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Adaptation is an important mechanism that causes a decrease in the neural response
both in terms of local field potentials (LFP) and spiking activity. We previously showed this
reduction effect in the tuning curve of the primary auditory cortex. Moreover, we revealed
that a repeated stimulus reduces the neural response in terms of spike-phase coupling
(SPC). In the current study, we examined the effect of adaptation on the SPC tuning
curve. To this end, employing the phase-locking value (PLV) method, we estimated
the spike-LFP coupling. The data was obtained by a simultaneous recording from four
single-electrodes in the primary auditory cortex of 15 rats. We first investigated whether
the neural system may use spike-LFP phase coupling in the primary auditory cortex
to encode sensory information. Secondly, we investigated the effect of adaptation on
this potential SPC tuning. Our data showed that the coupling between spikes’ times
and the LFP phase in beta oscillations represents sensory information (different stimulus
frequencies), with an inverted bell-shaped tuning curve. Furthermore, we showed that
adaptation to a specific frequency modulates SPC tuning curve of the adapter and
its neighboring frequencies. These findings could be useful for interpretation of feature
representation in terms of SPC and the underlying neural mechanism of adaptation.

Keywords: neural adaptation, spike-LFP coupling, auditory cortex, sensory coding, tuning curve

INTRODUCTION

Neural adaptation is a brain mechanism that observed in various sensory systems of mammals
and amphibians, including the visual (Müller, 1999; Kayser et al., 2009), auditory (Bibikov, 1977;
Dean et al., 2005; Anderson et al., 2009; Malmierca et al., 2009; Hagan et al., 2012; Parto Dezfouli
and Daliri, 2015), and somatosensory (Katz et al., 2006; Adibi et al., 2013, 2014; Ahmadi et al.,
2019) systems. Earlier studies have reported an interesting adaptation behavior in certain neurons,
including in the auditory system, so-called as stimulus-specific adaptation (SSA) (Ulanovsky et al.,
2003, 2004; Nelken and Ulanovsky, 2007; Szymanski et al., 2009; Ayala and Malmierca, 2012;
Khouri and Nelken, 2015; Parto Dezfouli and Daliri, 2015), here on referred to as “Adaptation.”
SSA leads to a significant decline in the corresponding responses of frequent stimuli. For example,
an oddball sound releases a stronger response compared to the common one. Initially, researches
believed that this phenomenon was related to cortical processes, but additional evidence revealed
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similar behavior in other subcortical routes, such as medial
geniculate body (MGB) (Anderson et al., 2009), and Inferior
Colliculus (IC) (Ayala and Malmierca, 2012).

Adaptation decreases the neuronal activities in the sensory
areas and leads to a system that is not disturbed in exposure
to frequent stimuli (Dean et al., 2005; Adibi et al., 2013). Also,
adaptation changes the system sensitivity during the action of
the stimulus (Chen et al., 2010). To suppress the attention
to repeated stimuli, the adaptation mechanism alters several
neural properties. For instance, it helps to better detect deviance
by increasing the neural sensitivity related to an unexpected
change (Ulanovsky et al., 2003). In the auditory system, different
parameters of a stimulus such as intensity, tone frequency
distance, and Inter-Stimulus Interval is affected by adaptation.
Additionally, it has been shown that presenting an audio
sequence in a random pattern significantly affects the neural
responses (Yaron et al., 2012).

