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Genome-Guided Phylo-
Transcriptomic Methods and the 
Nuclear Phylogenetic Tree of the 
Paniceae Grasses
Jacob D. Washburn   1, James C. Schnable2,3, Gavin C. Conant4,5, Thomas P. Brutnell   3,  
Ying Shao3,6, Yang Zhang2,3, Martha Ludwig7, Gerrit Davidse8 & J. Chris Pires   1

The past few years have witnessed a paradigm shift in molecular systematics from phylogenetic 
methods (using one or a few genes) to those that can be described as phylogenomics (phylogenetic 
inference with entire genomes). One approach that has recently emerged is phylo-transcriptomics 
(transcriptome-based phylogenetic inference). As in any phylogenetics experiment, accurate orthology 
inference is critical to phylo-transcriptomics. To date, most analyses have inferred orthology based 
either on pure sequence similarity or using gene-tree approaches. The use of conserved genome synteny 
in orthology detection has been relatively under-employed in phylogenetics, mainly due to the cost of 
sequencing genomes. While current trends focus on the quantity of genes included in an analysis, the 
use of synteny is likely to improve the quality of ortholog inference. In this study, we combine de novo 
transcriptome data and sequenced genomes from an economically important group of grass species, 
the tribe Paniceae, to make phylogenomic inferences. This method, which we call “genome-guided 
phylo-transcriptomics”, is compared to other recently published orthology inference pipelines, and 
benchmarked using a set of sequenced genomes from across the grasses. These comparisons provide a 
framework for future researchers to evaluate the costs and benefits of adding sequenced genomes to 
transcriptome data sets.

Phylogenetic methods have undergone enormous changes over the past few years as the costs of next generation 
sequencing have declined. Where researchers once spent considerable time designing and testing PCR primers 
to sequence one or a few genes, it is now becoming common to sequence large numbers of genes, or even whole 
genomes, for phylogenomic analyses1–9. In an increasing number of cases, it is possible to build phylogenetic trees 
based on sequenced genomes, but even these are often re-sequenced or low coverage genomes1,10–20. For most 
groups of eukaryotic organisms, the costs of sequencing and assembling whole genomes remain prohibitive, lim-
iting the applicability of whole genome sequencing for studies that sample large numbers of taxa. Whole genomes 
are also not generally necessary to allow phylogenomic methods to provide increased resolution of species rela-
tionships21. Reduced representation approaches, where part of the genome is excluded from sequencing, allow 
researchers to obtain sequence data for large numbers of nuclear genes across many species at a relatively low cost 
and have become increasingly common22–29.

The current study focuses on improving and testing the constraints of one of these approaches, 
transcriptome-based phylogenomics. Variations of this method have been applied to a range of organisms and 
scientific questions6,8,30–45. Transcriptome-based methods differ from other reduced representation approaches 
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in the nature of the gene/transcript ascertainment bias that results. Transcriptomes produce a sampling of tran-
scripts that are biased due to the biology of the organisms under study and the time point(s) and tissue(s) being 
sampled. Probe-based reduced representation methods on the other hand are biased by the methods used for 
discovering and choosing the probes. Transcriptome-based approaches to phylogenomics rely on sequencing 
RNA from multiple taxa at sufficient depth to enable de novo assembly of many (usually hundreds to thousands) 
of transcripts. The resulting transcripts are then used in phylogenetic analyses. The cost of sequencing transcrip-
tomes is, of course, substantially less than that required for whole genomes. Transcriptome-based approaches also 
require less upfront time investment and a priori knowledge than probe hybridization/sequence capture-based 
methods. However, they require more bioinformatics time post-sequencing, the reason being that no probe 
design is required for transcriptome sequencing, but post-sequencing assembly is required. One key limita-
tion of transcriptome-based methods is that they require access to fresh tissue or RNA, and therefore cannot be 
employed with, for example, museum collections. Conversely, one advantage of transcriptome-based methods is 
that the expression data can be used for additional biological analyses beyond phylogenetic inference, as RNA-Seq 
data is widely used to understand the evolution of gene expression46–49; of course, probe and hybridization-based 
methods can also be used for other types of functional exploration. Collecting and preserving RNA from fresh or 
frozen tissue has become routine in many laboratories50 and, at least in our hands, it is actually easier and less time 
consuming than DNA sequencing due to streamlined commercial kits (cited in materials and methods below) 
and the small quantities of RNA required for library preparation.

