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Family with sequence similarity 83 (FAM83) members were shown recently to have oncogenic effect in a variety of cancer types, but
the biological roles and prognostic value of FAM83 family in pancreatic ductal adenocarcinoma remain unknown. In the current
study, the clinical significance and molecular function of the FAM83 family were assessed by multiple bioinformatics analysis.
Besides, potential associations between differentially expressed genes (DEGs) of FAM83 family and antitumor immunity were
evaluated using TIMER and TISIDB analyses. As the results show, FAM83A, FAM83D, FAM83E, and FAM83H were
significantly upregulated in PDAC and were identified as DEGs. Higher expression of FAM83A, FAM83B, FAM83D, FAM83E,
and FAM83H were associated with advanced tumor stage or worse patient prognosis. Importantly, the overexpression of DEGs
was found to be significantly correlated with activated KRAS and loss of SMAD4, which are important drivers for PDAC.
Further, FAM83A, FAM83D, and FAM83H were associated with CD8+ T cell, Gamma Delta T cell, and CD4+ T cell infiltration
in PDAC and FAM83H was found closely correlated with some immunomodulators including immunoinhibitors,
immunostimulators, and MHC molecules. In conclusion, FAM83A, FAM83D, FAM83E, and FAM83H have significant
prognostic value in PDAC and they may play important roles in regulating tumor progression and the immune cell infiltration.

1. Introduction

Pancreatic cancer (PC) is considered to be one of the most
aggressive cancers, leading to 4.7% of all cancer-related deaths
globally [1]. Pancreatic ductal adenocarcinoma (PDAC)
accounts for more than 80% of PC cases, with approximately
10% of surviving rate beyond five years [2]. One of the vital
causes for the poor prognosis is the highly aggressive pheno-
type and early recurrence and metastasis of PDAC following

surgical treatment [3, 4]. Recently immune checkpoint inhib-
itors have been widely used in several solid tumors including
hepatocellular carcinoma, non-small-cell lung cancer, and
melanoma [5–7]. However, PC was considered a “cold” tumor
and exhibited limited efficacy due to its notable immunosup-
pression [8]. Therefore, there is an urgent need to explore
the molecular mechanisms underlying PC progression and
immune suppression as well as to identify early diagnostic,
prognostic, and therapeutic biomarkers for PDAC.
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Figure 1: Continued.
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In recent studies, some of the family with sequence simi-
larity 83 (FAM83) family members have been demonstrated
significantly upregulated in a variety of human cancer
types [9]. There are eight FAM83 family members, named
FAM83A-H, with each located at a distinct genomic site.
Each FAM83 gene encodes a protein classified solely on the
presence of a highly conserved domain of unknown function
(DUF1669) located in the N-terminus [10]. However, each
member has a unique C terminus of variable length and their
biological function and related mechanism may be distinct.
Accumulating evidence also demonstrated significant roles
for some FAM83 family members in tumorigenesis and
tumor progression [9]. Expressions of FAM83A and B in
breast cancer were found involved in the PI3K and EGFR
pathway, making surviving tumor cells resistant to TKI ther-
apy [11, 12]. FAM83D have been identified as potential key

regulators in cell invasion and proliferation of ovarian can-
cer, which also inhibited autophagy via the PI3K/AKT/m-
TOR signaling pathway [13]. However, the biological role
of FAM83 family members in PDAC remains unclear, while
a detailed understanding of biological and molecular mecha-
nism is critical to develop novel treatment options.

In the current study, we first analyzed the transcriptional
levels of FAM83 family members in PDAC. Then, we
assessed the associations between FAM83 family expression
with pathological stage or patient survival to evaluate the
value of the FAM83 family in the progression and prognosis
of PDAC. Differentially expressed genes (DEGs) in FAM83
family members of PDAC were integrated to DAVID 6.7 to
perform functional enrichment analyses. Further, we
explored the biological roles of FAM83 family members in
the immune infiltration of PDAC.
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Figure 1: Transcriptional levels of FAM83 family members in pancreatic ductal adenocarcinoma (PDAC). (a) Oncomine dataset analysis
showed the numbers of datasets with significant transcriptional upregulated expression (red) or downregulated expression (blue). (b)
GEPIA dataset analysis validated increased FAM83A, FAM83D, FAM83E, and FAM83H expression in PDAC tumor. The fold change
cutoff was 1.5, and the p value cutoff was 0.05. Transcriptional expression levels of FAM83 family members in PDAC are delineated with
red highlights.
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2. Materials and Methods

2.1. Oncomine Database Analysis. Oncomine (https://www
.oncomine.org) is a publicly accessible online bioinformatics
database that contains 715 datasets, as well as 86,733 normal
and tumor samples, and provides powerful genome-wide
expression analysis [14]. The mRNA levels of FAM83 family
members were analyzed in PDAC and a fold change of 1.5
and a p value of 0.05 were set as the significance thresholds.
Student’s t-test was used to evaluate the difference of
FAM83 family members in PDAC.