Synchronous neural activity, alongside neural desynchrony,
has been vastly studied in neuroscience, with implications
for sensory information encoding and decoding, memory,
attention, adaptation, and high cognitive process (Eckhorn and
Obermueller, 1993; Galarreta and Hestrin, 2001; Uhlhaas et al.,
2009; Pipa and Munk, 2011; van Wijk et al., 2012; Mendoza-
Halliday et al., 2014; Li et al., 2015; Merrikhi et al., 2017, 2018).
Local field potentials (LFPs), as the low-frequency part of neural
signal, reflect the common synaptic activity of a population of
neighboring neurons (Buzsáki and Draguhn, 2004; Buzsáki et al.,
2012; Jansen et al., 2015), while spikes are short-timed high-
frequency content signals reflecting more individual activity.
Neuronal synchronization can be addressed by temporally
relating spiking activities to the background oscillations of LFPs
(Salinas and Sejnowski, 2001; Pikovsky et al., 2002; Tiesinga et al.,
2008; Fries, 2009). This relationship has observed in various
cognitive functions and within different brain regions, including
the prefrontal cortex, cortical area, and hippocampus (Siegel
et al., 2009; Cutsuridis and Hasselmo, 2011). The relationship
further reveals information on the neuronal synchronization in
each frequency band. For instance, the relation between spikes
and its corresponding theta fluctuations of LFP in hippocampus
neurons reflects spatial memory information (Cutsuridis and
Hasselmo, 2011). Also, spike-LFP Phase Coupling (SPC) can
provide information about cell type and firing rate, and avoids
volume conduction complications (Canolty et al., 2010; Hoerzer
et al., 2010; Womelsdorf et al., 2010; Hansen and Dragoi, 2011;
Vinck et al., 2012; Xu et al., 2013; Herreras, 2016). There are
different measures for estimating spike-LFP synchronization,
including coherence coefficient and cross-correlation (Carter
et al., 1973; Carter, 1987; Zeitler et al., 2006; Srinath and
Ray, 2014), spike-triggered correlation matrix synchronization
(SCMS) (Li et al., 2016), phase-locking value (PLV) (Lachaux
et al., 1999), and spike field coherence (SFC) (Fries et al., 2001,
2002; Curtis et al., 2009; Grasse and Moxon, 2010; Hagan et al.,
2012). PLV is considered as one of the fundamental approaches to
estimate synchronization. However, this measure is highly biased
and dependent on spike rates. Accordingly, before using PLV
method, spikes should be matched at a specified rate. Therefore,
using a scheme, the spikes equalized to a specific threshold T;

trials with a number of spikes below T are discarded, and those
with spike rate more than T, are randomly equalized down to the
number of T.

It is known that the sensory information, namely various
stimuli tuning curves, represent by spiking activity or LFPs. The
power variation of LFPs could reflect various features of stimuli
like tone frequency, orientation, motion, etc (Siegel and König,
2003; Henrie and Shapley, 2005; Ray et al., 2008; Kayser et al.,
2009; Ince et al., 2012; García-Rosales et al., 2018a,b). Neuronal
spiking activity is also able to reveal stimuli information. Relating
these two signals (spike and LFP) provides a comprehensive
explanation about the neural activities (Quiroga and Panzeri,
2009; Perge et al., 2014). Considering the information of spike
times together with the LFP phase reveals different features in
various cognitive functions (Lachaux et al., 1999; Pesaran et al.,
2002, 2008; Ray and Maunsell, 2010; Vinck et al., 2010; Li et al.,
2017). In fact, the coupling of spikes of single neurons to the
phase of LFPs (spike-LFP phase coupling) has been a useful
measure to decode the sensory information and behaviors in
low and high-frequency bands (Mehring et al., 2003; Mollazadeh
et al., 2009). Furthermore, a recent study revealed the spike-LFP
coupling within and between areas, i.e., spikes-LFP relation in V1,
spikes-LFP relation in V4, and the relation between spikes of V4
and LFP of V1 (Li et al., 2019).

We previously showed that SSA suppresses the coupling of
spikes to the beta phase of LFP oscillations (Parto Dezfouli
et al., 2019). Here, we sought to investigate the effect of SSA
on neighboring frequencies in terms of SPC responses. To this
end, we first assessed whether the spike-LFP phase coupling has a
tuned response for encoding sensory information, here in the rat
primary auditory cortex. In other words, we examined a potential
link between the spike-LFP signals and stimuli in terms of the
tone frequency tuning curves (frequency selectivity). Notably,
in this study, we used the term “tuning curve” for frequency
tuning curve. Second, we explored how this adaptation would
alter the SPC response.