One area of rapid advancement in transcriptome-based phylogenomics (and most other phylogenomics 
approaches) is orthology determination. Once transcriptomes are generated and assembled, it is necessary to 
identify orthologous genes between the various transcriptomes; that is genes that are descended from a single 
gene copy present in the most recent common ancestor of the species being compared. To date, the most com-
monly used methods for orthology inference use sequence similarity-based methods like BLAST, often combined 
with the Markov Cluster (MCL) or other algorithms for differentiating between orthologs and paralogs. These 
platforms include OrthoMCL, HaMStR, OrthoFinder, and others51–55. While these methods have been useful 
for orthology inference, it is well established that sequence similarity can be misleading, and does not necessar-
ily equate with orthology51,56,57. Some recent improvements on these methods start with all-by-all BLAST and/
or MCL, but additionally use the topological features of phylogenetic trees to differentiate between orthologs 
and paralogs52,58–60. Two of the most advanced platforms for doing this are the Agalma and Yang & Smith pipe-
lines2,3,61–63. These phylogenetically-informed methods have proven effective and become popular in large part 
because they are computationally tractable and because they require no a priori information about gene order 
(e.g., they do not require sequenced genomes). One of the major downsides to these methods is the use of an 
all-by-all BLAST step. Not only can sequence similarity searches be problematic for establishing orthology51, but 
when they are performed in an all-by-all framework they become extremely resource-intensive computationally. 
Some of these issues can be overcome through the phylogenetically informed approaches described above and the 
use of parallel computing, but many improvements remain to be made.

An alternative method for orthology inference that has been used in prokaryotes but received relatively little 
attention in eukaryotic phylogenetics is the use of gene synteny64–69. Synteny can be defined as the co-localization 
of the same gene at similar chromosomal positions across related taxa66,70. It has been compared to a street 
address system where, if one knows the physical location of a building, it is much easier to find that building 
than just looking for a building with specific features. Synteny-based orthology determination is then rooted 
in the assumption that orthologous genes will not only share sequence similarity, but will also reside in similar 
locations within the genomes of related species70. Synteny-based methods are widely employed in comparative 
genomics studies69,71–77. The omission of synteny-based approaches in most phylogenetic studies is likely due to 
the fact that syntenic analysis requires information on gene order in addition to gene sequence, and information 
on gene order is not captured by reduced representation methods, including amplification-based, probe-based 
and transcriptome-based datasets. Additionally, syntenic conservation levels vary depending on the phyloge-
netic proximity of the species being compared. However, for many phylogenetic clades, synteny is strongly 
conserved70,78,79, making it is possible to use syntenic data from a few genomes as an anchor for reduced rep-
resentation data, an idea that has not yet been fully explored.

Here we describe the development and implementation of a method we call genome-guided 
phylo-transcriptomics. This method uses genome-derived syntenic orthologs to anchor transcripts for phyloge-
netic inference, and is here tested and applied in an economically and scientifically important group of grasses, the 
tribe Paniceae80–85. While the method still requires a BLAST step in which transcripts are mapped directly to refer-
ence genes that are known to be single-copy orthologs based on synteny, it bypasses the time consuming and error 
prone all-by-all BLAST and MCL algorithm steps commonly used in current phylo-transcriptomic methods51,56,57. 
Furthermore, by removing transcripts that map in multiple copies to the reference ortholog (see Materials and 
Methods section), one can avoid using BLAST to distinguish between paralogs and orthologs whose sequences 
are very similar. These are, of course, the sequences for which BLAST is most problematic51. We hypothesize that 
the use of a genome-guided method for orthology prediction will result in a greater percentage of “true” orthologs 
than those predicted by topology-based methods. This decrease in the signal-to-noise ratio in a data set could have 
serious impacts given the influence that even a single informative ortholog can have on a phylogenetic analysis86.

