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Abstract

Background: Understanding the dynamics of biological processes can substantially be supported by computational
models in the form of nonlinear ordinary differential equations (ODE). Typically, this model class contains many
unknown parameters, which are estimated from inadequate and noisy data. Depending on the ODE structure,
predictions based on unmeasured states and associated parameters are highly uncertain, even undetermined. For
given data, profile likelihood analysis has been proven to be one of the most practically relevant approaches for
analyzing the identifiability of an ODE structure, and thus model predictions. In case of highly uncertain or
non-identifiable parameters, rational experimental design based on various approaches has shown to significantly
reduce parameter uncertainties with minimal amount of effort.

Results: In this work we illustrate how to use profile likelihood samples for quantifying the individual contribution of
parameter uncertainty to prediction uncertainty. For the uncertainty quantification we introduce the profile likelihood
sensitivity (PLS) index. Additionally, for the case of several uncertain parameters, we introduce the PLS entropy to
quantify individual contributions to the overall prediction uncertainty. We show how to use these two criteria as an
experimental design objective for selecting new, informative readouts in combination with intervention site
identification. The characteristics of the proposed multi-criterion objective are illustrated with an in silico example. We
further illustrate how an existing practically non-identifiable model for the chlorophyll fluorescence induction in a
photosynthetic organism, D. salina, can be rendered identifiable by additional experiments with new readouts.

Conclusions: Having data and profile likelihood samples at hand, the here proposed uncertainty quantification
based on prediction samples from the profile likelihood provides a simple way for determining individual
contributions of parameter uncertainties to uncertainties in model predictions. The uncertainty quantification of
specific model predictions allows identifying regions, where model predictions have to be considered with care. Such
uncertain regions can be used for a rational experimental design to render initially highly uncertain model predictions
into certainty. Finally, our uncertainty quantification directly accounts for parameter interdependencies and
parameter sensitivities of the specific prediction.
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Background
Advances in technology and biotechnology in particu-
lar allow us to look inside biological cells and observe
dynamic processes occurring at the molecular level. Still,
many of these processes can only partially be observed in
experiments hampering the experimental exploration of
interaction mechanisms. Here, a computational abstrac-
tion of the dynamic biochemical process in the form
of an ordinary differential equation system (ODE) with
unknown parameters can provide answers to the dynam-
ics of unmeasured states that in turn give information
on interaction mechanisms. Furthermore, model-based
predictions and optimizations are possible. Such a model-
based approach relies on the adequacy of the model, i.e.
properly identified structure and parameter values. Often,
the amount and quality of the experimental data is insuf-
ficient for complete model identification resulting into
badly constrained or even non-identiafiable parameters,
and thus uncertain dynamic model predictions. Although
model predictions on observed data can be extremely
certain and useful even in the presence of unidentifiable
parameters (e.g. [1,2]), model predictions on unobserved
(internal) model states that are related to these unidenti-
fiable parameters can be highly uncertain. If model based
predictions on internal states are of interest, experimental
design can be used to rationally design new experiments
with optimized content of information with respect to
a specific model prediction. Several excellent publica-
tions have appeared over the last years, which focus on
identification of computational models for biochemical
systems by applying a variety of methodological optimal
experimental design approaches, e.g. [3-8].
Profile likelihood estimation has been proven to be

a valuable tool for parameter identifiability analysis [9].
Parameter identifiability analysis investigates whether a
model parameter can be uniquely determined for the
given data and input-output setting. For non-identifiable
parameters, there exists an uncountable set of parame-
ters, which yield the same model input-output behavior.
As a result, predictions on internal states - states that
are not directly observed in experiments - become highly
uncertain [9]. An identifiability analysis can hint at a nec-
essary re-design of an experimental input-output setup, a
model re-parameterization or reduction to resolve non-
identifiabilities [4].
In the following we briefly describe ODE modeling

of biochemical processes, parameter estimation in ODE
models and parameter identifiability analysis based on the
profile likelihood. We then show how to use profile like-
lihood samples for quantifying individual contributions
of parameter uncertainties to uncertainties in the model
predictions by introducing the profile likelihood sensi-
tivity index and profile likelihood sensitivity entropy. We
further show, how to use this uncertainty quantification

for experimental design by formulating the respective
multi-criterion objective. The uncertainty quantification
in combination with experimental design is illustrated
with (i) an intuitive in silico example and (ii) a dynamic
chlorophyll fluorescence induction model of the photo-
synthetic organism D. salina.