2.2. GEPIA Database Analysis. Gene Expression Profiling
Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/
index.html) is a web-based tool for analyzing transcriptional
data of 9,736 tumors and 8,587 normal samples from The
Cancer Genome Atlas (TCGA) and the Genotype-Tissue
Expression (GTEx) projects [15]. GEPIA provides customiz-
able functions such as tumor/normal differential expression
analysis, profiling according to cancer types or pathological
stages, patient survival analysis, similar gene detection, cor-
relation analysis, and dimensionality reduction analysis. In
our study, the database was used to validate differential tran-
scriptional levels in PDAC and normal tissues, as well as
pathological stage analysis, relative expression analysis, and
correlative prognostic analysis. Student’s t-test was used to
analyze the expressions or pathological stages. The fold
change cutoff was 1.5, and the p value cutoff was 0.05. Prog-
nostic analysis was performed using a Kaplan-Meier curve.

2.3. Gene Correlation Analysis. The transcriptional expres-
sion data based on fragments Per kilobase per million
(FPKM) for PDAC were obtained from TCGA database
(https://cancergenome.nih.gov/). Of the 177 PDAC cases
obtained, the correlation of mRNA expression levels among
FAM83 family was evaluated by using R software (version
3.5.3) with “corrplot” package.

2.4. cBioPortal Database Analysis. cBioPortal Database
(http://www.cbioportal.org/) is a web resource for visualizing
and analyzing a wide variety of cancer genomics data
retrieved from TCGA database [16]. It lowers the barriers
between complex genomic data and cancer researchers by
providing rapid, intuitive, and high-quality access to molecu-
lar profiles and clinical attributes from large-scale cancer
genomics projects and therefore empowers researchers to
translate these rich data sets into biologic insights and clinical
applications. In the current study, the cBioPortal database
was used to evaluate genetic mutations among some
FAM83 family members in PDAC and evaluate their correla-
tions with genes related to PDAC (e.g., KRAS). In addition,
coexpression genes of DEGs in FAM83 family members were
screened out through calculating the Spearman correlation
coefficients, respectively (Spearman’s correlated coefficient
> 0:6 or <−0.6, p value < 0.05).

2.5. Functional and Pathway Enrichment Analysis. Coex-
pressed genes screened from cBioPortal database were
integrated to DAVID 6.7 (https://david-d.ncifcrf.gov/) to
perform Gene Ontology (GO) analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis [17].
Results were visualized by using R software (version 3.5.3)
with “ggplot2” package, and p value < 0.05 was considered
statistically significant.

2.6. GeneMANIA Database Analysis. GeneMANIA database
(http://genemania.org/) is a user-friendly website for explor-
ing internal relationships of gene sets [18, 19]. The gene
interaction network for FAM83 family members was con-
structed by using GeneMANIA.

2.7. TIMER 2.0 Database Analysis. TIMER 2.0 (http://timer
.cistrome.org/) is a webserver for systematical analysis of
immune infiltration across a wild variety of cancer types
[20]. The webserver provides immune infiltrates’ abundances
estimated by multiple immune deconvolution methods and
allows users to generate high-quality figures dynamically to
explore tumor immunological, clinical, and genomic features
comprehensively. This online tool was used to evaluate the
correlations of FAM83 family members with immune cell
infiltration levels including CD8+ T cell, Gamma Delta T cell,
follicular helper T cell, and CD4+ T cell. Spearman’s correla-
tion coefficients were used, and p values < 0.05 were consid-
ered statistically significant.

2.8. TISIDB Database Analysis. TISIDB (http://cis.hku.hk/
TISIDB) is an integrated repository web for tumor immunity,
through which biologists can crosscheck a gene about its role
in tumor-immune interactions through literature mining
and high-throughput data analysis [21]. In this study, the

Table 1: mRNA levels of the FAM83 family in PDAC tissues and
normal pancreas tissues at transcriptome level (Oncomine).