In addition to the Paniceae data set here generated, which covers 25–40 million years (m.y.) of evolutionary 
time, we applied the new method to a published dataset from the grape family (Vitaceae) to Arabidopsis thaliana 
which diverged 69–150 m.y. ago2,81,82,87,88. We also constructed and analyzed a data set from several publically 
available genomes from across the grasses (family Poaceae) and used it to benchmark the method’s reliability as 
compared to orthology inference based entirely on sequenced genomes. The three data sets were analyzed using 
both this genome-guided method as well as two recently published topology-based approaches for orthology 
inference with transcriptomes, the Agalma and Yang & Smith pipelines2,3,62.
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Materials and Methods
Taxon Sampling and Plant Materials.  Forty-five species from across the tribe Paniceae and outgroups 
were selected for RNA sequencing. Samples were obtained from the sources listed in Supplementary Table S1, 
with the majority of samples drawn from the USDA germplasm collection. Most samples were taken from the 
same plants as those used by Washburn et al.80 so results could be directly compared to the chloroplast phy-
logeny inferred in that study. Plants were grown and sampled in the greenhouse facilities at the University of 
Missouri, Columbia, MO and the Danforth Center, St. Louis, MO, with the exception of Neurachne alopecuroidea 
and Paraneurachne muelleri, for which RNA samples were obtained from Martha Ludwig, University of Western 
Australia. Leaf material was sampled from all plants and where possible, shoot, flower, and drought-stressed tissue 
samples were also taken with the hope of capturing a greater number of unique transcripts. RNA was extracted 
using the PureLink® RNA Mini Kit (Invitrogen, Carlsbad, CA, USA) or using Roche TriPure (Indianapolis, IN, 
USA), following the manufacturer’s instructions. The grape data set was obtained from NCBI. Details on its gener-
ation and record locators can be found in Wen, et al.87. The grass genomes and annotation were downloaded from 
Phytozome (phytozome.jgi.doe.gov) and included Zea mays 284 5b+ 89, Sorghum bicolor 255 v2.190, Setaria italica 
312 v2.291, Oropetium thomaeum 386 v1.192, Oryza sativa 323 v7.093, and Brachypodium distachyon 283 v2.194.

Transcriptome Sequencing.  Libraries were prepared using the TruSeq Stranded mRNA Sample Prep Kit 
(Illumina, Inc., San Diego, CA, USA) or the method described by Wang, et al.95 (See Supplementary Table S1). 
Sequencing was performed at the MU DNA Core facility on the campus of the University of Missouri and at 
Cornell University’s sequencing core facility, and was done on an Illumina Hiseq sequencer with 2 × 100 bp chem-
istry and six species per lane.

Sequence Processing.  RNA-seq data were quality filtered following standard procedures96,97. 
Transcriptomes were assembled de novo using Trinity98–100 and processed as described in Yang and Smith (2013).

The sequenced genomes of S. bicolor and S. italica were used for syntenic ortholog determination because both 
are high quality and publically available, they represent an ingroup and outgroup taxa to the tribe Paniceae, and 
neither genome contains a recent whole genome duplication event90,91. Syntenic orthologs between S. bicolor and 
S. italica were infered using the SynMap tool in CoGe (https://genomevolution.org/CoGe/) with QuotaAlign set 
to filter out syntenic paralogous regions using a quota setting of 1:179,101. This insures that only genes which are 
present in a single copy and at the same syntenic location in both species are included. Protein sequences of the 
S. bicolor representative of the 1:1 S. italica/S. bicolor set were used as the reference sequence for the remainder of 
the analyses. The assembled tribe Paniceae transcripts (excluding outgroup transcriptomes) were then mapped 
to the S. bicolor reference orthologs using BLAST with a cutoff E-value of 0.00001 and 85% amino acid identity. 
When a given S. bicolor gene corrisponded to more than one transcript in a species, all transcripts maping to that 
S. bicolor gene where discarded to avoid the potential inclussion of paralogs. These sequences where then grouped 
into orthologous sets for each gene and a multiple alignment was created using mafft102,103. In this way, the use 
of all-by-all BLAST and the MCL algorithm are completely avoided. After further filtering with phyutility and 
several scripts from Yang and Smith2, concatenated trees, coalescence-based quartet summary species trees, and 
binned coalescence-based quartet summary trees were created using RAxML, ASTRAL, and binning followed 
by ASTRAL, respectivly104–107 (Fig. 1). To investigate syntenic block phylogenies, data from the genome-guided 
gene trees were grouped based on conserved syntenic blocks across the S. bicolor and S. italica genomes (again 
obtained from CoGe). Each transcript was mapped to its syntenic block and trees created using RAxML based 
on concatenated transcripts from each syntenic block. The same method was applied to the grape data set, except 
that the V. vinifera and Arabidopsis thaliana genomes where used and the E-value and protien identity cutoffs 