Methods
General model formulation
The dynamic evolution of the system’s states can be
described by an ODE system in the form

ẋ(t) = f (x(t, θx),u(t), θx)
y(t) = g

(
x(t, θx), θy

) + ε,
(1)

where x(t, θx) denotes the states of the system, u(t) indi-
cates an external input function and θx a vector of dynamic
system parameters. Experimental readouts y(t) are related
to the model via the readout function g, which includes
scaling and offset parameters θy and an additive white
measurement noise model ε ∝ N

(
0, σ 2

exp

)
.

The temporal evolution of the states depends on the
initial condition x(t = 0), sufficiently smooth right
hand side function f , external stimulus u(t) and kinetic
system parameters θx . Kinetic and readout parameters
are combined into the parameter vector θ , including all
parameters required to completely characterize the model

θ = [
θx, θy

]T . (2)

Parameter estimation
Parameter estimates θ̂ of unknown values θ can be
obtained by minimizing the residual sum of squares

χ2(θ) =
n∑

i=1

(
yexp(ti) − ysim(ti)

)2
/σ 2

exp(ti). (3)

Here, yexp(ti) denotes measured data at time points ti
(i = 1 . . . n, with n number of time points) and ysim(ti)
indicates the model output for time points ti. For the
assumed measurement noise model and likelihood L we
have χ2 ∝ −2 log L and θ̂ corresponds to the maximum
likelihood estimate (MLE). In the following we thus use χ2

as a placeholder for the likelihood.

Profile likelihood
The profile likelihood of a parameter represents a con-
strained projection of the likelihood in the typically high
dimensional parameter space. Following [9], the profile
likelihood of a parameter θi is given by

χ2
PL(θi) = min

θj �=i
χ2(θ), (4)

which represents a function in θi of least increase in the
likelihood. The least increase is achieved by adjusting
θj, j = 1 . . . nθ\i accordingly.
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Further, profile likelihood-based confidence regions CR
can be derived via

CR =
{
θ |χ2

PL(θ) − χ2
PL(θ̂) < δα

}
, (5)

with δα being the α quantile of the χ2 distribution with
df = 1 (pointwise) or df = nθ (simultaneous) degrees
of freedom [9]. A confidence interval of parameter θi is
simply given by the borders of CR.

Uncertainty quantification based on profile likelihood
sensitivity indices
There exist many advanced methods to analyze and quan-
tify uncertainty propagation in ODE models. In bio-
chemical systems modeling, efficient sampling strategies,
including MCMC, profile likelihood and sigma points
have been successfully applied to uncertainty analysis in
real systems [2,10,11]. These methodological approaches
are - in contrast to approaches based on classical Fisher
Information (FI) - especially effective in cases of highly
nonlinear models, as the nonlinearity is more adequately
accounted for. This also holds for the model-based exper-
imental design: Our presented approach is a sample based
approach, whereas FI relies on curvature information of
the likelihood. As has been shown by several authors,
including [9,12], FI may not be well suited for non-
linear models. In contrast, the profile likelihood approach
accounts for a possible non-linear character of the model.
Further, FI-based approaches operate on the covariance
matrix in the parameter space and can be given a geo-
metrical interpretation: FI criteria measure the shape and
orientation of an nθ dimensional ellipsoid (to be more
specific, the inverse of FI is used). By optimizing such
FI-based criteria (e.g. A-, D-, E-optimality), one tries to
reduce and distribute uncertainties and their correlations
in the parameter space. In the case of non-linear mod-
els, this does not guarantee that model-based predictions
other than parameter values become more constrained.
Our approach (PLS index and entropy) differs in this
that it operates in the prediction space (which can also
include predictions on parameter values). In this way, our
approach is more general. Additionally, profile likelihood
samples are readily available once a practically identifia-
bility analysis based on the profile likelihoods (one of the
practically most relevant approaches in systems biology)
has been performed by the modeler.
In the following we build on results of [4,9], who already

proposed to use the set of parameters along the profile
likelihood for analyzing the impact of parameter uncer-
tainties on model states or more generally model pre-
dictions p. Notably, unidentifiable or poorly constrained
parameters can induce large variations in unmeasured
model states and corresponding predictions. We thus
define a measure of individual uncertainty impact for a

parameter θi on a dynamic model prediction p(tk) ∈ R

over a finite time horizon as

si(tk) =
(
max

({
pi(tk)