FAM83 family
Sample

(cancer vs. normal)
Fold

change
p value Reference

FAM83A

12 vs. 5 2.838
7.60E
-04

[16]

36 vs. 16 2.681
2.41E
-07

[17]

11 vs. 11 2.209 0.047 [18]

39 vs. 39 1.557
3.21E
-05

[19]

FAM83D

36 vs. 16 4.021
9.50E
-04

[17]

12 vs. 5 3.399 0.010 [16]

39 vs. 39 2.517
6.77E
-06

[19]

11 vs. 11 2.238 0.009 [18]

FAM83E 36 vs. 16 2.365
3.07E
-06

[17]

FAM83H

36 vs. 16 2.972
1.16E
-07

[17]

11 vs. 11 2.505 0.037 [18]

39 vs. 39 1.887
2.09E
-06

[19]

12 vs. 5 1.86 0.037 [16]
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TISIDB platform was used to analyze correlations between
FAM83H expressions with tumor-infiltrating lymphocytes
(TILs) and immunomodulators (including immunostimula-
tors, immunoinhibitors, and major histocompatibility com-
plex (MHC) molecules). Spearman’s correlation coefficients
were used, and p values < 0.05 were considered statistically
significant.

3. Results

3.1. Differentially mRNA Expression Levels of FAM83 Family
in PDAC. Eight FAM83 family members were analyzed using
the Oncomine database in various cancer types, and the results
showed that there were a total of 297, 230, 238, 287, 341, 254,
132, and 290 unique analyses for FAM83A, FAM83B,
FAM83C, FAM83D, FAM83E, FAM83F, FAM83G, and
FAM83H, respectively. Based on the data from Oncomine,
the transcriptional levels of FAM83A, FAM83D, FAM83E,
and FAM83H were significantly upregulated in PDAC tissues
compared to normal pancreas tissues (Figure 1(a)). In the
analysis by Iacobuzio-Donahue, the mRNA level of FAM83A
(p value = 7.60e-04) was significantly increased with a fold
change of 2.838 in PDAC [22]. Pei et al.’s dataset suggested

that FAM83A had a fold induction of 2.681 and a p value
of 2.41e-07 [23]. Similar results were reported by Grützmann
et al. (fold change = 2:209 and p value = 0.047) and Badea
et al. (fold change = 1:557 and p value = 3.21e-05) in PDAC
[24, 25]. As shown in Table 1, these 4 unique analyses also
showed a significant elevation of FAM83D and FAM83H
expression in PDAC. And the FAM83E expression was
shown to be higher in PDAC in one dataset (fold change =
2:365 and p value = 3.07e-06) [23]. In addition, we performed
the analysis in another independent dataset, the GEPIA data-
set, and validated that the expression levels of FAM83A,
FAM83D, FAM83E, and FAM83H were increased in PDAC
tumor compared with normal samples (Figure 1(b)). Taking
these together, by bioinformatics analysis using data from
Oncomine and GEPIA database, FAM83A, FAM83D,
FAM83E, and FAM83H were found to be upregulated in
PDAC.

3.2. Relative Expression, Coexpression, Genetic Alteration,
and Neighbor Gene Network of FAM83 Family in PDAC.
The relative expression levels of FAM83 family members
were compared in PDAC. The results showed that the
expression of FAM83E was the highest while the expression
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Figure 2: Relative expression, coexpression, genetic alteration, and neighbor gene network of the FAM83 family in pancreatic ductal
adenocarcinoma (PDAC): (a) relative level of FAM83 family members in PDAC; (b) coexpression of FAM83 family members in PDAC;
(c) summary of alterations in FAM83 family members in PDAC; (d) neighbor gene network of FAM83 family members.
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of FAM83C was the lowest (Figure 2(a)). We next investi-
gated the potential coexpression of all FAM83 family mem-
bers. The Spearman correlation analysis indicated a low to
moderate positive correlation among FAM83B, FAM83E,
FAM83G, and FAM83H (Figure 2(b)). Further, we analyzed
the molecular characteristics of all FAM83 family members
and provisional dataset of TCGA was used to investigate
the genetic alterations by using the cBioPortal database. Dif-
ferential degrees of genetic variation among FAM83 family
members are shown in Figure 2(c). FAM83H displayed the
highest alteration rate (18%) of genetic variations. The alter-
ation rates of FAM83A, FAM83B, FAM83C, FAM83D,
FAM83E, FAM83F, and FAM83G were 17%, 6%, 5%, 2.4%,
8%, 5%, and 6% in the queried PDAC samples, respectively.
Using GeneMANIA tools, we analyzed the relationship of
FAM83 family members and constructed a network map at
the gene level (Figure 2(d)). The 8 central nodes representing
FAM83 family members were surrounded by 20 nodes which
represent genes closely correlated with the family. The con-
nection between FAM83C and FAM83H, FAM83C, and
FAM83G, as well as FAM83H and FAM83G, was identified.