Figure 1.  Genome-guided phylo-transcriptomics workflow. Illustration of the workflow followed to produce 
the genome-guided phylogenies in this study.

https://genomevolution.org/CoGe/
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where lowered to 0.0001 and 75%, respectively, to account for the increased phylogenetic distances represented 
in the grape data set. Whole genome duplication events occuring in the ancestor of A. thaliana but not V. vin-
ifera are excluded from the analysis because of the 1:1 setting in QuotaAlign. Scripts and instructions for the 
genome-guided method are available at: bitbucket.org/washjake/transcriptome_phylogeny_tools.

Two gene tree topology-based approaches to orthology inference where also used for comparison: the Agalma 
pipeline (version 0.5.0) by Dunn, et al.3 and the Ya Yang pipeline2,61. As above, RAxML, ASTRAL, and binning 
combined with ASTRAL were used to infer phylogenies. Phylogenetic trees and other figures were generated 
using FigTree, Inkscape, and Vennerable in R108–111.

For the grass data used for benchmarking, several additional analyses were run. Single copy syntenic orthologs 
were found in a pairwise fashion between O. sativa and each of the other genomes using CoGe as described above. 
The likelihood of two non-orthologous genes evolving to have not only high sequence similarity, but also to be 
in the same physical location, and in single-copy across multiple species is incredibly small, giving us high confi-
dence in orthologs inferred using this method. These orthologs where used to create a set of fully synteny-based, 
one-to-one orthologs across the grasses. While this set does not include all possible single-copy orthologs, it does 
include all of them for which we can have high confidence based on the available data and current methods, and 
is hence the best achievable ortholog set for the grasses at the current time. We refer to this as the benchmarking 
data set.

Each of the ortholog inference methods described above was then run using the transcriptomes generated by 
the genome sequencing projects referenced above. In this way, the transcripts could be followed by name through 
the pipelines (except for the Agalma method for which this could not be easily accomplished due to the way the 
pipeline is packaged). Ortholog sets derived from the genome-guided method and the Yang and Smith method 
were then compared to the benchmarking set to determine how many orthologs each method was able to find in 
common with the benchmark orthologs.

Data Availability.  The datasets generated during this study are available in the NCBI SRA repository under 
the identifiers noted in Supplemental Table S1.

Results
For species tree inference in the tribe Paniceae, the genome-guided method provided similar numbers of ort-
hologous genes to both the Agalma and Yang & Smith methods at a 90% matrix occupancy cut-off (Table 1). 
However, for the full matrix runs, when any orthologous gene without all species represented was discarded, 
the genome-guided method returned fewer orthologs than the other two methods. This is probably due to the 
genome-guided method not using transcripts that map to the same ortholog. The genome-guided method 
however, produced more consistent tree topologies than the topology-based methods. For example, all spe-
cies trees (concatenated, ASTRAL, binned, and with multiple matrix occupancies and taxonomic inclusion) 
built with the genome-guided orthology pipeline agreed in their subtribe level topologies. The topology-based 
methods on the other hand, occasionally produced conflicting subtribe-level topologies. In other words, the 
topology-based methods were more sensitive to perturbations in taxonomic inclusion (when a taxon is removed 
from the inference to test if the same general topology will result without it) than the genome-guided method. 
The genome-guided method was also many times faster than the topology-based methods (Table 2).