}) − min
({
pi(tk)

})
〈p̂(t)〉t

)2

, (6)

which we refer to as the profile likelihood sensitivity index
(PLS index) of parameter θi for prediction p at time
tk . Note that expressions max/min({·}) define the maxi-
mum and minimum (=extremes) over the set {·} ⊂ Pi,
which contains model predictions pi(tk) sampled along
the profile likelihood of parameter θi ∈ CRi. In the case
where pi(tk) ≡ x(tk , θi) and finite confidence interval of
parameter θi, max/min({·}) approximate the confidence
band around the MLE state trajectory xMLE(t). This also
holds for an arbitrary prediction p. If model parameters
are unidentifiable, their respective confidence interval is
unbounded. In this case, we suggest sampling a reason-
able large range along the profile likelihood (say 3 orders of
magnitudes) around theMLE of the unidentifiable param-
eters. In this way, the impact of unidentifiable parame-
ters on so far unobserved predictions pi(tk) is revealed
via si(tk). The denominator 〈p̂(t)〉t in Eq. (6) represents
the time average of the prediction at the MLE of the
parameters.
Having several uncertain model parameters, an overall

uncertainty quantification for a model prediction is given
by

stot =
nθ∑
i=1

nt∑
k=1

si(tk). (7)

To measure individual parameter uncertainty contribu-
tions to stot we suggest to use

Jtot =
nt∑
k=1

Jk , (8)

which is based on Shannon’s entropy given by

Jk =
nθ∑
i=1

−s̃i(tk) log (s̃i(tk)) (9)

with

s̃i(t) = si(tk)∑nθ

i=1 si(tk)
. (10)

Shannon’s entropy measures how homogenous PLS
indices si(tk) contribute to stot.

Experimental design to reduce prediction uncertainties
PLS indices can be used to identify highly uncertain pre-
dictions and thus provide guidance in designing new,
informative experiments: An optimal experimental design
(OED) that maximizing the PLS index for an individ-
ual parameter corresponds to an experimental region,
where the uncertainty of this parameter induces maximal
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uncertainty in the model prediction. Therefore, if one is
interested in reducing the uncertainty of a specific predic-
tion p(tk) by an additional experiment, one would simply
select an experimental design that maximizes the PLS
index of p(tk). Note however, that if one wants to reduce
the overall uncertainty of a model prediction as a result
of several uncertain model parameters it is not sufficient
to identify an experimental region that maximizes Eq. (7).
Similar to A-, D- or E-optimality based on FI, one has to
trade off maximal stot andmore or less equal contributions
to stot by all uncertain parameters. Here, the measure in
Eq. (8) should bemaximized aiming at equal contributions
of si(tk) and corresponding parameter uncertainties. Such
a design should produce homogenous parameter informa-
tion in the data with respect to the prediction goal of the
model.
An often targeted prediction goal is the analysis of

unmeasured model states, thus pij(tk) ≡ xj(tk , θi) with
j ∈ {unmeasured states}. Two design scenarios can be dis-
tinguished: if one is to choose a set of new, additional read-
outs from the set {unmeasured states}, one would select
states xj that maximize the objective O = [

sj,tot Jj,tot
]T. If

one cannot select a new readout, other design variables
as for instant intervention sites (e.g. inhibition of states
or associated reactions), stimulus profiles or selection of
measurement time points can also be used to optimize
the objective O for a given readout setup. Both design
scenariosmay also be combined. In the Results and discus-
sion section we illustrate how to select additional readouts
and/or inhibition sites.