3.3. The Association between FAM83 Family and Tumor
Pathological Stage and Patient Survival in PDAC. To evaluate
the prognostic value of FAM83 family members in PDAC, we
interrogated GEPIA dataset to determine whether FAM83
family expression was associated with tumor pathological
stage or patient survival. We found that higher expression
of FAM83B (p = 0:00333), FAM83D (p = 0:0385), and
FAM83E (p = 0:00676) was correlated with more advanced
pathological stage (Figure 3). In contrast, no association
was shown between other FAM83 family members and
tumor stage. By performing Kaplan-Meier analysis, we found
that higher expression levels of FAM83A (HR = 2:4, logrank
p value = 4.2E-05), FAM83B (HR = 1:6, logrank p value =
0.034), FAM83D (HR = 2, logrank p value = 7.1E-04), and
FAM83H (HR = 1:6, logrank p value = 0.032) were signifi-
cantly associated with worse OS (Figure 4(a)). Besides, higher

expression of FAM83A (HR = 2:5, logrank p value = 4.2E
-05), FAM83D (HR = 1:8, logrank p value = 0.006), and
FAM83H (HR = 2:1, logrank p value = 8.2E-04) was dramat-
ically correlated with worse DFS (Figure 4(b)). Taken
together, these data confirm the prognostic value of
FAM83A, FAM83B, FAM83D, FAM83E, and FAM83H in
PDAC, which may predict tumor stage or patient survival.

3.4. Functional and Pathway Enrichment Analyses of DEGs in
FAM83 Family.We next explored the activities of DEGs (i.e.,
FAM83A, FAM83D, FAM83E, and FAM83H) in FAM83
family members by analyzing its potential biological path-
ways in PDAC. The coexpression analyses for DEGs were
performed by using cBioPortal dataset (Spearman’s corre-
lated coefficient > 0:6 or <−0.6, p value < 0.05), and 40 coex-
pression genes for FAM83A, 57 coexpression genes for
FAM83D, 301 coexpression genes for FAM83E, and 572
coexpression genes for FAM83H were enrolled into DAVID
6.7 and subjected to functional and pathway enrichment
analyses. GO enrichment analysis showed that FAM83A
may be involved in “ectoderm and epidermis development,
constitution of plasma membrane, intermediate filament,
cell junction and cytoskeleton, regulation of cell adhesion,
and integrin-mediated signaling pathway” (Figure 5(a)).
FAM83D and its neighboring genes were mainly enriched
in “cell cycle (M phase), DNA replication, nuclear division
and constitution of cytoskeleton, chromosome, ATP binding,
and nucleotide binding” (Figure 5(b)). FAM83E may play an
important role in “MAPKKK cascade, phosphate metabolic
process, Cytoskeletal protein binding, ATP binding, adenyl
ribonucleotide binding, GTPase mediated signal transduc-
tion, Ras protein signal transduction, Ras GTPase binding,
and pancreas development” (Figure 5(c)). FAM83H may
act a vital role in “biological adhesion, GTPase regulator
activity, Ras protein signal transduction, cell morphogenesis,
cell proliferation, apoptosis, regulation of Ras GTPase activ-
ity, T cell homeostasis, myeloid leukocyte activation, and
lymphocyte homeostasis” (Figure 5(d)). In KEGG analysis
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Figure 3: Correlation between FAM83 family members and tumor pathological stage of pancreatic ductal adenocarcinoma (PDAC) patients.
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(Table 2), FAM83A was found to be mainly enriched in
“ECM-receptor interaction, focal adhesion, and pathways in
cancer” while FAM83D may participate in “cell cycle, oocyte
meiosis, and p53 signaling pathway.” FAM83E was mainly
associated with “axon guidance, tight junction, glycosphingo-
lipid biosynthesis, ErbB signaling pathway, Fc gamma R-
mediated phagocytosis, VEGF signaling pathway, and adhe-
rens junction,” and FAM83H was involved in “axon guidance,
cell adhesion molecules (CAMs), calcium signaling pathway,

tight junction, leukocyte transendothelial migration, and path-
ways in cancer.” These results imply that DEGs of the FAM83
family may provide important support for tumorigenesis and
progression via different signaling pathways.

