those of Theuerkauf and Rouys (2008), who carried out a similarly

focused study in the same study area with use of pellet counts. They concluded that habitat alter-

ation by forest exploitation and hunting by humans influenced the density distribution of ungulates,

including red deer, more than predation risk by wolves. Despite our results indicating a spatial mis-

match between the red deer and wolves’ landscape use, this is likely to be caused by a cascading

effect of humans. Moreover, the patterns of ungulate space use shown by our analyses revealed an

additional source of variation, which involves a species-specific response to the inter-relationships

between human and predator space use.

We were surprised to find that the Eurasian lynx – the other large carnivore in our study area –

had no apparent effect. As ungulates constitute the bulk of the lynx’s diet, with the roe deer being

the major prey (60% of the diet) and the red deer being the alternative prey (22%) (Okarma et al.,

1997), it is an important apex predator in this system. Lynx predation is a major mortality factor for

both cervids, taking 21–36% of roe deer and 6–13% of red deer population numbers (Okarma et al.,

1997; Jędrzejewski et al., 1993; Jędrzejewska et al., 1997; Jędrzejewska and Jędrzejewski,

2005). Moreover, it was recently revealed that red deer clearly react with anti-predatory behavior to

olfactory cues of the lynx in BF (Wikenros et al., 2015). It is thus striking that these highly sensitive

behavioral responses do not lead to changes in the spaces use of ungulates at the landscape scale.

This may be a result of the combined effects of the low densities of both the roe deer and the lynx

and the particular hunting mode of lynx, which, typically for felids, relies on fine-scale habitat charac-

teristics that allow the predator to exploit prey independently of their spatial distribution
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(Podgórski et al., 2008; Schmidt, 2008). Although there are many studies on the impact of large

carnivores on the space use of their prey species in temperate systems, the majority of these have

focused on single carnivore - single prey relationships (see e.g. Creel et al., 2005; Kauffman et al.,

2007; Lima and Dill, 1990; Mao et al., 2005). Our study is the first we are aware of to show how

these carnivore top-down effects structure an entire ungulate community in a temperate landscape.

This knowledge is relevant as most terrestrial ecosystems are characterized by a diversity of herbivo-

rous prey species and the differential responses of functionally similar prey species to apex predators

can to a large extent determine the potential for trophic cascading effects of large carnivores

(Ford and Goheen, 2015; Ford et al., 2015; Rosenfeld, 2002).

Mediating predator-prey interactions at a landscape scale by humans
Humans can drive complex interactions between species, particularly by affecting keystone species

like large carnivores (Worm and Paine, 2016). We found that humans were the main factor associ-

ated with the spatial distributions of both the wolf and lynx, which had lower activities in parts of the

landscape heavily used by humans (in line with Theuerkauf et al., 2003). In this way, human pres-

ence can be beneficial for ungulate prey species as large carnivores generally avoid human presence

and activity more strongly than their ungulate prey species (Rogala et al., 2011), leading to so-

called ‘human shields’ (Berger, 2007). The observed spatial (re)distribution of red deer in our system

seems to result from human-induced shifts in space use of the wolf. These kinds of three-way trophic

cascades (following the definition of Ripple et al., 2016) involving humans, large carnivores and

ungulates have been found in different systems, mainly in landscapes with moderate human activity

(Berger, 2007; Hebblewhite et al., 2005) and are likely much more pronounced in highly human-

dominated landscapes (Kuijper et al., 2016). We carried out our study in the forest considered to

be the best preserved lowland forest ecosystem in Europe, which is replete with natural wildlife com-

munities and ecological processes (including trophic interactions) still operating at the landscape

scale. Thus, we believe it provides new knowledge on the fundamental structuring and functioning

of European forest ecosystems that will help to predict the ecological effects of the ongoing large

carnivore recolonisation of more human-altered habitats across Europe (Chapron et al., 2014).

Landscape scale herbivory regimes and their potential consequences
for vegetation
How the consumptive off-take by large mammal herbivores varies in space at a continental-scale has

recently been shown by Hempson et al. (2015), who classified African herbivore communities into

ecologically distinct herbivory regimes, or herbivomes. In our study, we down-scaled this approach

to the landscape level, exploring the spatial variation and functional diversity of the herbivore com-

munity within a single herbivome, decomposing it into ecologically distinct landscape-scale herbivory

regimes. We refer to these as herbiscapes. Additionally, we extended the herbivome concept by

including the direct and indirect top-down effects of higher trophic levels: large carnivores (keystone

species) and humans (hyper-keystone species). Thus, similarly to a spatial ‘profile’ of each single spe-

cies, the major dimensions of a herbiscape are oriented along both environmental (landscape fea-

ture, resource availability) and trophic interaction induced (direct and perceived predation risk,

human activity) gradients operating over a landscape (Figure 10).