MATERIALS AND METHODS

The surgery procedure, experimental recording, and data
preprocessing are described in Parto Dezfouli and Daliri
(2015). Further details, employed in the current study,
are provided below.

Recording
The data was collected from the primary auditory cortex of
15 anesthetized rats. The adult Wistar rates weight ranges
between 250 and 350 g. The recording was done using tungsten
electrodes (FHC, 5M, United States). The parallel electrodes
(tip diameter of ∼5–10 um) were placed with 200 um distance
from each other. The recording electrodes were inserted into
the desired location by a Microdrive (SM-21, Narishige, Japan).
Multi-unit activity (MUA) and LFP were collected over A1 area
with 10 kHz sampling rate (recording system: USB-ME64-PGA;
Multichannel System, Germany). Through the experiment using
“MCRack” software, the data was visualized online. We used
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an eight-channel miniature preamplifier to pre-amplify the raw
signals. Next, a band-pass filtered from 1 to 5 kHz was applied
to them and amplified again with a gain of 1000. Finally, the
recorded data was stored for subsequent offline analyses.

Experimental Paradigm
First, we characterized the selective neuron by presenting
300 ms broad-band noise bursts with 500 ms interval between
them. Next, for each selected recording site, we identified the
characteristic frequency and four frequencies around it (in the
range of 200 Hz–20 kHz). These five desired tone frequencies
(namely f1–f5) were presented in four intensities 40, 50, 60,
and 70 dB SPL in a quasi-random pattern. Each tone was
presented for 50 ms duration with a 300 ms inter-stimulus
interval (Figure 1A).

The main task consists of two control and adapting
sequences. In the control sequence, 20 selected combinations
were uniformly presented (30 trials of each combination). In
the adapting sequence, a similar procedure was conducted but
with different likelihood of stimuli presentation. In this sequence,
the characteristic frequency (f3) in the level of 60 dB SPL (as
the adaptor) was presented for 80% of all sequence likelihood.
Accordingly, each frequency of pure tones was presented with
the same probability of 20% in the control sequence, while that
probability was 80% for the adaptor and 5% for neighboring
frequencies in the adapting sequence.

Data Analysis
All preprocessing and analyses were implemented in MATLAB
2016b (Mathworks, Natick, MA, United States). LFP signals,
were filtered between the ranges of 1–300 Hz. Subsequently,
using 300–3000 Hz band-pass filtered MUAs were extracted.
Next, we employed a threshold method to detect spike times.
The threshold may be set based on the standard deviation (SD)
of the whole trace, namely as twice the SD, as considered in
this study (Pouzat et al., 2002). The resulting spike trains were
smoothed using a 10 ms Hamming window and aligning to the
stimulus onset. For LFPs, after 1–300 Hz filtering, the baseline
correction was applied to each trace (Parto Dezfouli et al., 2014).
Subsequently, the preprocessed data were divided to different
canonical frequency bands using band-pass filters and non-causal
finite impulse response (FIR) filter. We used the time between 0
and 100 ms after the stimulus onset for the main analysis.

SPC Based on the PLV Method
Here, we utilized PLV to quantify SPC (Lachaux et al., 1999).
PLV method calculates the power of dependability or linking of
LFP phases in spike times, by computing the angular summation
between spikes to beta range LFP fluctuations. We used the
following equation:

M =
1
N

∣∣∣∣∣
N∑

n=1

exp
(
jφn
)∣∣∣∣∣ (1)

where N shows the number of spikes, φnis related to the
instantaneous phase (here in the beta-band) at the time of nth

spike which is determined by Hilbert transform, and exp
(
jφn
)
is

the complex exponential function of φn. The amplitude of vector
M (|M|) indicates the SPC power and its angle (6 M) shows
the phases of LFPs in the time of spikes occurrence. A larger
value for vector M indicates that the occurrence of spikes are
more likely to a specific phase of LFP, and the smaller value is
related to distributed spikes across different phases. PLV alters
between 0 and 1.

As noted, the dependency of SPC value to the spike numbers
is considered as one limitation of SPC estimation. For example,
two neurons with various firing rates, it is distinctly possible
that the neuron with a greater firing rate results in a lower SPC.
This problem was targeted to address in previous studies on SPC
(Vinck et al., 2012; Zarei et al., 2018).