3.5. Correlations between DEGs in FAM83 Family with
Important Driver Genes of PDAC.We performed Spearman’s
correlation to explore the correlations between DEGs of
FAM83 family members and important driver genes of
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Figure 4: Prognostic value of FAM83 family members in pancreatic ductal adenocarcinoma (PDAC) patients in the overall survival curve (a)
and disease-free survival curve (b).
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PDAC, which are KRAS, SMAD4, TP53, and CDKN2A. As
shown in Figure 6(a), KRAS expression level was positively
correlated with these members (Cor = 0:35, p value = 1.91E
-06 for FAM83A; Cor = 0:33, p value = 5.52E-06 for
FAM83D; Cor = 0:32, p value = 1.28E-05 for FAM83E; and
Cor = 0:30, p value = 3.81E-05 for FAM83H). SMAD4
expression level was negatively associated with these mem-
bers (Cor = −0:45, p value = 3.88E-10 for FAM83A; Cor = −
0:32, p value = 1.65E-05 for FAM83D; Cor = −0:47, p value
= 3.13E-11 for FAM83E; and Cor = −0:62, p value = 1.46E
-20 for FAM83H) (Figure 6(b)). However, the expression
levels of TP53 and CDKN2A had no any significant correla-
tions with FAM83 family members.

3.6. The Association between T Cell Infiltration and the
Expression of FAM83 Family in PDAC. Immune infiltration

especially T cell infiltration is a critical factor associated with
tumor progression in PDAC [26]. Therefore, we assessed the
correlations of DEG expression of the FAM83 family with T
cell infiltration levels including CD8+ T cell, Gamma Delta T
cell, follicular helper T cell, and CD4+ T cell in PDAC by
using TIMER 2.0 platforms (Figure 7(a)). After purity adjust-
ment, the Spearman correlation analysis showed that the
expression of FAM83A, FAM83D, FAM83E, and FAM83H
was negatively correlated with the abundance of CD8+ T cell
(Figure 7(b)). Negative correlations were also found between
the infiltration of Gamma Delta T cell and FAM83H
(Cor = −0:21, p value = 0.00511), FAM83A (Cor = −0:20, p
value = 0.00743), and FAM83E (Cor = −0:20, p value =
0.0099) (Figure 7(c)). Besides, several kinds of CD4+ T cell
may play more complex roles and the naive CD4+ T cell dis-
played the greatest negative correlations including FAM83H
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Figure 5: Gene Ontology (GO) enrichment analysis of differentially expressed FAM83 family members and neighboring genes in pancreatic
ductal adenocarcinoma (PDAC): (a) GO enrichment analysis of FAM83A; (b) GO enrichment analysis of FAM83D; (c) GO enrichment
analysis of FAM83E; (d) GO enrichment analysis of FAM83H. Color: enriched p value.
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(Cor = −0:37, p value = 5.04E-07), FAM83E (Cor = −0:30,
p value = 7.77E-05), and FAM83A (Cor = −0:19, p value =
0.0124) (Figure 7(d)).

3.7. FAM83H Was Associated with TILs and
Immunomodulators in PDAC. To further explore the rela-
tionship between FAM83H and immune regulation, the
Spearman correlations between FAM83H with TILs and
immunomodulators (including immunoinhibitors, immu-
nostimulators, and MHC molecules) were analyzed by using
the TISIDB database. As shown in Figure 8, we found that
FAM83H was correlated with immune cell infiltration and
immunomodulators. In detail, by analyzing different sub-
types of lymphocytes, we found that FAM83H was mostly
negatively correlated with infiltrating levels of effector mem-
ory CD4+ T cell (Cor = −0:636, p value < 2.2e-16), eosinophil
(Cor = −0:6, p value < 2.2e-16), mast cell (Cor = −0:593, p