As large herbivores influence many important processes of ecosystem functioning (Hobbs, 1996),

the observed landscape-scale variation in the structure of the large herbivore community (i.e. herbi-

scapes), when stable enough, could result in a differential impact of herbivores on (woody) vegeta-

tion. Our tree regeneration analysis revealed that the patterns of ungulate browsing intensity

followed the variation in the modeled community-level distribution of ungulates in BF. The highest

browsing intensities occurred in herbiscapes characterized by high ungulate biomass and/or func-

tional diversity. Compositional changes in regenerating trees across herbiscapes were in accordance

with our earlier experimental studies (Churski et al., 2017; Kuijper et al., 2010a): with higher levels

of browsing intensity the proportion of a common browsing-tolerant tree increased and the propor-

tion of a browsing-intolerant tree decreased. These patterns strongly suggest that the impact of

ungulate communities on tree regeneration varies greatly at the landscape-scale, even in relatively

homogeneous forest landscapes like BF. Earlier experimental studies showed that the species com-

position of the small tree sapling community in BF is shaped by environmental bottom-up factors,
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whereas herbivores are the main factor limiting recruitment towards taller size classes (above 50 cm;

Kuijper et al., 2010a). We therefore interpret the observed shift in dominance towards browsing-

tolerant species in the taller height class (>30 cm) as the result of herbivore top-down effects, as

indicated by the clear differences in browsing intensity (Kuijper et al., 2010a; Churski et al., 2017).

Humans are an inherent part of these multi-trophic interactions as they affect both carnivore and

species-specific herbivore space use, cascading down in a complex but predictable way to the lower

trophic levels. Our study suggests, that the existence of more stable herbiscapes at larger spatial

scales could create a mosaic of differential impact on woody plant communities and consequently

spatial variation in expressed tolerance traits. Herbiscapes could therefore strongly contribute to the

creation of a heterogeneous patchwork of green (less browsing tolerant) and brown (more browsing

tolerant) worlds (sensu Churski et al., 2017) driven by variation in herbivory pressure at multiple spa-

tial scales in temperate forest systems.

Recent views on the biome concept have emphasized the role of biotic interactions (e.g. herbiv-

ory) in creating multiple biome stable states under similar climatic conditions (Moncrieff et al.,

2016; Woodward et al., 2004). This approach has proven to be very useful in explaining the spatial

distributions of different vegetation communities maintained by functionally distinct guilds of herbi-

vores at continental-scales (Charles-Dominique et al., 2016; Hempson et al., 2015). On the basis of

the high-resolution data we collected on ungulate species distribution, our study revealed the pres-

ence of a large continuous variation in herbivore community structure at a much finer, within-land-

scape scale. Although European assemblages of wild herbivores are not as species-rich as those

found in African savannas, the species we studied are clearly functionally diversified (see for example

Hofmann, 1989). These differences in resource use and foraging behavior among species within the

community could differentially impact the vegetation if certain parts of the landscape are dominated

by different functional types of herbivores for a long enough period.

Studies from African savannas have indicated that the stability of these relationships is poorly

understood, but is likely maintained by strong large-scale positive feedbacks between vegetation,

abiotic resources and consumers (Charles-Dominique et al., 2016). This long-term stability likely

provides the basis for co-evolutionary dynamics between functional types of herbivores and plants in

these systems. Whether such feedbacks could also be operating at smaller spatial scales (i.e. in her-

biscapes within a herbivome) and play a role in creating small-scale variation in vegetation structure

is an intriguing question. While we do not believe they could be stable on an evolutionary time-scale,

there could be sufficient stability over several decades to significantly impact woody plant communi-

ties (Kuijper et al., 2010a). In our system, these feedbacks have been controlled by landscape scale

anthropogenic factors that have been present in a similar spatial arrangement for decades or even

centuries (i.e. villages and roads have their origins in historical times; see for example

Samojlik et al., 2016). As a result, the distribution of herbiscapes, driven by human-induced carni-

vore space use is arguably stable enough to create differential impact on vegetation in different her-

biscapes. As humans are a crucial factor determining and restricting space use of large carnivores

worldwide (Tucker et al., 2018), they likely contribute toward stabilizing herbiscapes in many human

influenced landscapes across the globe.

