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Sugar consumption in the United States exceeds recommendations from the American 
Heart Association. Overconsumption of sugar is linked to risk for obesity and metabolic 
disease. Animal studies suggest that high-sugar diets alter functions in brain regions 
associated with reward processing, including the dorsal and ventral striatum. Human 
neuroimaging studies have shown that these regions are responsive to food cues, and 
that the gut-derived satiety hormones, glucagon-like peptide-1 (GLP-1), and peptide YY 
(PYY), suppress striatal food-cue responsivity. We aimed to determine the associations 
between dietary added sugar intake, striatal responsivity to food cues, and postprandial 
GLP-1 and PYY levels. Twenty-two lean volunteers underwent a functional magnetic 
resonance imaging (fMRI) scan during which they viewed pictures of food and non-
food items after a 12-h fast. Before scanning, participants consumed a glucose drink. A 
subset of 19 participants underwent an additional fMRI session in which they consumed 
water as a control condition. Blood was sampled for GLP-1, and PYY levels and hunger 
ratings were assessed before and ~75  min after drink consumption. In-person 24-h 
dietary recalls were collected from each participant on three to six separate occasions 
over a 2-month period. Average percent calories from added sugar were calculated 
using information from 24-h dietary recalls. A region-of-interest analysis was performed 
to compare the blood oxygen level-dependent (BOLD) response to food vs. non-food 
cues in the bilateral dorsal striatum (caudate/putamen) and ventral striatum (nucleus 
accumbens). The relationships between added sugar, striatal responses, and hormone 
changes after drink consumption were assessed using Spearman’s correlations. We 
observed a positive correlation between added sugar intake and BOLD response to food 
cues in the dorsal striatum and a similar trend in the nucleus accumbens after glucose, 
but not water, consumption. Added sugar intake was negatively associated with GLP-1 
response to glucose. Post hoc analysis revealed a negative correlation between GLP-1 
response to glucose and BOLD response to food cues in the dorsal striatum. Our findings 
suggest that habitual added sugar intake is related to increased striatal response to food 
cues and decreased GLP-1 release following glucose intake, which could contribute to 
susceptibility to overeating.
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inTrODUcTiOn

The average intake of added sugars in the United States has 
increased by 19% over the last three decades. Increases in added 
sugar consumption are linked to obesity, diabetes and cardiovas-
cular disease (1–5). Excessive sugar consumption is due at least 
in part to the wide availability of convenient, high-sugar foods 
coupled with an abundance of environmental food cues that 
prime eating behavior (6, 7). In response to food cues, the brain 
recruits regions important for reward anticipation and process-
ing, including striatal areas involved in dopaminergic signaling 
that motivate feeding behavior (8). Neuroimaging studies have 
consistently shown that striatal areas are activated in response to 
pictures of palatable food cues (9–11), and this response is exag-
gerated in obese individuals (12–14). Independent from suggested 
effects of obesity, chronic exposure to specific nutrients, such as 
sugar, may affect striatal responses to food cues. A number of 
studies in animal models have shown that high-sugar diets alter 
the striatal dopamine system (15–17), including a recent study 
that found that 7 months of high-sugar feeding increased basal 
glucose metabolism in mesolimbic reward regions independent 
of insulin sensitivity or weight gain in Yucatan mini pigs (18). 
However, it is currently unknown whether habitual dietary added 
sugar consumption is related to striatal food-cue reactivity in 
humans.

The incretin hormones glucagon-like peptide-1 (GLP-1) and 
peptide YY (PYY) are released in response to food intake. These 
hormones are known to produce anorexigenic effects through 
receptors concentrated in the arcuate nucleus of the hypo-
thalamus (19, 20). Aside from effects on hypothalamic appetite 
circuits, GLP-1 and PYY also regulate food intake through their 
action on regions associated with food reward and learning 
(21, 22). Neuroimaging studies in humans have shown that the 
infusions of GLP-1 and/or PYY reduce brain responses to food 
cues within cortical–striatal areas involved in the regulation of 
eating, and these reductions in neural food-cue reactivity were 
associated with a decrease in ratings of appetite (23–25). These 
findings suggest a relationship between increases in circulating 
levels of incretin hormones, reductions in food-cue reactivity, 
and discernable feelings of satiety.