Cultivation of Dunaliella salina
In this part the experimental procedures are described
that have been used to obtain the data for the pho-
tosynthetic application. The Dunaliella salina strain
CCAP19/18 [13] was used, which has been ordered from
CCAP (www.ccap.ac.uk). Bacteria in the medium were
killed by 100μM chloramphenicol; other contaminating
organisms were not present (PDA tests for fungal con-
tamination; light microscopy at 1000x with oil immersion,
Zeiss Axio Image). Medium composition was used as
described in [14], but modified by addition of 40 mM
Hepes pH 7.5. 1-3 ml was inoculated in 100 ml ster-
ile medium. Cultures were grown in a shaking incubator
(Infors HT) at 100 rpm at 16/8 h light/dark cycle at
26°C and 3.5% CO2. FL tubes Gro-Lux 15 W Fluores-
cent Lamps Sylvania type F15W/GRO/ were used as light
source; intensity was 30-60 μEm−2s−1. For chlorophyll
fluorescence (Chl F) measurements 7-14 d old cultures
were used.

Chlorophyll fluorescence measurements
The DUAL-PAM-100 (Walz, Effeltrich, Germany) using
the DUAL-E emitter (actinic light = 620 nm; measuring

light = 460 nm) and DUAL-DB detector was used for Chl
F measurements. A cell density of 107 ml−1 was taken
(adjusted with help of cell counting with the Cellome-
ter Auto T4 Plus, PEQLAB). Measuring light frequency
and intensity were adjusted to 500Hz, and 3μEm−2s−1,
respectively. Before performing fluorescence measure-
ments, samples were kept in the dark for 10min. Temper-
ature during pre-incubation and measurement was kept
at 23 ± 0.5°C, and cell suspensions were stirred to pre-
vent cell sedimentation. A light pulse of 166μEm−2s−1

and duration of 1 s was applied to the cell suspension; 6
replicate measurements were performed at a sampling of
�t = 10−4 s. A light intensity of 166 μE m−2s−1 was
selected. This intensity produced the typical chlorophyll
fluorescence induction curve.

Results and discussion
In silico example
To illustrate PLS index- and entropy-based experimen-
tal design, we here consider a simple in silico example.
Figure 1(a) illustrates the interaction network of 4 species
A, B, C and D, from which we derived an ODE system
using mass action kinetics (s. Supplementary). An ini-
tial data set consisting of time-course data of state D is
given, so are the parameter estimates of the 6 kinetic
parameters, which are assumed to be unknown. All initial
conditions are set to zero and assumed to be known. In
Figure 1(b) profile likelihood are calculated on the basis
of this initial data set. The profile likelihood reveals that
all parameters are non-identifiable. Only the upper bound
of parameter d is constrained, implying that the maxi-
mal degradation rate of D is limited. This result could
be expected from the model structure. Two parallel path-
ways that activate the readout state D in combination with
an additional sink provide too much flexibility, and thus
arbitrarily sets of parameters that still allow the readout
trajectory of state D to fit the measured data. Therefore,
predictions on unmeasured states are highly uncertain as
is illustrated by the extreme trajectories of each parameter
derived from the simulated samples along the profile like-
lihood (Figure 1(c)). The corresponding PLS indices are
shown in Figure 1(d). In the next step we illustrate, how to
select new readouts in order to reduce the uncertainty in
the model state predictions.

Optimal readout selection
In Figure 1(d), right side, the criterion space shows si,tot
and Ji,tot based on the profile likelihood samples derived
for the initial data set (time-course data for state D only).
It seems that the uncertainty in the prediction of state B
is largest (highest PLS index), however induced by fewer
parameters compared to A or C, which have larger PLS
entropies compared to B. Since D has been already used
for parameter estimation, it is not as much uncertain,

www.ccap.ac.uk
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Figure 1 In silico example for profile likelihood sensitivity based experimental design. (a) Interaction structure of the in silicomodel.
(b) Profile likelihood for the 6 model parameters given in silico time-course data of y = D. The blue cross indicates the MLE of θi . The 95% point-wise
significance is at χ2

crit = 3.68. (c) Simulated extreme state trajectories along the profile likelihood for each parameter. (d) On the left side the
temporal evolution of the PLS index sij(t) is shown for each parameter (black) with j = {A, B, C,D}. The corresponding criterion space derived from
sij(t) is shown on the right.