value < 2.2e-16), and follicular helper T cell (Cor = −0:514,
p value < 2.2e-16) (Figure 8(b)). For the immunoinhibitors,
FAM83H was mostly positively correlated with PVRL2
(Cor = 0:451, p value = 3.7e-10), LGALS9 (Cor = 0:336, p
value = 4.7e-06), IL10RB (Cor = 0:293, p value = 7.29e-05)
(Figure 8(d)). For the immunostimulators, FAM83H was
mostly negatively correlated with CXCL12 (Cor = −0:64, p
value < 2.2e-16), ENTPD1 (Cor = −0:567, p value < 2.2e
-16), CD28 (Cor = −0:521, p value < 2.2e-16), and KLPK1
(Cor = −0:52, p value < 2.2e-16) (Figure 8(f)). For the MHC
molecules, FAM83H was mostly negatively correlated with
HLA-DPA1 (Cor = −0:484, p value = 4.22e-12), HLA-DPB1
(Cor = −0:472, p value < 3.1e-11), HLA-DOA (Cor = −0:45,
p value < 3.72e-10), and HLA-DRA (Cor = −0:45, p value <
3.88e-10) (Figure 8(h)). These results indicate that FAM83H
may be involved in tumor specific immune response by reg-
ulating the TILs and immune molecules.

Table 2: Pathway enrichment analysis of differentially expressed genes among the FAM83 family.

KEGG pathway
Fold

enrichment
p value Related genes

FAM83A

ECM-receptor
interaction

23.28297 3.10E-05 LAMB3, ITGB6, ITGB4, LAMC2, ITGA3

Focal adhesion 11.67623 5.80E-05 LAMB3, ITGB6, ITGB4, LAMC2, ITGA3, FLNB

Pathways in cancer 4.770169 0.037837 LAMB3, SLC2A1, LAMC2, ITGA3

FAM83D

Cell cycle 26.15143 1.24E-10 CCNB1, CDK1, CCNB2, PLK1, BUB1, BUB1B, TTK, CDC25C, CCNA2

Oocyte meiosis 23.11364 1.36E-07 CCNB1, CDK1, CCNB2, PLK1, BUB1, AURKA, CDC25C

p53 signaling pathway 21.36555 5.94E-04 CCNB1, CDK1, CCNB2, RRM2

FAM83E

Axon guidance 4.125203 0.001289 SEMA4G, EFNA1, EFNA2, CFL2, EFNB1, MAPK3, PPP3CB, EFNA4, CXCL12

Tight junction 3.971277 0.001647 CLDN7, MPDZ, CGN, CRB3, MYH14, AMOTL1, TJP3, SRC, AKT3

Glycosphingolipid
biosynthesis

9.460465 0.00795 FUT6, FUT3, B3GNT3, FUT2

ErbB signaling pathway 4.077787 0.014669 CBLC, ERBB2, MAPK3, MAPK10, SRC, AKT3

Fc gamma R-mediated
phagocytosis

3.734394 0.020746 MARCKSL1, CFL2, MAPK3, VASP, AKT3, DNM2

VEGF signaling
pathway

3.94186 0.036037 PLA2G10, MAPK3, PPP3CB, SRC, AKT3

Adherens junction 3.839474 0.039139 FGFR1, ERBB2, MAPK3, TCF7L2, SRC

FAM83H

Axon guidance 3.742273 3.61E-05
NGEF, EFNB1, EPHB4, CXCL12, EPHA2, SLIT3, SEMA5A, SEMA3G, FYN, CFL2,

RAC1, PPP3CB, SEMA4B, EFNA4, RHOD

Cell adhesion molecules
(CAMs)

2.925777 0.002361
F11R, CLDN7, SDC1, CLDN4, CD34, NRXN3, PECAM1, NLGN4X, JAM2, SDC4,

NEGR1, CDH5

Calcium signaling
pathway

2.377194 0.007799
SLC8A3, EDNRB, PLCB3, SLC8A1, PTGER3, ADORA2A, TACR1, ERBB2, PDE1A,

PPP3CB, PLCD3, PTGFR, ITPR1

Tight junction 2.641933 0.008055 F11R, EPB41L3, CLDN7, CTTN, CLDN4, MPDZ, CGN, MYH14, JAM2, TJP3, MYH10

Leukocyte
transendothelial
migration

2.727419 0.010253 F11R, CLDN7, CLDN4, PECAM1, RAC1, RAPGEF4, JAM2, CXCL12, CDH5, VASP

Pathways in cancer 1.66805 0.04474
CKS1B, FGFR1, ERBB2, STAT5B, SMAD4, ITGA3, BCL2L1, MAPK10, FZD4, JUP,

CBLC, LAMB3, BCL2, RAC1, PIAS2, TRAF4, GSTP1
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4. Discussion

Although FAM83 family members were proven to play a sig-
nificant role in several kinds of cancer, their biological roles
and prognostic value in PDAC have rarely been character-
ized. In the current study, we first showed that FAM83A,
FAM83D, FAM83E, and FAM83H were significantly overex-
pressed in PDAC. And higher expression of FAM83B,
FAM83D, and FAM83E was associated with tumor stage.
Further, upregulation of FAM83B was significantly associ-
ated with worse OS, while upregulation of FAM83A,
FAM83D, and FAM83H was correlated with both worse OS
and DFS. These data suggested the predictive value of
FAM83A, FAM83B, FAM83D, FAM83E, and FAM83H for
the prognosis of PDAC.