GLP-1, in particular, has emerged as a possible mediator of 
processing food reward and other rewarding stimuli through its 
action in the mesolimbic circuit (26, 27). Interestingly, studies 
indicate that energy-dense diets may reduce GLP-1 signaling 
in the brain (28, 29). Recently, Richards et  al. reported that a 
high-fat diet resulted in decreased numbers of intestinal L-cells 
(the cells that secrete GLP-1) and a smaller GLP-1 response to 
nutrient exposure (29). However, whether chronic dietary sugar 
consumption affects endogenous GLP-1 secretion in humans is 
not yet known.

The aim of this study was to examine associations between 
dietary added sugar intake and (1) striatal responsivity to food 
cues as well as (2) the rise in circulating hormones, GLP-1 and 
PYY, in response to oral glucose in healthy-weight volunteers. 
Due to specific interest in the dorsal striatum and nucleus accum-
bens, we used a region-of-interest (ROI)-based analysis focus-
ing on these regions. We used a standardized 75 g oral glucose 

load that has been previously shown to stimulate gut hormone 
secretion and to diminish food-cue reactivity (30, 31) to test the 
hypothesis that increases in dietary added sugar intake would be 
associated with greater striatal responses to palatable food cues as 
well as decreased systemic GLP-1 and PYY responses to glucose 
ingestion.

MaTerials anD MeThODs

Participants
Twenty-two lean, young adult volunteers (12 females; 10 
males) participated in the study. Participants were lean (BMI 
22.6  ±  1.9  kg/m2), right-handed, nonsmokers, weight stable 
for 3  months, non-dieters, not on any medication (except oral 
contraceptives), with normal or corrected-to-normal vision and 
no history of diabetes, eating disorders, or other medical diag-
noses. During the course of the study, participants were asked to 
adhere to their usual diet and physical activity levels. Participants 
provided written informed consent compliant with the University 
of Southern California Institutional Review Board.

experiment Overview
Each participant attended an initial screening visit to assess 
eligibility for participation in the study. During the screening 
visit, we collected demographic information, and anthropomet-
ric measurements including height (cm), weight (kg), waist and 
hip circumferences (cm), and total body fat percentage using 
bioelectrical impedance analysis (Model no. SC-331S, TANITA 
Corporation of America, Inc.). 24-h dietary intake and physical 
activity recalls were obtained at the screening visit. In addition, 
over the course of 2 months, an additional three to six dietary 
recalls were obtained via in-person interviews.

Magnetic resonance imaging (MRI) scans were performed at 
the Dornsife Cognitive Neuroimaging Center of University of 
Southern California. Participants arrived at approximately 8:00 
a.m. after a 12-h overnight fast. A baseline (fasting) blood draw 
was performed at approximately 8:45 a.m. After performing a 
T1 structural scan, participants received a standardized drink 
containing 75 g of glucose and 0.45 g of non-sweetened cherry fla-
voring dissolved in 300 ml of water. The 75 g oral glucose load has 
been used extensively to examine changes in appetite hormones 
and brain regions involved in hunger, reward, and food intake 
(32). Although the main aim of the study was to examine the 
impact of sugar intake on food-cue reactivity and satiety hormone 
release in response to a glucose load, a subset of 19 participants 
(M  =  9; F  =  10) also underwent a second imaging session in 
which they consumed 300 ml of water with flavoring as a control 
condition. The order of the drink sessions was randomized, and 
the time interval between the two sessions was between 2 and 
30 days. Participants were instructed to consume the drink within 
2 min. After consuming the drink, participants entered the scan-
ner and underwent a food-cue task (described below). Another 
blood draw was performed after the scan at, on average, 75 min 
after the drink was consumed. Immediately following each blood 
draw, participants were asked to rate their hunger from 1 to 10 on 
a visual analog scale. Females underwent MRI scans during the 
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follicular phase of the menstrual cycle. These data were collected 
as part of a larger study aimed at determining brain responses to 
sugar.

assessments of Dietary intake
To assess dietary intake, we used the multipass 24-h dietary recall, 
a validated method that probes quantities of food and drink con-
sumed during the previous 24 h (33, 34). A trained staff member 
administered each dietary recall interview, which spanned 
between 30 and 60  min. During the dietary recall interview, 
participants were asked to report all food and beverage items 
(including meals and snacks) they consumed during the prior 
24 h. Participants were also asked to provide the amount of each 
item she or he consumed, approximate time of consumption, a 
description of the preparation method, and additional details 
such as brand name. Dietary recalls captured dietary intake on 
both weekend days and weekdays to account for individual vari-
ations in dietary intake.