Similarly, the results of our study have implications for patterns in vegetation structure that have

been observed at large spatial scales. Herbiscapes will likewise also occur within the herbivomes

described for the African continent. Our study indicates that predators can be a main factor structur-

ing herbivore communities by redistributing predation-sensitive species over the landscape. As Afri-

can systems harbor one of the most carnivore-rich communities in the world (Ripple et al., 2014),

large carnivores are expected to greatly influence variation in herbivore community structure within

African landscapes (Thaker et al., 2011; Valeix et al., 2009). A major difference between our, and

African study systems, is that humans supposedly play a less pronounced role in determining the

space use of large carnivores and herbivores (and hence the spatial arrangement of herbiscapes) in

the latter (but see Tucker et al., 2018). The importance of this landscape-scale (or within-herbivome)

variation in herbivore community structure in creating clear spatial patterns in vegetation, have

already been illustrated for African systems. For example, Ford et al. (2014) showed that both pre-

dation risk and plant defenses enabled plants to thrive in different parts of a landscape; conse-

quently, the thorniness of tree communities decreased across the landscape, contributing to intra-

biome variation driven by predator-prey interactions (Ford et al., 2014).
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The knowledge obtained in this study on spatial variation in the densities of local wildlife popula-

tions dependent on species-specific responses to habitat and disturbance factors gives us a better

understanding of wildlife communities and may be relevant for effective wildlife management. In

contrast to the common assumption that for management purposes wildlife populations are uni-

formly distributed, our study emphasizes the existence of large spatial variation in the landscape

scale densities of ungulates. Such an approach fits particularly well in the recently developed con-

cept of ‘hunting for fear’, which promotes the spatio-temporal diversification of management techni-

ques based on perception of risk in wildlife (see Cromsigt et al., 2012). Moreover, maps visualizing

cold- and hot-spots of ungulates across landscapes, together with information about community

compositions, could also be useful tools for wildlife managers.

Our results also introduces valuable knowledge relevant to the conservation of natural habitats.

We argue that a unique, and unfortunately still undervalued character of Białowieża Forest is that

ecosystem processes are still operating here at a landscape scale, as shown by our study. The ‘herbi-

scapes’ proposed in this paper are another unique aspect of the ecological processes that should be

preserved within this area and will contribute to the ongoing debate on future conservation strate-

gies for Białowieża Forest as UNESCO World Heritage (Mikusiński et al., 2018).

Conclusions
In conclusion, our study has illustrated that spatial variation in the structure of an entire large herbi-

vore community results from interactive effects of species-specific responses to major ecological gra-

dients operating at the landscape scale. Humans were a crucial factor associated with the landscape

use of wolves and lynx. While lynx were not associated with the space use patterns of any ungulate,

wolves were strongly (negatively) associated with the spatial distribution of their main prey species

(red deer), affecting the ungulate co-occurrence patterns at the landscape scale. The space use of

European bison, moose, roe deer and wild boar was related to food resources. These processes led

to the distribution of different functional types of herbivores over the landscape and created a clear

spatial structure in the herbivore community, which we referred to as herbiscapes. Vegetation analy-

ses suggested that herbivore impact measured by browsing intensity and regeneration of browsing-

tolerant tree species consistently differed between herbiscapes. When these herbiscapes are stable

enough they could be an important mechanism driving variation in herbivore impact on woody vege-

tation and thus maintain heterogeneity in a wide range of ecosystems.
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Białowieża Forest, Geobotany Series. Dordrecht: Springer.