FAM83 proteins are characterized by an N-terminal
“domain of unknown function” called DUF1669. However,
each member has a unique C terminus of variable length
and their biological function and related mechanism may be
distinct. By performing functional and pathway enrichment
analyses, we showed that FAM83A was involved in regulation
of cell adhesion, integrin-mediated signaling pathway, and
ECM-receptor interaction in PDAC. Studies have proved that

elevated FAM83A expression maintained essential MEK/ERK
survival signaling and prevented cell death in PC cells [27].
Upregulation of FAM83Awas also found in lung, ovarian, cer-
vical, and certain brain tumor [9]. Knockdown of FAM83A
increased the expression levels of α1, α3, α5, β4, and β5
integrins in CaSki and HeLa cells. In our study, FAM83D
and its neighboring genes were mainly enriched in “cell cycle
(M phase), DNA replication, nuclear division, oocyte meio-
sis, ATP and nucleotide binding, and p53 signaling pathway”
in PDAC. In other study, exogenous FAM83D overexpres-
sion promoted, while FAM83D silencing inhibited non-
small-cell lung cancer (NSCLC) cell proliferation, epithelial-
mesenchymal transition, and invasion through regulating the
AKT/mTOR pathway [28]. Besides, it also involved in the
MEK/ERK signaling pathway and promote the entry into S
phase of cell cycle in hepatocellular carcinoma [29]. These
indicate that upregulation of FAM83D may enhance cancer
cell division and proliferation by affecting cell cycle progres-
sion in PDAC.

Through functional enrichment analyses, we found that
FAM83E and FAM83H were involved in “Ras GTPase bind-
ing, regulation of Ras GTPase activity, and Ras protein signal
transduction.” As an important member of the Ras family,
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Figure 6: Correlation between expression levels of differentially expressed FAM83 family members with important driver genes of pancreatic
ductal adenocarcinoma (PDAC) including KRAS (a) and SMAD4 (b).
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Figure 7: Continued.
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KRAS is a critical driver gene in PDAC, which is character-
ized by a nearly 100% KRAS mutation frequency. In this
study, KRAS expression level was found positively correlated
with FAM83A, FAM83D, FAM83E, and FAM83H. Our
result also demonstrated that the expression of SMAD4,
another driver gene of PDAC, was negatively associated with
FAM83A, FAM83D, FAM83E, and FAM83H. Taking these
together, FAM83 members may regulate or be regulated by
KRAS or SMAD4 in PDAC, leading to cancer progression.
It will be of great interest to investigate the detailed mecha-
nism between FAM83 members and KARS or SMAD4 in
future study.

The immune cell infiltration and tumor microenviron-
ment have been verified to play vital roles in PDAC progres-
sion and tumor evasion [30]. In recent years, the application
of immunotherapies to stimulate effector T cells to kill tumor
cells has aroused great interest. However, clinical researches
have shown that checkpoint inhibition therapy alone is insuf-
ficient for the treatment in PDAC [31], of which insufficient
TILs are a fundamental cause of “cold” tumors and immune
checkpoint unresponsiveness [32]. In our study, a significant
negative correlation was suggested between the abundance of
CD8+ T cell with FAM83A, D, E, and H in PDAC. Findings
from the current research have indicated that subsets of TILs,
especially CD8+ T cell, are strongly associated with long-term
oncological outcomes in patients with PDAC and limited

CD8+ T cell infiltration is found in most PDAC tumor cen-
ters [33, 34]. Gamma Delta T cell has been considered to play
protective roles in tumorigenesis, largely on the basis of their
cytotoxicity and interferon-γ production, which inhibits
tumor progression [35]. However, the role of Gamma Delta
T cell in PDAC is contradictive and it was revealed that
Gamma Delta T cell may inhibit αβ T cell activation and pro-
mote pancreatic oncogenesis [36]. The exploration of the
interaction and mechanism between Gamma Delta T cell
and some potential immune regulatory factors like FAM83
family will contribute to facilitate the elucidation of the
Gamma Delta T cell in PDAC formation and progression.
These results indicated that the FAM83 family were not only
prognostic biomarkers but also reflect some immune status
of PDAC.