Physical activity assessments
We also collected information on habitual physical activity levels 
to control for the potential confounding effects of physical activity 
on brain and endocrine responses (35, 36). Physical activity data 
were recorded during an interview with a trained staff member 
using a 24-h physical activity recall (PAR). Participants were 
asked to report what activities they did, in 30-min increments 
between the hours of 7:00 a.m. and 11:59 p.m. on the previous 
day. Using data from each participant’s PAR, we calculated daily 
physical activity by summing the metabolic equivalence (MET) 
of each activity at each interval. We used the mean daily METs 
for each participant to reflect the overall level of physical activity.

Food-cue Task
Participants completed the food-cue task in the MRI scanner. In 
a randomized block design, participants were presented with a 
total of 12 visual food cue and non-food cue blocks using Matlab 
(MathWorks, Inc., Natick, MA, USA) and Psychtoolbox on 
an Apple laptop. Four cue images per block were presented in 
random order, each separated by 1 s of a blank screen. Within a 
block, each image was presented for 4 s. Food-cue stimuli were 
images of high-calorie, palatable food items such as cookies and 
pizza. The control stimuli were images of neutral, non-food items 
such as buses and staircases. The set of food and non-food cue 
images was matched for visual appeal for use in prior published 
work (37–39).

Mri imaging Parameters
Food cue and structural MRI data were collected using 3 T Siemens 
MAGNETOM Tim/Trio scanner (N  =  12) and MAGNETOM 
Prisma fit MRI scanner (N =  10) due to a scanner upgrade in 
the middle of our study. Participants laid supine on the scanner 
bed, viewing stimuli through a mirror mounted over the head 
coil. Functional blood oxygen level-dependent (BOLD) signals 
were acquired with a single-shot gradient echo planar imaging 
sequence. Thirty-two 4-mm thick slices covering the whole brain 
were acquired using the following parameters: repetition time 
(TR) = 2,000 ms, echo time (TE) = 25 ms, bandwidth = 2,520  

Hz/pixel, flip angle = 85°, field of view (FOV) = 220 mm × 220 mm, 
matrix = 64 × 64. A high-resolution 3D magnetization prepared 
rapid gradient echo sequence (TR  =  2,530  ms; TE  =  2.62  ms; 
bandwidth = 240 Hz/pixel; flip angle = 9°; slice thickness = 1 mm; 
FOV = 256 mm × 256 mm; matrix = 256 × 256) was used to 
acquire structural images for multi-subject registration.

Functional Magnetic resonance imaging 
(fMri) Data analysis
To analyze fMRI data, we used several tools from the Oxford 
University Centre for Functional MRI of the Brain Software 
Library (FMRIB) (40–42). fMRI data were processed using the 
fMRI Expert Analysis Tool (FEAT) version 6.00. Four functional 
volumes (4 TRs) acquired at the beginning of each MRI session 
were discarded to account for magnetic saturation effects. fMRI 
files were preprocessed using motion correction, high-pass 
filtering (100 s), and spatial smoothing with a Gaussian kernel 
of full width at half-maximum = 5 mm. Functional data were 
first mapped to each participant’s anatomical image and then 
registered into standard space [Montreal Neurological Institute 
(MNI)] using affine transformation with FMRIB’s Linear Image 
Registration Tool to the avg152 T1 MNI template. Food and 
non-food events were added to the general linear model after 
convolution with a canonical hemodynamic response function. 
Temporal derivatives and temporal filtering were added to 
increase statistical sensitivity. For each participant, food cues 
vs. non-food cues contrast maps were created on the first-level 
analysis. An additional explanatory variable was added in the 
group-level analysis to account for variability due to the upgrade. 
Because of evidence suggesting that the striatum may be par-
ticularly affected by dietary sugar (16), we used an ROI-based 
approach. Anatomical, bilateral ROIs of the dorsal striatum (cau-
date/putamen) and the nucleus accumbens were created using 
the Harvard-Oxford subcortical atlas, which provides probabil-
istic mapping of 21 subcortical brain structures (Figures 1A,B). 
Percent signal change was extracted from each ROI for food vs. 
non-food contrast for each participant using FSL’s FEATquery, 
a tool within FEAT that allows the mean signal to be extracted 
from a given ROI mask.