Ford AT, Goheen JR, Otieno TO, Bidner L, Isbell LA, Palmer TM, Ward D, Woodroffe R, Pringle RM. 2014. Large
carnivores make savanna tree communities less thorny. Science 346:346–349. DOI: https://doi.org/10.1126/
science.1252753, PMID: 25324387

Ford AT, Goheen JR, Augustine DJ, Kinnaird MF, O’Brien TG, Palmer TM, Pringle RM, Woodroffe R. 2015.
Recovery of african wild dogs suppresses prey but does not trigger a trophic cascade. Ecology 96:2705–2714.
DOI: https://doi.org/10.1890/14-2056.1, PMID: 26649391

Ford AT, Goheen JR. 2015. Trophic cascades by large carnivores: a case for strong inference and mechanism.
Trends in Ecology & Evolution 30:725–735. DOI: https://doi.org/10.1016/j.tree.2015.09.012, PMID: 26498385

Fryxell JM. 1991. Forage quality and aggregation by large herbivores. The American Naturalist 138:478–498.
DOI: https://doi.org/10.1086/285227

Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS. 2019. Landscapes of fear: spatial patterns of risk
perception and response. Trends in Ecology & Evolution 34:355–368. DOI: https://doi.org/10.1016/j.tree.2019.
01.004, PMID: 30745252

Gelman A, Hill J. 2006. Data Analysis Using Regression and multilevel/Hierarchical Models. Cambridge University
Press.

Gordon IJ, Hester AJ, Festa-Bianchet M. 2004. REVIEW: the management of wild large herbivores to meet
economic, conservation and environmental objectives. Journal of Applied Ecology 41:1021–1031. DOI: https://
doi.org/10.1111/j.0021-8901.2004.00985.x

Grizonnet M, Michel J, Poughon V, Inglada J, Savinaud M, Cresson R. 2017. Orfeo ToolBox: open source
processing of remote sensing images. Open Geospatial Data, Software and Standards 2:15. DOI: https://doi.
org/10.1186/s40965-017-0031-6

Guillera-Arroita G, Morgan BJT, Ridout MS, Linkie M. 2011. Species occupancy modeling for detection data
collected along a transect. Journal of Agricultural, Biological, and Environmental Statistics 16:301–317.
DOI: https://doi.org/10.1007/s13253-010-0053-3

Guillera-Arroita G, Ridout MS, Morgan BJT, Linkie M. 2012. Models for species-detection data collected along
transects in the presence of abundance-induced heterogeneity and clustering in the detection process.
Methods in Ecology and Evolution 3:358–367. DOI: https://doi.org/10.1111/j.2041-210X.2011.00159.x

Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecology
Letters 8:993–1009. DOI: https://doi.org/10.1111/j.1461-0248.2005.00792.x

Hebblewhite M, White CA, Nietvelt CG, McKenzie JA, Hurd TE, Fryxell JM, Bayley SE, Paquet PC. 2005. Human
activity mediates a trophic cascade caused by wolves. Ecology 86:2135–2144. DOI: https://doi.org/10.1890/04-
1269
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density shapes tree recruitment in natural stands of the białowieża primeval forest, Poland. Journal of
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Tucker MA, Böhning-Gaese K, Fagan WF, Fryxell JM, Van Moorter B, Alberts SC, Ali AH, Allen AM, Attias N,
Avgar T, Bartlam-Brooks H, Bayarbaatar B, Belant JL, Bertassoni A, Beyer D, Bidner L, van Beest FM, Blake S,
Blaum N, Bracis C, et al. 2018. Moving in the anthropocene: global reductions in terrestrial mammalian
movements. Science 359:466–469. DOI: https://doi.org/10.1126/science.aam9712, PMID: 29371471
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Linking spatial patterns of terrestrial herbivore
community structure to trophic interactions
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Methods

Spatial covariates – data sources and processing
The GIS layers used as spatial covariates in our models were prepared using QGIS

(QGIS Development Team, 2017) and GRASS GIS (Neteler et al., 2012) open source

software. We compiled a set of high-resolution (5 m) rasters to describe environmental and

human-related gradients within the study area. All raster covariates were summarized at two

focal resolutions: 100 m (camera trap site scale) and 500 m (landscape scale). The density-

based covariates, that is density of protected areas and density of touristic infrastructure were

calculated for each pixel using 5 � 5 km kernel windows. The density of protected areas

included Białowieża National Park and all strictly protected nature reserves in the study area.