By assessing the correlation between FAM83H expres-
sion with tumor-infiltrating lymphocytes and immunomod-
ulators, we found a broad correlation between FAM83H
with immune cell infiltration (such as effector memory
CD4+ T cell, eosinophil, mast cell, follicular helper T cell),
immunoinhibitors (such as PVRL2, LGALS9, IL10RB),
immunostimulators (such as CXCL12, ENTPD1, CD28,
KLRK1), and MHC molecules (such as HLA-DPA1, HLA-
DPB1, HLA-DOA, HLA-DRA). PVRL2 (CD112), known as
the ligand of PVRIG and CD226, is overexpressed in different
types of tumor cell and plays an immunosuppressive role in T
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Figure 7: Association between the different expressions of FAM83 family with T cell infiltration levels in pancreatic ductal adenocarcinoma
(PDAC): (a) R between the expression of FAM83A, D, E, and H with T cell infiltration levels including CD8+ T cell, Gamma Delta T cell,
follicular helper T cell, and CD4+ T cell in PDAC. (b-d) Spearman’s correlation between the expression of FAM83A, E, and H with CD8+

T cell (b), Gamma Delta T cell (c), and naive CD4+ T cell (d) infiltration levels. Red and blue cells showed positive and negative
correlations, respectively. The intensity of color was proportional to the strength of the correlations.
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Figure 8: Correlations of FAM83H with tumor-infiltrating lymphocytes (TILs) and immunomodulators: (a) correlations between TILs and
FAM83H expression; (B) top 4 TILs with the greatest negative Spearman correlation with FAM83H; (c) correlations between
immunoinhibitors and FAM83H expression; (d) top 3 immunoinhibitors with the greatest positive Spearman correlation with FAM83H;
(e) correlations between immunostimulators and FAM83H expression; (f) top 4 immunostimulators with the greatest negative Spearman
correlation with FAM83H; (g) correlations between MHC molecules and FAM83H expression; (h) top 4 MHC molecules with the greatest
negative Spearman correlation with FAM83H. Red and blue cells showed positive and negative correlations, respectively. The intensity of
color was proportional to the strength of the correlations.
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cell function [36]. Blockade of PVRIG-PVRL2 enhanced
cytotoxic function of CD8+ T cells, and the triple-
combination blockade of PVRIG-PVRL2, TIGIT, and PD-1
resulted in the greatest increase in IFNγ, which means mostly
enhancement of CD8+ effector function [37]. Besides, the
enhancement of natural killer cell function was also observed
by blockading the PVRL2 [38]. CD39 (ENTPD1), a molecule
associated with chronic immune cell stimulation, was proven
to be a marker of tumor-infiltrating CD8+ T cells [39].
Simoni et al. performed a transcriptomic profiling analysis
and found that CD39+ CD8+ TILs were enriched in genes
related to cell proliferation and exhaustion, which are char-
acteristics of chronically stimulated T cells. At the protein
level, CD39+ CD8+ TILs also showed characteristics of
exhausted cells in terms of both phenotypic and functional
markers in colon and lung cancers [39]. MHC-II molecules,
particularly HLA-DRA, are critical for antigen presentation
to CD4+ T cell and required for antiPD-1/PD-L1 activity
in melanoma; agents that induce MHC-II positivity can be
combined with PD-1/PD-L1-targeted therapy to improve
response rates [40]. Thus, FAM83H, which is related to the
above immune molecules, might serve as a potential immu-
notherapeutic target.

However, there are several limitations of our study.
Although the mRNA expression of some FAM83 family
members was identified as prognostic biomarkers for DFS
and OS in the study, the changes of protein levels and their
prognostic implication were not demonstrated. Besides, our
analyses can reflect some respects of immune status in PDAC
but not the global changes. Further prospective experiments
and in vitro or in vivo studies are needed to validate our
results and explore underlying molecular mechanisms.

In conclusion, FAM83 family members display differential
degrees of overexpression and play vital roles in tumor pro-
gression and the regulation of immune cell infiltration of
PDAC. Further, our study explored the correlation between
DEGs in FAM83 family with tumor-infiltrating lymphocytes
and highlight FAM83H as a prognostic biomarker and a
potential immunotherapeutic target to treat PDAC.
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