Dietary Data analysis
Data from dietary recalls were manually checked for quality. 
To determine outliers, we performed linear regression analysis, 
using bodyweight to predict caloric intake. Residuals were stand-
ardized and examined for any values that were >3 SDs from the 
mean. Using this method, 102 dietary recalls were included in 
this analysis (an average of 4.7 recalls per participant), and none 
were excluded. Dietary intake data were collected and analyzed 
using Nutrition Data System for Research software version 2015, 
developed by the Nutrition Coordinating Center, University of 
Minnesota, Minneapolis, MN, USA (43). Using the output from 
this software, each participant’s dietary recall was probed for 
intake of overall calories, macronutrients, total sugar, and added 
sugar. We chose to use percent calories from added sugar as 
our measure of sugar intake to account for total energy intake. 
We calculated percent calories from added sugar by available 
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Table 1 | Participant characteristics (n = 22).

characteristic Mean ± sD

Sex Male: n = 10;  
female: n = 12

Age (years) 21.2 ± 2.1
BMI (kg/m2) 22.6 ± 1.9
Total body fat (%) 20.6 ± 6.3

FigUre 1 | Bilateral region-of-interest masks: (a) dorsal striatum (caudate/putamen) and (b) nucleus accumbens.
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carbohydrate from each participant’s dietary recalls and used the 
participant’s mean values across all recalls to represent average 
dietary added sugar consumption.

hormone analysis
GLP-1(7–36) (active) and PYY (total) were measured using Luminex 
multiplex technology (EMD Millipore, St. Charles, MO, USA). 
Change from baseline GLP-1 (pg/ml) and PYY (pg/ml) was 
calculated as a difference between hormone levels measured at 
~75 min post drink ingestion and levels measures at the fasting 
blood draw.

statistical analysis
All analyses were performed using R Statistical Software Version 
3.1.2 (http://www.R-project.org/). Descriptive statistics were 
derived using the “psych” package. Spearman’s correlations 
were performed between average percent calories from added 
sugar, percent signal change in both ROIs, and GLP-1 and PYY 
change from baseline using the “ppcor” package. We performed 
Spearman’s correlations due to small sample size, which is highly 
sensitive to outliers. Results with p < 0.05 were considered signifi-
cant, and imaging data were corrected for multiple comparisons 
(i.e., 2 regions of interest). All data are reported in mean ± SD.

resUlTs

Participants
Mean age, body mass index, and body fat percentage for 22 par-
ticipants are described in Table 1. Males and females did not differ 
in age (M = 21.5 ± 1.8; F = 21 ± 2.4; p = 0.5) or body mass index 
(M = 23.1 ± 1.5; F = 22.1 ± 2.1; p = 0.2), but females had higher 
body fat percentage than males (M = 15.9 ± 3.1; F = 24.4 ± 5.6; 
p < 0.001). Physical activity levels did not differ between males 

and females (M  =  61.9  ±  8.6 METs; F  =  61.44  ±  3.8 METs; 
p = 0.87).

Dietary intake
Participants consumed an average of 1,719.1  ±  470.4  kcal/day 
(Table 2). Males consumed significantly more total calories per day 
than females (M = 1,967.8 ± 429.4; F = 1,511.78 ± 410.4 kcal/day; 
p = 0.02). However, average calories consumed from added sugar 
did not differ between males and females (M = 252.2 ± 127.7; 
F = 164.2 ± 120.8 kcal/day; p = 0.12), and neither did percent calo-
ries consumed from added sugar (M = 12.6 ± 6.4; F = 10.8 ± 6.7%; 
p = 0.5). In general, the percent calories from carbohydrate, fat, 
and protein consumed by our participants resemble the national 
averages for individuals in this demographic range (44).

added sugar intake and Post-glucose 
brain response to Food cues
Region-of-interest analysis revealed a positive correlation 
between percent calories consumed from added sugar and dorsal 
striatum response to food vs. non-food cues (rs = 0.55, p = 0.02, 
Figure 2), and the relationship remained significant after control-
ling for sex, percent body fat, and average daily physical activity 
levels (rs = 0.62, p = 0.001). We observed a trend toward a posi-
tive correlation between percent calories from added sugar and 

http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
http://www.frontiersin.org/Psychiatry/archive
http://www.R-project.org/


FigUre 2 | Positive correlation between blood oxygen level-dependent 
(BOLD) response to food cues in the dorsal striatum and percent calories 
consumed from added sugar (rs = 0.55, p = 0.02). One male participant was 
excluded from analysis due to an imaging acquisition error.