Figure 2 shows what we consider to be the best estimate of the Paniceae nuclear species tree, based on cur-
rently available data. This tree places Anthephorinae as direct sister to the MPC clade (subtribes Melinidinae, 
Panicinae, and Cenchrinae), which, although different from published chloroplast trees80,82,85, is consistent with 
the combined nuclear-chloroplast topology reported by Vicentini, et al.81.

Method 8 spp 90% Full

Genome-guided

Genes
Total 9,757 2,211 434

Min 5,389 1,963 434

Amino Acids
Total 4,182,364 835,229 144,503

Min 1,775,925 669,215 128,896

Agalma

Genes
Total 11,563 2,308 555

Min 5,453 2,054 555

Amino Acids
Total 4,420,707 797,333 182,368

Min 1,568,329 613,538 168,157

Yang & Smith 1 to 1

Genes
Total 7,323 1,925 898

Min 3,685 1,781 898

Amino Acids
Total 2,408,802 789,203 361,901

Min 1,129,993 628,190 310,283

Yang & Smith MO

Genes
Total 11,568 1,966 1,076

Min 6,417 1,879 1,076

Amino Acids
Total 4,362,686 857,857 456,597

Min 2,009,430 687,942 380,988

Table 1.  Total orthologs found in each method separated by matrix occupancy.
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As mentioned, the topology-based approaches (Yang & Smith and Agalma) generally resulted in the same 
tree topology as the genome-guided method (Fig. 3a). However, in some cases, depending on the taxon sampling 
included in the analysis, an alternative topology was obtained from these methods. This topology placed the sub-
tribe Anthephorinae together with the Neurachninae and Sacciolipis lineages as sister to the MPC clade (Fig. 3b). 
Internode certainty (IC) scores for the main conflicting node in both the primary and secondary topologies were 
close to zero and in some cases even negative, suggesting high levels of gene tree incongruence1,112,113. Both the 
genome-guided method, and the topology-based methods included genes representative of each of the Sorghum 
bicolor chromosomes and the major Setaria italica scaffolds, indicating that the sampled genes from both meth-
ods came from across the entire genome (Supplementary Table S2).

To further dissect the causes of gene tree incongruence within the Paniceae, the tree binning scripts described 
by Mirarab, et al.106 where used to separate groups of genes with distinct evolutionary histories. This method 
allows one to set a bootstrap significance threshold at which branches can be considered high confidence, and 
then compare large sets of gene trees for compatibility with each other. Different cut-off values were tested for this 
analysis, almost always (see exception below when a cut-off of 100 was used) resulting in several hundred distinct 
tree topologies that were incompatible with each other.

When a bootstrap cutoff value of 100 was used as the threshold, indicating that only gene tree branches with 
100 percent bootstrap support were considered, the synteny-based data set still placed the trees into 18 unique 
topology groups (Supplementary Fig. S1). These eighteen topologies were then compared visually and examined 
for differences that could directly affect the relationship between the MPC clade and the subtribe Anthephorine. 
Of the eighteen (2211 total genes) topologies, eight topologies (981 total genes) showed strong support for the 
inclusion of Anthephorine within the MPC (as in the primary topology described above and shown in Figs 2 
and 3b), five topologies (615 total genes) showed strong support for Anthephorine as sister to Neurachninae 
and Sacciolipis (as in the secondary topology described above and shown in Fig. 3b), and one topology (123 total 
genes) agreed with the chloroplast phylogeny from Washburn, et al.80 (Fig. 3c). The remaining four topologies 
(492 total genes) had low support for this area of the tree.

Synteny Step BLAST Step
Alignment and Tree 
Building for Pruning Total

Genome-Guided <1 6.7 N/A 7.7

Agalma N/A 46.4 88.6 135.0

Yang & Smith N/A 366.9 412.2 779.1

Table 2.  Approximate run times in hours (hrs) for each orthology inference method based on a 16 CPU system.