Flassig et al. BMC Bioinformatics  (2015) 16:13 Page 6 of 13

indicated by the smallest PLS index. In Figure 2(a) the pro-
file likelihoods are recalculated for an additional readout,
i.e. y = [D, A]T or [D, B]T or [D, C]T. The corresponding
uncertainty in the state predictions are illustrated by the
extremes of the profile likelihood samples in Figure 2(b).
Qualitatively, overall uncertainties are reduced, whereas
data from [D, A]T allow constraining upper bounds. In
line with the derived PLS indices and entropies, data from
[D, B]T, [D, C]T are more informative, since also lower
bounds of k11 or k21 can be given. Theses two parameters
govern the activation of B or C, respectively. Regarding
uncertainties in unmeasured state predictions, readout
setups y = [D, A]T or y = [D, C]T shift uncertainties
mostly to state B, whereas readout setup y = [D, B]T dis-
tributes the remaining uncertainty onto states A and C.
This observation motivates an anticipatory design strat-
egy (e.g. [15]) to not only identify the most uncertain
state prediction but to identify an unmeasured state as
a new readout that reduces the overall uncertainties in
all unmeasured states: perform in silico experiments for
potential new readouts and evaluate the PLS index. Then,
select the readout which reduces the PLS index over the
set of unmeasured states.

For any readout setup, none of the parameters are iden-
tifiable, although some upper lower parameter bounds
can be derived, see Table 1. Based on the profile like-
lihood samples of the readout setups in Figure 2(a),(b)
the criterion space was computed (Figure 2(c)), for iden-
tifying an additional (third) readout. Then again, profile
likelihoods have been calculated for the readout setups
[D, A B]T, [D, A C]T, [D, B C]T and also [D A, B, C, D]T.
The resulting identifiabilities and confidence bounds are
given in Table 2. In line what is predicted by the cri-
terion space in Figure 2(c), B is an important readout
if not already measured: Measuring any of the two 3-
state combinations [D, A B]T, [D, B C]T where B is always
included is as informative as a 4 state readout setup for the
given input design, sampling rate and noise setting. Finally
note that even though all states have been measured,
data are not sufficient for a complete identification of
the model.

Optimal readout and inhibition site selection
Here we investigate the impact of inhibiting a certain reac-
tion. We model the inhibition of a certain reaction by
reducing the corresponding parameter value by the factor
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Figure 2 Rational readout selection via profile likelihood sensitivity indices. (a) Profile likelihoods for indicated readout setups. (b) PLS
entropy vs. PLS index derived from the extreme state trajectories provide the basis for a new readout selection.
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Table 1 Profile likelihood based identifiability analysis and confidence intervals of the in silicomodel example in log-space

Parameter θ̂i
y = D y = [D,A]T y = [D, B]T y = [D, C]T

Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI

log10 k11 0.043 non-identifiable −∞ ∞ non-identifiable −∞ 0.65 non-identifiable −1.08 ∞ non-identifiable −∞ ∞
log10 k12 0.301 non-identifiable −∞ ∞ non-identifiable −∞ ∞ non-identifiable −∞ 1.07 non-identifiable −∞ ∞
log10 k21 0.398 non-identifiable −∞ ∞ non-identifiable −∞ 0.65 non-identifiable −∞ ∞ non-identifiable −0.03 ∞
log10 k22 0.004 non-identifiable −∞ ∞ non-identifiable −∞ ∞ non-identifiable −∞ ∞ non-identifiable −∞ 0.45

log10 k23 −0.301 non-identifiable −∞ ∞ non-identifiable −∞ ∞ non-identifiable −∞ ∞ non-identifiable −∞ 0.33

log10 d 0.004 non-identifiable −∞ 0.42 non-identifiable −∞ 0.42 non-identifiable −∞ 0.42 non-identifiable −∞ 0.4

This table illustrates the potential impact of one additional readout to the initial setup y = D.
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Table 2 Profile likelihood based identifiability analysis and confidence intervals of the in silicomodel example in log-space