Table 2 | Results from 24 h dietary recalls: average energy, fat, carbohydrate, 
protein, total sugar, and added sugar intake (n = 22).

nutrient Unit Mean ± sD

Energy kcal/day 1,719.1 ± 470.4

Fat g/day 67.4 ± 24.6

kcal/day 606.9 ± 221.5

% kcal 34.8 ± 7

Carbohydrate g/day 206.7 ± 71.8

kcal/day 826.6 ± 287.1

% kcal 48.1 ± 10.3

Protein g/day 72.1 ± 20.8

kcal/day 288.5 ± 83.3

% calories 17.2 ± 4

Total sugar g/day 79.2 ± 34.7

kcal/day 316.6 ± 138.8

% calories 18.6 ± 6.9

Added sugar g/day 51.1 ± 32.3

kcal/day 204.2 ± 129

% calories 11.6 ± 6.5

FigUre 3 | (a) Systemic GLP-1 increased significantly after consumption of oral glucose (Baseline = 18.8 ± 18.9 pg/ml; 75 min = 31.8 ± 24.5 pg/ml; p < 0.001). 
(b) Negative correlation between GLP-1 response to oral glucose and percent calories consumed from added sugar (rs = −0.50, p = 0.04).

5

Dorton et al. Dietary Sugar, GLP-1, and Striatum Reactivity

Frontiers in Psychiatry | www.frontiersin.org January 2018 | Volume 8 | Article 297

nucleus accumbens response to food vs. non-food cues (rs = 0.41, 
p  =  0.07), and controlling for sex, percent body fat, and aver-
age daily physical activity levels strengthened this relationship 
(rs =  0.47, p =  0.03). These findings suggest that, independent 
of sex, adiposity, or physical activity levels, dietary added sugar 
consumption is associated with striatal reactivity to food cues. 
We did not observe a significant correlation between added 
sugar intake and response to food cues in the dorsal striatum 
(rs = −0.22, p = 0.37) or nucleus accumbens (rs = 0.29, p = 0.21) 
after ingestion of water.

glP-1 and PYY responses to Oral 
glucose
Circulating GLP-1 levels were significantly greater ~75 min after 
glucose consumption than at baseline (Baseline = 18.8 ± 18.9 pg/ml;  
75  min  =  31.8  ±  24.5  pg/ml; p  <  0.001; Figure  3A). We 
observed a moderate rise in PYY levels ~75  min after glucose 
ingestion compared with baseline (Baseline = 78 ± 25.6 pg/ml; 
75 min = 89 ± 36 pg/ml; p = 0.07). During the water session, 
there was not a significant increase in GLP-1 at the 75-min 
time point relative to baseline (Baseline  =  18.7  ±  18.4  pg/ml; 
75 min = 18.6 ± 19.3 pg/ml, p = 0.78). In addition, we observed 
a non-significant trend toward a decrease in PYY levels at 75 min 
relative to baseline after water (Baseline  =  79.3  ±  44.7  pg/ml; 
75  min  =  71.7  ±  38.2  pg/ml, p  =  0.07), likely attributable to 
prolonged fasted state. Hunger ratings were significantly higher 
75 min after the water drink compared with the glucose drink 
(p < 0.001).

added sugar intake and glP-1 and PYY 
responses to Oral glucose
Dietary added sugar intake was negatively correlated with 
the GLP-1 response to glucose ingestion (rs = −0.50, p = 0.04; 
Figure  3B). There was no significant correlation between PYY 
response to glucose ingestion and dietary added sugar intake 
(rs  =  −0.09, p  =  0.69). In addition, we found no correlations 
between added sugar intake and GLP-1 or PYY response to water 
consumption (GLP-1: rs = 0.12, p = 0.6; PYY: rs = 0.13, p = 0.6).
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FigUre 4 | Negative correlation between blood oxygen level dependent 
(BOLD) response to food cues in the dorsal striatum and systemic GLP-1 
response to oral glucose (rs = −0.46, p = 0.04).
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glP-1 and PYY responses to Oral 
glucose and striatal Food-cue reactivity
A post hoc analysis revealed that GLP-1 response to glucose was 
negatively correlated with the dorsal striatal response to food cues 
(rs = −0.46, p = 0.04; Figure 4). There was no significant correla-
tion between GLP-1 response to glucose and nucleus accumbens 
food-cue reactivity (rs = −0.16, p = 0.5). PYY response to glucose 
was not correlated with either dorsal striatal or nucleus accum-
bens response to food cues. Neither GLP-1 response to glucose 
nor dorsal striatum response to food cues correlated with change 
in hunger ratings after glucose (GLP-1: rs = 0.09, p = 0.7; dorsal 
striatum: rs = −0.37, p = 0.1).