The density of tourist infrastructure was calculated based on locations of so-called ‘Points of

Interest’ (POIs; e.g. hotels, restaurants, agrotourism farms, museums, visitors centers, camp

sites but also smaller touristic infrastructure like car parking and picnic sites). The distance-

based covariates (distances to all and major human settlements, touristic trails and forest

edge) were calculated as raster proximity maps using the Euclidean distance to the nearest

focal feature. The percentage of landscape (canopy) openness and average forest height were

calculated based on the Digital Surface Model derived from LIDAR data (six points per m2)

acquired in July 2015 within the framework of the LIFE+ ForBioSensing project (http://www.

forbiosensing.pl) and provided us with a raster layer with resolution 5 m. We assumed all

pixels with a vegetation height lower than 2 m were open areas and calculated their

percentage share within 100 m (canopy openness at a camera trap site) and 500 m (landscape

openness) grid cells. This data source was also used to describe variation in landscape

topography (elevation). The percentage share of coniferous/deciduous tree species was

derived through a supervised classification of a Rapid Eye satellite image acquired in June

2013 and provided by the European Space Agency (ESA; https://www.esa.int) as a raster layer

with resolution 5 m. We performed the supervised classification of the Rapid Eye image using

the Support Vector Machine (SVM) classifier (Mountrakis et al., 2011) as implemented in the

scikit-learn Python package (Pedregosa et al., 2011). Two land cover classes were defined:

coniferous dominated forest and deciduous dominated forest. All open (i.e. non-forest) areas

were excluded from the classification based on the mask developed using the LIDAR data (see

above). To collect spectrally homogeneous reference data for each land cover class we first

ran a Large Scale Mean Shift (LSMS) segmentation as implemented in Orfeo Toolbox version

5.8.0 (Grizonnet et al., 2017). Next, the training and testing polygons were selected by image

interpretation methods using very high spatial resolution data, such as the most recent

available images in Google Earth (2014/10/02) and one Spot-6 scene (2015/06/27).

Additionally, we used auxiliary information on tree species composition of each tree stand

extracted from the State Forests inventory database (available at https://www.bdl.lasy.gov.pl).

Next, we trained the SVM classifier using two-thirds of the reference dataset and the default

settings in the scikit-learn implementation (Pedregosa et al., 2011). After assuring good

performance of the classifier (>95% of test pixels correctly classified) we ran it for the whole

study area. In the last step, we re-sampled the output raster to our focal resolutions (100 m

and 500 m), calculating the percentage of coniferous and deciduous forest covering each

landscape pixel. Appendix 1—figure 2 presents the correlation heatmap of all candidate

spatial covariates for the ungulate models. When selecting covariates for the final models we

ensured that the Pearson correlation coefficient for all pairs of included covariates was lower
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than 0.7. As there was a strong negative correlation (�0.97) between the percentages of

coniferous and deciduous forest covering each landscape pixel we decided to include the

former. For the same reason, we included distance to all settlements and excluded distance to

forest edge (Appendix 1—figure 2). Also there was a strong correlation between distance to

major settlements and distance to main roads (0.87), so we excluded the latter. The landscape

use of lynx was determined by distance to major settlements (as indicated by the fitted model;

see Figure 1 in the main text), and hence the correlation between both variables was also high

(0.82). Again for the reason discussed above, we excluded the distance to major settlements

from the final models.

Temporal covariates
The temporal covariates, that is temperature and snow cover, were calculated as the average

values for the whole period of camera trapping at a given location. The source of the data

were measurements acquired at the meteorological station in Białowieża.

Appendix 1—table 1. Summary of the two camera trapping surveys conducted during the

study period. Days – the total number of trapping days (effort), Counts – the total number of

individuals recorded during independent visits (events), Trate – trapping rate. Notice the

dramatic differences in the trapping rates of the carnivores between the two types of surveys.

Counts of red deer female (973) and red deer male (547) do not sum to the total count (2025) as

there were 505 records of individuals of undefined gender.

Species Days Counts Trate (daily) Trate sd Trate max

Ungulates survey (05.2012–05.2014)

Wild Boar 9813 4818 0.49507 0.87881 10.16667

Red Deer 9813 2025 0.20255 0.36340 3.90909

Red Deer Female 9813 973 0.09648 0.20391 2.00000

Red Deer Male 9813 547 0.05544 0.12867 1.25000

European Bison 9813 440 0.04522 0.23212 4.50000

Roe Deer 9813 194 0.02043 0.06611 0.54545

Eurasian Elk 9813 82 0.00866 0.04714 0.66667

Wolf 9813 51 0.00541 0.02960 0.36364

Eurasian Lynx 9813 3 0.00027 0.00458 0.08333

Carnivores survey (09–10.2015)

Wolf 3093 471 0.19129 0.49534 6.00000

Eurasian Lynx 3093 35 0.01268 0.04997 0.33333

DOI: https://doi.org/10.7554/eLife.44937.021

Appendix 1—table 2. Matrix of the foraging-related traits used for the estimation of the

functional diversity index (FDis) of the entire ungulate community: body mass (based on

Jedrzejewska et al., 1994) and Borowik et al., 2016), diet type (based on Hofmann, 1989);

B: browsers-concentrate selectors, BG: browsers/grazers-intermediate types, G: grazers-grass

roughage eaters, O: omnivores) and gut type (R: ruminants, NR: non-ruminants).