In this study, to calculate the SPC by PLV, an equalizing
strategy was used in order to find the spike counts based on a
threshold. Here we reach an optimal compromise between spike
rates and trial numbers using an optimal thresholding scheme
(Zarei et al., 2018). Accordingly, the trials with spike rates greater
than the threshold were equalized to that threshold (by randomly
removing), and the trials whose number of spikes were less the
threshold, were removed.

To overcome this problem, we matched the firing rates in
the control and adapting conditions. Therefore, after finding a
threshold T for the mean firing rates, trials with firing rates
less than the T were removed and spikes in trials with firing
rates greater than the T were reduced to the T value. Especially,
in order to produce normalized LFP signals, the LFP strength
for each neuron was standardized by deducting the average and
dividing the result by the SD.

In order to quantify the adaptation effect, we computed the
difference between the firing-rate/SPC strength of control and
adapting conditions. We measured the adaptation changes using
Adaptation Index (AI) in an analysis similar to SSA index (SI)
that was employed in earlier studies (Ulanovsky et al., 2003,
2004), and is defined as,

AI =
C
(
fi
)
−A

(
fi
)

C
(
fi
)
+A

(
fi
) (2)

where the parameters C(fi) and A(fi) are the response (firing-
rate/SPC) strength related to the frequency fi in the control and
adapting sequences, respectively. The AI denotes the difference
between control and adapting sequences within each stimulus
tone frequency. Therefore, the AI value shows the difference
between control and adapting responses (firing-rate/SPC).

Fitting Model
In many signal processing subjects fitting Gaussian functions to
neural data is very essential, that a Gaussian function is of the
following form:

y =Ae
− (x− µ)2/

2σ2

This function can be mapped with a symmetrical bell-shaped
curve positioned at the place x = µ, with A being the altitude of
the peak and σ utilizing its width.

Frontiers in Systems Neuroscience | www.frontiersin.org 3 August 2020 | Volume 14 | Article 55

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00055 August 3, 2020 Time: 11:21 # 4

Zarei et al. Adaptation Modulates SPC Tuning Curve

FIGURE 1 | Behavioral task and raw data. (A) Timeline of the stimulus presentation in two control and adapting sequences. Left: pure tone stimuli with the duration
of 50 and 300 ms inter-stimulus interval were presented. Right: stimuli were presented in two adapting and control sequences. Within the control sequence, stimuli
were presented with an identical probability. Within the adapting sequence, the same combinations as the control sequence were presented such that the adapter
and rest frequencies were presented with the likelihood of 80 and 20% of the whole sequence, respectively. (B) Raw LFP for a sample recording site. The x-axis
shows the time from stimulus onset, and the y-axis is normalized LFP amplitude. Gray lines show LFP trace of different trials and black line denotes the average
response. The horizontal bar shows the stimulus period. (C) Average raw LFPs of five frequencies of pure tones at 60 dB SPL level for a sample recording site (site
14) during the time following stimulus onset, in control (top panel), and adapting (bottom panel) conditions.

Quantification and Statistical Analyses
Wilcoxon Rank-Sum
We employed the Wilcoxon rank-sum test for statistical
assessment of the firing rate and SPC between the
characteristic frequency and its neighboring frequencies
across neurons (Figures 4A,B).

Standard Error of Mean (SEM) and Standard
Deviation (SD)
Standard error of mean (SEM) and SD were used to convey
variability through different measures, where SEM exemplify
uncertainty in the assessment of the mean and SD illustrates a
scattering of the data from the mean (Figures 3A, 4A,B, 5).

Correlation
In this study, the Pearson’s correlation was used between the
mean firing rate and SPC strength (Figure 4B). Pearson’s
correlation is a statistical measure that quantities linear
correlation between two variables. It assumes a value between

(−1 and +1), where −1 depicts a negative correlation, 0 shows
no correlation, and−1 represents a positive correlation.