DiscUssiOn

We found that increased dietary added sugar intake, independent 
of sex, adiposity, and physical activity, correlates with increased 
striatal reactivity to food cues following glucose consumption. 
A number of neuroimaging studies have shown that obesity is 
associated with increased striatal food-cue reactivity (12–14). 
Our findings add to the literature by demonstrating that among 
healthy-weight young adults, and after controlling for sex, physi-
cal activity, total energy intake, and adiposity, those who con-
sumed greater habitual dietary added sugar had greater striatal 
responses to food cues in a postprandial state. It is possible that 
habitual consumption of added sugars could sustain the salience 
of external food cues and thus, the reward value of food.

Both the dorsal striatum and nucleus accumbens are associ-
ated with reward anticipation, but the dorsal striatum is often 
specifically associated with motivation to engage in rewarding 
behavior and anticipation of food and drugs (45–47). Studies 
in humans and animals indicate that there are hunger state-
dependent changes in striatal response to both food cues and 
food receipt (48, 49). Participants in our study reported higher 
hunger ratings after consumption of water than after glucose. We 
found that higher added sugar intake was associated with reduced 

GLP-1 response to glucose. GLP-1 receptors are widely expressed 
in subcortical structures of the brain that relate to both homeo-
static and hedonic food intake including the hypothalamus, 
hippocampus, amygdala, ventral tegmental area, and the nucleus 
of the solitary tract (50). Notably, GLP-1 receptors are expressed 
in the substantia nigra pars compacta, which targets the dorsal 
striatum through dopaminergic signaling and regulates feeding 
motivation (51–53).

Recently, the gut–brain axis has received attention as a crucial 
regulator of satiety, metabolism, and food reward (32). The vagus 
nerve serves as the direct connection between the gut and the 
brain (54). Vagal afferent neurons express GLP-1 receptors and 
are thought to deliver short-term satiety signals to the brain, 
regulating food intake, though possibly not long-term regulation 
of body weight (55). Animal studies suggest that impaired com-
munication between the gut and brain leads to interrupted satiety 
signaling. In vagotomized rodents, peripheral administration 
of GLP-1 fails to reduce food intake (56). Reduced expression 
of GLP-1 receptor in vagal afferents leads to increases in food 
intake and post-feeding blood glucose levels in rats (57). Beyond 
homeostatic mechanisms, evidence suggests that GLP-1 may 
promote satiety by modulating the rewarding properties of 
food (58). In rats, administration of Exendin-4, a GLP-1 analog, 
reduced sucrose intake, diminished conditioned place prefer-
ence for sweet reward, and reduced the motivation for feeding 
behavior (26, 59), effects that are mediated by the mesolimbic 
dopamine system. In humans, GLP-1 receptor blockade was 
shown to reduce deactivation to food cues following a meal (60). 
Thus, if satiety signals are impaired after consuming calories, the 
salience of food cues may remain high and lead to overeating and 
susceptibility for weight gain. A recent study reported that the 
dorsal striatum processes the caloric value of sugar (61). In the 
context of the results of our study, this process may be interrupted 
by reduced GLP-1 mediated satiety signaling. Post hoc analysis 
revealed that, while systemic PYY levels were not significantly 
correlated with striatal food-cue reactivity, participants with 
smaller postprandial increases in GLP-1 had greater food-cue 
reactivity in the dorsal striatum.