Roe deer Wild boar Red deer female Red deer male Moose European bison

Body mass 20 80 90 150 200 400

Diet type B O BG BG B G

Gut type R NR R R R R

DOI: https://doi.org/10.7554/eLife.44937.022
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Appendix 1—Figure 1. Heatmap of pairwise Pearson correlation values of all candidate land-

scape-scale covariates for the ungulates models; wolf: predicted use of the landscape by the

wolf, lynx: predicted use of the landscape by the lynx, open: landscape openness, conif: %

share of coniferous tree species, decid: % share of deciduous tree species, fheight: forest

height, reserv: density of protected areas, elev: elevation, dsetta: distance to all settlements,

dsettm: distance to major settlements, droads: distance to main roads, dedge: distance to for-

est edge, pois: density of tourist infrastructure. When selecting covariates for the final models

we ensured that the Pearson correlation value for all pairs of included covariates was lower

than 0.7.

DOI: https://doi.org/10.7554/eLife.44937.023
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Appendix 1—Figure 2. The results of hierarchical clustering on the principal component analy-

sis. The five clusters were identified by assessing the inertia (i.e. change in within cluster

homogeneity) gained by cutting the tree at different levels and the ecological interpretability

of the resulting clusters. The colors of the clusters correspond to those in Figure 10 in the

main text.

DOI: https://doi.org/10.7554/eLife.44937.024
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Appendix 1—Figure 3. Spatial patterns of human activity in Białowieża Forest derived from

the publicly available world-wide data provided by STRAVA (https://www.strava.com/heatmap)

combined with (A) predicted use of the landscape by the wolf, (B) predicted use of the land-

scape by the lynx, (C) predicted use of landscape by the red deer (both sexes) and (D) distance

to major settlements used in the models for both large carnivores. The dark-red thick lines

indicate high human activity and the light-blue thin lines indicate low human activity. For (A),

(B) and (C) the color gradient from blue to red corresponds to the gradient from low to high

use of the landscape by the presented species.

DOI: https://doi.org/10.7554/eLife.44937.025
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Appendix 1—Figure 4. Comparison of predictions of wolf space use with existing radio-track-

ing data from collared wolves in Białowieża Forest (period 1994–1999, Jędrzejewski et al.,

2007) and observations of known den locations (period 1993–2007, MRI PAS unpublished

data). In the background we plotted the raster map of wolf space use predicted by our model

together with the raw camera trapping data (‘bubbles’ with trapping rates at each location).

On top of it we plotted two datasets: 1) the locations of the core areas (dashed red circles)

of the annual territories of the four wolf packs present in the area (50% MCP based on

telemetry) and 2) den locations.

DOI: https://doi.org/10.7554/eLife.44937.026
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Appendix 1—Figure 5. Bubble plot presenting raw camera trapping data for lynx collected

during the carnivore survey. Each bubble is a camera trap location and its size is proportional

to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.027
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Appendix 1—Figure 6. Bubble plot presenting raw camera trapping data for red deer female

collected during the ungulate survey. Each bubble is a camera trap location and its size is

proportional to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.028
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Appendix 1—Figure 7. Bubble plot presenting raw camera trapping data for red deer male

collected during the ungulate survey. Each bubble is a camera trap location and its size is

proportional to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.029
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Appendix 1—Figure 8. Bubble plot presenting raw camera trapping data for wild boar col-

lected during the ungulate survey. Each bubble is a camera trap location and its size is

proportional to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.030
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Appendix 1—Figure 9. Bubble plot presenting raw camera trapping data for roe deer col-

lected during the ungulate survey. Each bubble is a camera trap location and its size is

proportional to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.031
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Appendix 1—Figure 10. Bubble plot presenting raw camera trapping data for bison collected

during the ungulate survey. Each bubble is a camera trap location and its size is proportional

to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.032
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Appendix 1—Figure 11. Bubble plot presenting raw camera trapping data for moose col-

lected during the ungulate survey. Each bubble is a camera trap location and its size is

proportional to the daily trapping rate (i.e. no. of individuals observed/no. of days).