Parameter θ̂i
y = [D, A B]T y = [D, A C]T y = [D, B C]T y = [D, A B C]T

Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI

log10 k11 0.043 identifiable −0.72 0.44 non-identifiable −∞ 0.41 identifiable −0.86 1.17 identifiable −0.70 0.36

log10 k12 0.301 non-identifiable −∞ 0.86 non-identifiable −∞ ∞ non-identifiable −∞ 0.82 non-identifiable −∞ 0.81

log10 k21 0.398 identifiable −0.16 0.60 identifiable 0.07 0.63 identifiable −0.01 1.45 identifiable 0.12 0.59

log10 k22 0.004 non-identifiable −∞ 3 non-identifiable −∞ 0.44 non-identifiable −∞ 0.39 non-identifiable −∞ 0.39

log10 k23 −0.301 non-identifiable −∞ ∞ non-identifiable −∞ 0.31 non-identifiable −∞ 0.29 non-identifiable −∞ 0.23

log10 d 0.004 non-identifiable −∞ 0.42 non-identifiable −∞ 0.40 non-identifiable −∞ 0.39 non-identifiable −∞ 0.37

This table illustrates the potential impact of additional readouts to the initial setup y = D.
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of 10−4, which may seem arbitrary, but is used to illus-
trate the concept of inhibition selection. For a real life
application one would have to consider the efficiency of
a specific inhibitor. Starting from initial measurements
in [A,B,C,D]T, we now wish to identify one inhibition
that maximizes parameter identifiability. In Figure 3(a)
the criterion space is shown for all 6 inhibition scenarios.
Inhibition of the reaction associated to parameter k21 in
combination with measurement of D (design strategy I)
or inhibition of k22 in combination with measuring C
(design strategy III) seem good experimental designs. A

suboptimal example is design strategy II, i.e. measuring
C and inhibiting k21, which is indicated by the small PLS
index. In Figure 3(b) we show the corresponding profile
likelihoods. Consistent with the prediction in the criterion
space strategies I and III improve the identifiability of the
parameters (Table 3). Still, not all parameters can be iden-
tified. The benefit of the entropy measure can also be seen
(Figure 3(b) and Table 3): design strategy III is based on
larger PLS than strategy I for the specific readouts, how-
ever, contributions of individual PLSs are larger for strat-
egy I, which results into better information distribution

Figure 3 Experimental design: inhibition and readout selection for best parameter estimation. (a) Criterion space for all 6 possible single
inhibition scenarios. An inhibition of a specific reaction is simulated by reducing the corresponding kinetic parameters by a factor of 10−4. (b) Profile
likelihoods for different readout and inhibition scenarios (indicated by the gray arrows).
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Table 3 Profile likelihood based identifiability analysis and confidence intervals of the in silicomodel example in
log-space

Parameter θ̂i
y = [

A B C D, Ck22
]T y = [

A B C D, Ck21
]T y = [

A B C D, Dk21
]T

Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI

log10 k11 0.043 identifiable −0.62 0.29 identifiable −0.70 0.36 identifiable −0.25 0.23

log10 k12 0.301 non-identifiable −∞ 0.73 non-identifiable −∞ 0.81 identifiable −0.02 0.63

log10 k21 0.398 identifiable 0.24 0.55 identifiable 0.12 0.59 identifiable 0.23 0.54

log10 k22 0.004 identifiable −0.23 0.21 non-identifiable −∞ 0.39 identifiable −0.33 0.24

log10 k23 −0.301 non-identifiable −∞ 0.02 non-identifiable −∞ 0.23 non-identifiable −∞ 0.17

log10 d 0.004 non-identifiable −∞ 0.28 non-identifiable −∞ 0.37 non-identifiable −∞ 0.32

This table illustrates the effect of an additional inhibition and readout selection. The additional readout and inhibition is indicated by the 5th letter and subscripted
parameter, which corresponds to the inhibited reaction.

along the parameters, as is indicated by the shapes of the
profile likelihood but also by the ranges of the confidence
intervals and number of identifiable parameters.

Photosynthetic organism D. salina
Model description
The dynamic process of chlorophyll fluorescence induc-
tion of photosynthesis in green plants was chosen as a real
life application. The timescale of this dynamic process is
in the order of milli seconds. The model derived in [16]
was used to describe the dynamics of the chlorophyll flu-
orescence induction. It consists of four reversible and two
irreversible electrochemical reactions. A model scheme is
given in Figure 4. The following system of ordinary differ-
ential equations describes the dynamical behavior of the
model [16]

ẋ1 = k1u (A0 − x1) − k2x1 − k3x1 (1 − x2) + k4x2 (A0 − x1)

ẋ2 = k3x1 (1 − x2) − k4x2 (A0 − x1) − k5x2 (r2 − x3 − x4)

+ k6x3 (1 − x2) − k7x − 2x3 + k8x4 (1 − x2)

ẋ3 = k5x2 (r2 − x3 − x4) − k6x3 (1 − x2) − k7x2x3 + k8x4 (1 − x2)

ẋ4 = k7x2x3 − k8x4 (1 − x2) − k9x4x5
ẋ5 = −k9x4x5 + k10 (PQ0 − x5) .