RESULTS

We investigated sensory information coding in terms of SPC
tuning curve and then explored how adaptation could alter this
potential SPC-based tuning curve. To this end, we used data of
an auditory task consisting of two usual and adapted conditions.
Figure 1A depicts the timeline and phases of the auditory task
made up of two sequences; control and adapting. Pure tones in
20 arrangements of five frequencies and four intensity levels were
employed in the experiment. In the control sequence, stimuli
were randomly presented with an equal likelihood of 5% for each
combination. The adapting sequence is constituted of the same
stimuli but with different probabilities of stimuli presentation.
In this sequence, an adapter (characteristic frequency, f3, at
60 dB SPL intensity) was presented with 80% probability of the
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FIGURE 2 | Adaptation impacts on the neuronal spiking activity and LFP responses. (A) Raster plot and peristimulus time histogram (PSTH) of the adapter (tone
frequency f3) and its neighboring frequencies at 60 dB SPL intensity for a sample recording site (site 14) in control (black) and adapting (red) sequences.
(B) Comparison of spike density function (SDF) between control (black) and adapting (red) sequences for the five respective frequencies of pure tones at 60 dB SPL
intensity. (C) Time-frequency representation of the LFP power for different stimuli in a sample recording site (site 14). Color bars show the mean normalized LFP
power, as a function of time (x-axis) and LFP frequency (y-axis) in the control (top panels) and adaptation (bottom panels) sequences.

whole sequence and other four frequencies were occupied the
rest 20% of the sequence. During the experiment, neural data
(LFP and MUA) were collected from 96 sites over the primary
auditory cortex (A1). Raw LFPs of a sample recording site and
the average of these raw LFPs for each of the five tone frequencies
are shown in Figures 1B,C, respectively.

The raster plots and peristimulus time histograms of the
five desired tone frequencies related to a sample recording site
are shown for the control and adapting conditions, separately
(Figure 2A). Consistent with previous findings (Ulanovsky et al.,
2003; Nelken and Ulanovsky, 2007), spiking activity shows a
suppression due to the adapting effect (Figure 2A). To have a
better estimation of neural responses, we convolved a Gaussian
Kernel (with σ = 10) with the spikes (Hill et al., 2015). This
resulted in a continuous probability density function as illustrated
in Figure 2B. Figure 2C shows the time-frequency representation
of the adapter (f3) and the neighboring frequencies (f1, f2,
f4, f5), for site 14. Consistent with Figure 2A, the adaptation
caused suppression in the LFP power of the adapter and the
neighboring frequencies. This adaptation effect is shown to be

stronger in the characteristic frequency (f3), as compared to the
neighboring frequencies.

Sensory Representation Based on
Spike-LFP Coupling
It has been shown that the neuronal spiking activity and cortical
LFP are attenuated due to adaptation (Taaseh et al., 2011; Parto
Dezfouli and Daliri, 2015). Recently, we showed that adaptation
decreases the spike to LFP phase coupling within beta range
but not in other frequency bands (Parto Dezfouli et al., 2019).
To this end, we divided LFP to six canonical frequency bands,
namely delta, theta, alpha, beta, low and high gamma. Results
indicated a significant difference in the SPC values between
control and adaptation conditions within the beta range, but
not in other bands (Parto Dezfouli et al., 2019). Therefore, here,
we focused our analyses within the beta range (13–30 Hz).
Based on our previous findings, the primary auditory system
may further use this SPC within the beta range to encode
sensory information. We considered the phase with dominante
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FIGURE 3 | The preferred LFP phase. (A) The LFP phase histograms of different stimuli (f1–f5) within the beta range (13–30 Hz), show approximately identical
locking phase mean of ∼140◦ for five desired tone frequencies. (B) STA calculated across all recording sites and for each five desired tone frequencies separately.

occurrence of spikes as the preferred, as the preferred phase
(α) and the phase with 180◦ distance from it (180−α) as the
anti-preferred phase. The preferred phase was identified by
calculating the histogram of LFP phases in spike times. The
LFP phase histograms (in the beta range) for different stimuli,
namely conditions of five desired tone frequencies (f1–f5) were
shown in Figure 3A. As described, the LFP phase distributions
at different stimulus frequencies differ significantly from the
uniform distribution. The different locking phases for the five
desired tone frequencies (f1–f5) amount to almost identical
locking phase means of about 140◦, with no significant statistical
difference (p = 0.3, t-test). This shows that auditory neurons
tend to fire more likely in a specific phase within the beta
range (13–30 Hz) of LFPs. This effect is observed in both
adapting or control conditions, and independent of different
stimulus frequencies.