DOI: https://doi.org/10.7554/eLife.44937.033
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Appendix 1—Figure 12. Basic meteorological data for the study period (05/2012 – 09/2014):

1) averaged daily temperature [C], 2) precipitation [mm] and 3) snow cover [cm].

DOI: https://doi.org/10.7554/eLife.44937.034
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Appendix 1—Figure 13. Distribution of camera trap locations grouped by quality of view in

front of a camera and different UNESCO zones in Białowieża Forest (1: Strict Reserve of BNP,

2: BNP and nature reserves, 3: valuable unprotected forest stands, 4: managed forest stands).

Each camera location was manually tagged with a 4-level categorical label (‘Exclude’,

‘Acceptable’, ‘Good’, ‘Perfect’) describing the quality of view in front of the camera.

Locations labeled with the ‘Exclude’ were not included in further analysis and are not shown

on this figure.

DOI: https://doi.org/10.7554/eLife.44937.035
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Appendix 1—Figure 14. Red deer female – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.036
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Appendix 1—Figure 15. Red deer female – detection rate; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.037
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Appendix 1—Figure 16. Red deer male – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.038
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Appendix 1—Figure 17. Red deer male – detection rate; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.039
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Appendix 1—Figure 18. Roe deer – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.040
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Appendix 1—Figure 19. Roe deer – detection rate; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.041
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Appendix 1—Figure 20. Wild boar – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.042
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Appendix 1—Figure 21. Wild boar – detection rate; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.043
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Appendix 1—Figure 22. European bison – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.044
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Appendix 1—Figure 23. European bison – detection rate; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.045

Bubnicki et al. eLife 2019;8:e44937. DOI: https://doi.org/10.7554/eLife.44937 59 of 68

Research article Ecology

https://doi.org/10.7554/eLife.44937.045
https://doi.org/10.7554/eLife.44937


Appendix 1—Figure 24. Moose – landscape use; the posterior distributions of all parameters.

DOI: https://doi.org/10.7554/eLife.44937.046
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Appendix 1—Figure 25. Moose – detection rate; the posterior distributions of all parameters.

DOI: https://doi.org/10.7554/eLife.44937.047
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Appendix 1—Figure 26. Wolf – landscape use; the posterior distributions of all parameters.

DOI: https://doi.org/10.7554/eLife.44937.048

Appendix 1—Figure 27. Eurasian lynx – landscape use; the posterior distributions of all

parameters.

DOI: https://doi.org/10.7554/eLife.44937.049
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Appendix 1—Figure 28. Red deer female – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.050

Appendix 1—Figure 29. Red deer male – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.051
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Appendix 1—Figure 30. Roe deer – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.052

Appendix 1—Figure 31. Wild boar – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.053

Bubnicki et al. eLife 2019;8:e44937. DOI: https://doi.org/10.7554/eLife.44937 64 of 68

Research article Ecology

https://doi.org/10.7554/eLife.44937.052
https://doi.org/10.7554/eLife.44937.053
https://doi.org/10.7554/eLife.44937


Appendix 1—Figure 32. European bison – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.054

Appendix 1—Figure 33. Moose – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.055
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Appendix 1—Figure 34. Wolf – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.056

Appendix 1—Figure 35. Eurasian lynx – model diagnostic plots.

DOI: https://doi.org/10.7554/eLife.44937.057
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Appendix 1—Figure 36. Estimated effects of the covariates from the model for all ungulate

species using only a subset of camera trap data covering a three month period (August - Octo-

ber) closely matching the period of the carnivore survey. The covariates explain the spatial

variation in the parameter l, which is the expected number of individuals using a given

landscape grid cell (25 ha pixel) during the sampling period (i.e. the relative density; see the

general and formal description of the model in the Materials and methods section).

DOI: https://doi.org/10.7554/eLife.44937.058
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Appendix 1—Figure 37. The spatial predictions for the parameter l, which is the expected

number of individuals using a given landscape grid cell (25 ha pixel) during the sampling

period (see the general and formal description of the model in the Materials and methods sec-

tion). The predictions are based on the model for all ungulate species using only a subset of

the camera trap data covering a three month period (August - October) closely matching the

period of the carnivore survey.

DOI: https://doi.org/10.7554/eLife.44937.059
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