(11)

Figure 4Model interaction structure of the fluorescence
induction model for D. salina. Black arrows indicate the forward
reactions, while white (not filled) arrows denote backward reactions. F
is the dissipated chlorophyll fluorescence, u is the intensity of the
excitation light. A denotes the unexcited antennae, A∗ is the number
of excited antennae. QA and QB are the first and the second quinone
receptors respectively and Q−

A , Q
−
B and Q2−

B represent their oxidized
states. PQ is the plastoquinon pool and PQH2 represents its
protonated form.

The x1 . . . x5 denote probabilities of states A∗, Q−
A , Q

−
B ,

Q2−
B and PQ (in this order). Corresponding concentrations

can be derived by multiplying xi with the reaction center
concentration in a sample. A0 is the size of the antenna
pool (number of antennae) and PQ0 is the size of PQ-pool
per reaction center. The intensity of the excitation light is
indicated with u and k1 . . . k10 are kinetic parameters. The
readout is given by

F = Gk2x1, (12)

where G is the overall gain or scaling coefficient that
captures influences of sample size, concentration of the
reactions centers or instrumental amplification. A vector
of the initial state values is defined as follows:

x0 = [0 0 0 0 PQ0]

According to [17] there are 290 antennae in one antenna
complex and thus we fixed A0 = 290. A total number of
13 unknown model parameters have to be estimated from
the data.

Parameter estimation and identifiability
The parameters were estimated from fluorescence data
of Dunaliella salina using PAM-fluorimeter under con-
ditions specified in the Chlorophyll fluorescence meas-
ruements section. Following [18], data replicates were
normalized according to

Fn = F − F0
Fm − F0

, (13)

in order to allow estimating sample mean and standard
deviations from the replicates. F denotes the fluorescence
value at a given time point t, F0 is the ground fluorescence
at t = 0 and Fm is the maximal measured fluorescence.
The MLE of the parameters are given in Table 4. Sim-

ulated and experimental data are plotted in Figure 5 on
logarithmic time scale to represent all significant phases of
the fluorescence induction. As shown in Figure 5, model
simulation perfectly fits the experimental data. However,
profile likelihood analysis revealed that one model param-
eters is non-identifiable (see below), rendering the analysis
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Table 4 Parameter identifiability of theD. salinamodel and confidence intervals based on original data and in silico
experiments in log-space

Parameter θ̂i
Original data: y = Gk2x1 Add in silico y = x3 Add in silico y = x5

Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI Identifiability Lower CI Upper CI

log10 k1 -1.9507 identifiable -1.9526 -1.9481 identifiable -1.9507 -1.9507 identifiable -1.9512 -1.9499

log10 k2 1.2603 identifiable 1.2603 1.2663 identifiable 1.2624 1.2641 identifiable 1.2626 1.2648

log10 k3 3.3192 identifiable 3.3160 3.3251 identifiable 3.3173 3.320 identifiable 3.3183 3.3202

log10 k4 2.0231 identifiable 2.0192 2.0269 identifiable 2.0220 2.0240 identifiable 2.0218 2.0239

log10 k5 4.5278 identifiable 4.5214 4.5351 identifiable 4.5278 4.5278 identifiable 4.5264 4.5296

log10 k6 5.5047 identifiable 5.4963 5.5128 identifiable 5.5030 5.5056 identifiable 5.5030 5.5062

log10 k7 4.6765 identifiable 4.6683 4.6841 identifiable 4.6742 4.6774 identifiable 4.6752 4.6786

log10 k8 2.8452 identifiable 2.8222 2.8602 identifiable 2.8439 2.8464 identifiable 2.8406 2.8487

log10 k9 1.5753 identifiable 1.5697 1.5839 identifiable 1.5741 1.5759 identifiable 1.5749 1.5757

log10 k10 0.1611 non-identifiable −∞ 0.5602 identifiable 0.1611 0.1611 identifiable 0.1606 0.1616

log10 PQ0 1.4930 identifiable 1.4907 1.4947 identifiable 1.4922 1.4935 identifiable 1.4927 1.4931

log10 r2 -0.3069 identifiable -0.3106 -0.3025 identifiable -0.3069 -0.3069 identifiable -0.3073 -0.3065

log10 G -2.8061 identifiable -2.8067 -2.8036 identifiable -2.8061 -2.8061 identifiable -2.8068 -2.8055

of internal state dynamics - as for instance performed in
[16], who also only used fluorescence data - questionable.