We also estimated the preferred LFP phase using the spike-
triggered average (STA) method. For this purpose, after detecting
the spike times, the LFPs within a window (±20 ms) around
spike times were averaged. Figure 3B shows that the coupling
strength, defined as the difference between the peak and trough
of the STA curve, is different in the certain phase (phase of the
coupling) for various stimuli (f1, f5). In other words, the strength
of coupling in the primary auditory cortex neurons encodes
sensory information. Moreover, Figure 3B indicates the falling
phase (∼160◦) as the preferred phase in which spikes are coupled
to (consistent with Figure 3A). In the following, we examine this
discrimination of sensory information for different stimuli in the
format of a tuning curve (TC).

SPC Follows an Inverted Bell-Shaped
Tuning Curve
To investigate if the coupling between spikes and LFP phase
encodes sensory information in the rat primary auditory cortex,
we measured the coupling between spikes and the phase of

beta-frequency oscillations of LFP as a function of different
stimulus frequencies.

Figure 4A shows that the locking of spikes to the LFP
phase follows a tuning curve based on the different frequencies
of the presented stimulus. Statistical comparison between the
characteristic frequency and its lower and higher neighboring
frequencies (LF and HF, respectively) shows a significant
difference between them (Figure 4B, Wilcoxon rank-sum test,
p < 0.05), averaged across neurons (n = 96) within the 13–
30 Hz band. The SPC strength follows a shape of an inverted bell
tuning curve relative to the different tone stimulus frequencies
(using fitting model Piecewise linear interpolation). This tuning
curve is inverted compared to the tuning based on the spike rate.
That is, the least SPC occurs for the characteristic frequency as
determined based on the spike rate, while the largest spike-LFP
phase coupling is induced by the neighboring frequencies.

To evaluate the relation of SPC (based on LFP phase
at the beta range) and spike rate in the tuning curve, we
computed the correlation between mean spike rate and mean
SPC for characteristic frequency and neighboring frequencies in
all individual neurons. Results show no significant correlation
between the mean firing rate and SPC strength (Figure 4C;
Pearson correlation, r = 0.07, p = 0.52). It shows that SPC is
mechanistically independent of the spike rate.

Adaptation Modulates SPC Tuning Curve
As expected, Figure 5 shows that the spike rate tuning curve
(SR-TC) is attenuated in the adapting condition in comparison
to the control condition (Taaseh et al., 2011; Parto Dezfouli and
Daliri, 2015). Furthermore, as mentioned in Figure 4A, SPC
strength relative to different stimuli follows a tuning curve (SPC-
TC) across neurons. Importantly, adaptation modulates this SPC
tuning curve across sites, in both control (blue dashed line),
and adapting (red dashed-line) sequences (Figure 5). The SPC
strength was decreased in the adapting sequence compared to the
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FIGURE 4 | Spike-phase coupling (SPC) tuning curve. (A) The firing rate and SPC strength relative to different stimulus frequencies averaged for the population of
neurons. The x-axis shows different frequencies and the y-axes represent the normalized spike rate (red solid curve) and SPC strength (blue dashed curve).
Resembling the firing rate with a bell-shaped tuning curve, the SPC strength relative to different stimuli follows an inverted bell-shaped tuning curve. Shaded areas
show SEM. (B) Statistical comparison of the firing rate (left panel) and SPC (right panel) between the characteristic frequency (CF) and its neighboring frequencies (LF,
HF). Stars show a significant difference (Wilcoxon rank-sum test, p < 0.05). LF is F1 and F2 responses, and HF is related to F4 and F5 responses. (C) The correlation
between mean firing rate and mean SPC across different recording neurons. No significant correlation between them was observed (Pearson’s correlation, p > 0.05).