While examining the effects of obesity on the neural process-
ing of food cues has contributed to our understanding of obesity 
related changes in brain reward pathways, it is important to 
consider underlying factors, such as dietary intake, that may 
contribute to increased susceptibility to overeating and obesity. 
To that end, Burger and Stice recently reported that total energy 
intake, independent of adiposity, is related to a greater anticipatory 
response to food within areas in the brain involved in attention 
and reward processing (62). Our results are in line with these 
findings and further suggest that habitual consumption of added 
sugar, accounting for total energy intake, may drive greater striatal 
reactivity to food cues. Putting these findings in the context of 
the dynamic vulnerability model of obesity, which suggests that a 
heightened brain reward response to food cues is associated with 
greater susceptibility to food cue induced overeating (63–65), these 
data raise the possibility that high habitual added sugar intake may 
increase vulnerability to cue related overeating behavior.

Our study design is correlational and does not allow us to 
determine the directionality of the relationship between added 
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sugar intake and striatal food-cue reactivity (or indeed, whether 
any causal association exists). Our findings are, however, consist-
ent with experimental animal models that do establish a causal 
link between excessive sugar intake and greater striatal and 
behavioral responses to cues for sugar (65). These data could 
suggest that habitually consuming added sugar affects the brain’s 
regulation of food reward in a postprandial state, which may lead 
to overeating. Alternatively, it is also possible that individuals 
who have greater striatal food-cue reactivity may be motivated to 
consume more high-sugar foods. Future studies should directly 
assess this relationship through interventions that experimentally 
reduce or increase dietary sugar intake in humans. The aim of our 
study was to examine correlations between habitual added sugar 
intake, food-cue reactivity in brain reward regions, and endocrine 
responses by focusing on a fed state induced by a standardized glu-
cose dose. While our approach was to observe such correlations 
in the glucose and water control conditions separately, a larger 
sample size may allow hierarchical modeling to directly compare 
the impact of added sugar intake on hormone and brain responses 
in the fasted and fed state. Although our data suggest that the 
relationship between added sugar intake and food-cue reactivity 
exists only after ingestion of a caloric sugar preload, future analyti-
cal approaches directly comparing drink session days would allow 
testing for interactions, where sample size is not a limitation.

By design, only lean young adults participated in this study 
since the purpose of this study was to investigate the effects 
of dietary added sugar in a lean, healthy population. It is pos-
sible that obesity status has an additive effect on the relationship 
between sugar intake, food-cue reactivity, and satiety hormones. 
Thus, future studies should investigate this relationship in obese 
individuals, as well as those who are obesity prone due to fac-
tors such as genetic predisposition, abnormal eating behaviors, 
or metabolic dysfunction. We used an ROI-based approach to 
interrogate the effects of dietary added sugar on responses to 
food cues in the dorsal striatum and nucleus accumbens based 
on compelling evidence from animal studies that diets high in 
sugar and/or fat alter the function of these regions. Future studies 
should profile the relationship of dietary added sugar intake and 
food-cue related activity in other relevant regions important for 
appetite regulation and reward.

This study focused specifically on acute glucose ingestion, but 
it is notable that “added sugar” typically consists of varying com-
binations of glucose and fructose, each of which are metabolized 
differently (66). Recent neuroimaging studies have demonstrated 
that fructose and glucose differentially affect hormone release, 
food-cue reactivity in brain reward regions, and resting-state 
functional connectivity between limbic areas (31, 39, 67, 68). 
These differences could be investigated in future experiments that 
seek to define a relationship between acute and habitual sugar 
intake, perhaps by administration of a disaccharide preload, 
such as sucrose. In our study, dietary intake data were based on 
self-reported food intake. The 24-h dietary recall is a widely used 
method of collecting information about dietary intake, and our 
data were carefully inspected to exclude over- or underreporting, 
but we acknowledge that it is an indirect method that may not 
completely reflect an individual’s dietary habits. Participants in 
this study completed an average of five 24-h dietary recalls, which 

allowed us to capture variability in intake and estimate habitual 
intake of added sugars.

In conclusion, to the best of our knowledge, ours is the first 
study to show that dietary intake of added sugar is positively 
correlated with striatal food-cue reactivity, independent of total 
energy intake, sex, adiposity, or physical activity. Our findings 
suggest that added sugar intake is related to increased striatal 
response to food cues, but decreased GLP-1 release following 
glucose intake. Given that the striatum plays a critical role in 
mediating reward processing and incentive salience for food cues, 
these findings suggest that habitual consumption of added sugars 
may sustain salience of external food cues, even in a postprandial 
state, which could contribute to susceptibility to overeating and 
weight gain.
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