Optimal experimental design for D. salina: Readout selection
The profile likelihood for the initial data suggests, that 12
out of 13 model parameters are identifiable. Only param-
eter k10 has not lower bound (see Figure 6 and Table 4).
Based on the estimated profile likelihoods, we calculated
PLS indices and entropies to identify additional informa-
tive readout candidates for parameter k10.
As it turned out, states Q−

B and Q2−
B seem good can-

didates as additional readouts, having large PLS indices
(see Additional file 1: Figure S5 for the criterion space),
whereas Q−

A has the largest PLS entropy. PQ seems to
equally trade-off the PLS index vs. PLS entropy. Since it
was not possible to measure these internal states directly,

in silico values forQ−
B and PQwere generated for theMLE

parameter set to test their suitability as additional read-
outs. The in silico data were then used to perform identi-
fiability analysis with the profile likelihood approach. The
results are presented in Table 4, the corresponding pro-
file likelihoods can be found in Figure 6. The additional
in silico data for Q−

B or PQ allow identifying all parame-
ters at α = 0.05 (s. Table 4). Then, it would be possible
to perform a conclusive, model-based analysis of the fluo-
rescence induction in D. salina including all unmeasured
states.

Conclusions
In this work we illustrate how to analyze and quantify
uncertainty propagation in ODE models based on profile
likelihood samples. We introduce the profile likelihood

Figure 5 Comparison of the results of model simulation with experimental data. Experimental data were measured at 166μEm−2s−1.
Simulation results (black line) are plotted versus the experimental data (red line). Blue dashed lines indicate the 95% confidence interval of the
experimental data. The MLE corresponds to χ2 = 378.5.
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Figure 6 Overview of the profile likelihoods of all parameters. Solid lines indicate profile likelihood versus parameter on a log10-scale.

sensitivity index, which reflects the individual contri-
bution of an uncertain model parameter to a model
prediction. In the case of several parameters, parameter
interdependencies are - by definition of the profile likeli-
hood - account for, and the sum of profile likelihood sen-
sitivity indices can be used to quantify the overall effect.
However, individual parameter uncertainty contributions
are not clear. Here we propose to use Shannon’s entropy
on the individual profile likelihood sensitivity indices as
an additional measure. The PLS entropy describes the
amount of uncertainty contributed by each uncertain
parameter to the overall PLS index. In this way, PLS
entropy can be used to look for homogenous uncertainty
contribution. We further describe in a general way, how

profile likelihood sensitivity index and entropy can be
used to identify experimental regions, where one has to
collect data in order to reduce prediction uncertainties.
Such an approach is especially valuable in large biochem-
ical networks, where intuitive analysis is hampered by
the complexity of the system. Additionally, PLS index
and entropy provide information on prediction domains,
where one has to consider model-based predictions with
care.
We applied the concept of PLS indices and entropies

to an intuitive in silico example to illustrate how one can
rationally select additional readout and/or intervention
sites in order to reduce prediction uncertainties. Finally,
using the chlorophyll fluorescence induction of D. salina
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as a true life case, we illustrate how an initially non-
identifiable model can potentially be rendered identifiable
by selection additional readout signals.

Availability of supporting data
The supplementary material contains the ODE system
of the in silico example, further details on the fluo-
rescence induction model of D. salina (comparison of
profile likelihood and classical sensitivity analysis includ-
ing time course of PLS indices, prediction samples and
criterion space for readout selection). We further pro-
vide MATLAB code for the in silico example to explore
the presented design approach and also data and MAT-
LAB code for the chlorophyll fluorescence induction
model (Additional file 2). Further material and support is
available upon request.
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