FIGURE 5 | Adaptation modulates spike-phase coupling (SPC) tuning curve. (A) The firing rate and SPC strength relative to different stimulus frequencies are
averaged for the population of neurons. The x-axis shows different frequencies and y-axes represent the normalized spike rate (solid-curve) and SPC strength
(dashed-curve). The spike rate tuning curve and the strength of SPC tuning curve were suppressed in the adapting condition (blue) compared to the control
condition (red). (B) Statistical comparison of adaptation effect. Adaptation Index (y-axis) that was achieved from the firing rate, and SPC analyses. The suppression
due to adaption is significant in the characteristic frequency (CF) and its neighboring frequencies (NF; f1, f2, f4, f5) (t-test; *p < 0.05, **p < 0.01, ***p < 0.001). This
effect is observed both based on firing rate and SPC. (C) 1 area under tuning curve. The red and blue bars show the difference between the area under solid and
dashed curves in firing rate and SPC tuning curves, respectively.

control sequence. This index quantifies the difference between
neural responses of the two desired sequences (control and
adapting). Due to the nonsymmetrical tuning curve and a non-
monotonic trend of the neighboring responses, we computed AI
for responses (firing-rate/SPC) of two conditions; characteristic

frequency (CF) and its neighboring frequencies (NF; f1, f2, f4, f5)
(Figure 5B). Also, the 1 area under tuning curve is performed
using the difference between the area under control (solid) and
adapting (dashed) curves in firing rate and SPC tuning curves,
respectively (Figure 5C). As a result, the adaptation caused a

Frontiers in Systems Neuroscience | www.frontiersin.org 7 August 2020 | Volume 14 | Article 55

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/systems-neuroscience#articles


fnsys-14-00055 August 3, 2020 Time: 11:21 # 8

Zarei et al. Adaptation Modulates SPC Tuning Curve

suppression in the spiking activity and SPC of the characteristic
frequency and the neighboring frequencies. In other words,
adaptation shifts down both tuning curves.

Notable, the range of AI values change between −1 and
+1. The positive value indicates a lower response strength for
adapting compared to the control condition.

DISCUSSION

In this study, we found a tuning link between the sensory
information and the coupling of spike times to the LFP
phase. Furthermore, we revealed that the adaptation mechanism
modulates this SPC tuning curve.

Stimulus-specific adaptation understood as an interesting
phenomenon in the neural system, including the auditory cortical
neurons, (Ulanovsky et al., 2003, 2004; Ayala and Malmierca,
2012), here on denoted to as “Adaptation.” SSA affects a major
decrease in neural responses to frequent stimuli. Adaptation has
a tendency to conceal neuronal activities in the sensory systems,
leading to a system that is not distracted in exposure to frequent
stimuli (Dean et al., 2005; Adibi et al., 2013) from the world
such as light, smell, and sound. To decrease attention to frequent
stimuli, the adaptation mechanism affects certain variations in
neural properties.

As aforementioned, SPC indicates how spikes are harmonized
in the LFPs for various functions of the brain such as
attention, adaptation, perception, and maintaining information.
This relationship has pointed to various brain areas, such
as the visual cortex, prefrontal cortex, and the hippocampus
(Siegel et al., 2009; Cutsuridis and Hasselmo, 2011). It is
known that the sensory information, namely various stimuli
tuning curves, represent by LFPs or spike activities (Snowden
et al., 1992; Liu and Newsome, 2006; Ray and Maunsell,
2010). Importantly, relating these two signals, namely spike-LFP,
provides a comprehensive explanation regarding neural activities
(Quiroga and Panzeri, 2009; Perge et al., 2014). Indeed, SPC is a
useful measure to decode the sensory information and behaviors
in low and high-frequency bands as well as parietal and frontal
cortex for alpha and beta bands (Mehring et al., 2003; Mollazadeh
et al., 2009). Furthermore, LFP phase-locking was observed in
the secondary auditory cortex during remote memory recall
(Cambiaghi et al., 2016), where phase-locking was associated with
a specific behavioral outcome.

Moreover, in line with sensory information findings, Uhlhaas
et al. (2009) found that the SFC is boosted for preferred stimulus
neurons in gamma band while it is reduced for the non-
preferred stimulus. Belitski et al. (2010) documented the spike
LFP relation may convey sensory properties in the low-frequency
range and Kevan et al. revealed that the spike LFP behavior
may be distinguished in reaction to various stimulus conditions
(Martin and Schröder, 2016). A number of SPC quantities are
studied, where the major synchronization quantities are the
SCMS, pairwise phase consistency, SFC, and PLV (Lachaux
et al., 1999; Grasse and Moxon, 2010; Vinck et al., 2010; Li
et al., 2016). PLV technique calculates the amplitude of the
average variation between spikes and LFP phases as the power

of coupling. To overcome the limitation of the PLV method (bias
on the number of spikes), researches that utilize this technique
usually match the firing at a specific spike number using the
optimal thresholding method.

The main purposes of this study were to (i) evaluate
the potential of the tone frequency tuning curve (sensory
information) based on SPC, and (ii) examine the effect of
adaptation on this tuning curve. In a recent study, we showed
that SSA reduces the SPC strength significantly in the beta range
(Parto Dezfouli et al., 2019). Resembling previous procedure, in
this work, we analyzed the power of SPC in terms of tuning
curve for sensory information coding. Our results indicate that
the SPC follows a shape of an inverted bell curve relative to
the different stimulus frequencies (using fitting model Gaussian
function), averaged across neurons (n = 96) within the 13–30 Hz
band (Figure 4A). Importantly, to evaluate the relation of SPC
(based on the LFP phase at the beta range) and establish that
it is mechanistically independent of firing rate, the correlation
computed between mean spike rate and mean SPC within
the characteristic frequency and neighboring frequencies for all
individual neurons. Our results show no considerable correlation
between the SPC strength and mean spike rate (Figure 4B).

Previous studies revealed different tuning curves such as
V shape, O shape, and bimodal peak, for the neurons in
the primary auditory cortex (Sutter, 2000). Therefore, the
shape of the neurons’ tuning curves is not necessarily bell-
shaped or symmetrical. Therefore, instead of investigating the
adaptation effect on each of the frequencies, we performed the
adaptation on the whole frequencies. Namely, we computed for
responses (firing-rate/SPC) of characteristic frequency (CF) and
neighboring frequencies (NF; f1, f2, f4, f5) (Figure 5B). Also,
the 1 area under tuning curve is performed using the difference
between the area under of the solid and dashed curves in firing
rate and SPC tuning curves, respectively (in terms of area under
tuning curve, Figure 5C). As a result, the adaptation leads to a
reduction in the spiking activity and SPC of the characteristic
frequency and neighboring frequencies. Moreover, this selective
function (SPC tuning) is inverted compared to the spike rate
tuning. Our results illustrate that additional spikes evoked
by the characteristic frequency, (compared to the neighboring
frequencies) occur more frequently at the preferred compared
to the anti-preferred phase of LFP. Furthermore, spikes evoked
by the characteristic frequency depict a probability distribution
that is less non-uniform than of the spikes induced by the
neighboring frequencies. This may cause such stronger neural
discrimination at the preferred compared to the anti-preferred
phase of LFP, namely SPC tuning curve is inverted compared to
the tuning based on the spike rate. Furthermore, we found that
the adaptation modulates SPC tuning curve of the adapter and
the neighboring frequencies and shift it toward lower values.

CONCLUSION

This study indicates three main findings. First, the strength
of SPC is selective for sensory information in the primary
auditory cortex. Second, the locking of spikes to the LFP phase
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follows an inverted bell-shaped tuning curve relative to the
different stimulus frequencies. Third, the adaptation modulates
SPC tuning curve of the adapter and its neighboring frequencies.
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