Figure 2.  Genome-guided concatenation-based phylogeny of the tribe Paniceae. Phylogenetic tree of the tribe 
Paniceae (Poaceae) built using RAxML based on a concatenated matrix with 90% gene occupancy. Branches are 
labeled with maximum likelihood bootstrap values; unlabeled branches have values of 100.
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Another approach we developed to dissect gene tree incongruence consisted of building trees based on the 
combination of genes that share a similar physical location. A recent study was able to find likely introgression 
events using a non-overlapping window approach and constructing trees based on 1 Mb and 100 kb blocks of 
genes41. Because of the genome-guided approach, we were able to group genes into more biologically relevant 
blocks, namely blocks that are syntenically conserved between ingroup and outgroup taxa. The appearance of a 
block of genes sharing the same phylogeny, which differs from the species phylogeny, might suggest hybridization/
introgression within a group as recently diverged as the Paniceae, but ILS could also produce these types of blocks.

Many syntenic block phylogenies were inconclusive in that they yielded topologies that had little similarity to 
any of the previously described or published species trees. This seemed to be correlated with the number of genes 
in a syntenic block in that blocks with more genes generally (but not always) provided a resolved phylogeny that 
was similar in the placement of the subtribes Melinidinae, Panicinae, Cenchrinae, Anthephorinae, Neurachninae, 
and the Sacciolipis lineage to one of the three phylogenies in Fig. 3. When these blocks and their topologies were 
mapped to an ideogram114 of the S. italica chromosomes a striking patchwork of differing syntenic block histories 
was revealed (Fig. 3d). To further investigate whether or not syntenic blocks have distinct tree topologies we used 
Robinson-Foulds (RF) distances as implemented in the ETE Toolkit115. By computing pairwise RF distances for 
all genes in a given block we created a tree distribution for each of the blocks. We then took the complete set of 

Figure 3.  (a) Primary nuclear topology found using all methods, (b) Secondary nuclear topology, (c) 
Chloroplast topology based on Washburn, et al.80. (d) An ideogram of the Setaria italica chromosomes114 with 
conserved syntenic blocks between S. italica and Sorghum bicolor demarcated. Syntenic blocks are colored 
based on the phylogenetic patterns from a-c that each block supports. Gray indicates areas of the chromosomes 
not covered by our blocks. Asterisks below the blocks indicate significance level for pairwise Robinson-Foulds 
distance tests: ***0.001, **0.01, *0.05.
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gene trees (those from all blocks) and randomly re-assigned them to blocks eighty thousand times, each time 
computing the pairwise RF distance for each block. In this way, we created a simulated “random distribution” 
of trees for each block that could be used as the null distribution in a statistical test comparing the observed 
pair-wise RF distances in a block to the simulated distribution under the null hypothesis that all blocks share the 
same tree distribution. Of the 79 blocks, 15 had distributions that were significantly different than their respec-
tive simulated distributions at a significance level of alpha <0.001 (Fig. 3d). Hence, it appears that these blocks 
have a distribution of tree distances smaller than that expected. This observation implies that at least some local 
regions of the genome have similar evolutionary histories relative to the genome as a whole, either because of 
locally-coherent ILS or hybridization.

To further benchmark the Genome-Guided method here developed we applied it to two additional data sets. 
We used publically available sequenced grass genomes to compare our method with the Agalma and Yang and 
Smith methods. Syntenic relationships between the genomes were used to construct a list of high confidence 
single copy orthologs across the grasses. This list then served as a benchmark to which the orthologs predicted 
by each of the methods could be compared. Of course, this list does not contain all orthologs across the grasses, 
so it cannot tell us anything about the validity of ortholog combinations predicted for genes not found in the list. 
However, it can tell us when each ortholog prediction method correctly places orthologs in its list, and when it 
incorrectly identifies paralogs as orthologs. Therefore, we think that these comparisons are informative as to the 
reliability of different orthology assignment methods.

All three orthology detection pipelines and the synteny-derived benchmarking set generated the same tree 
topology, in agreement with previous phylogenetic studies, with high confidence82. Gene by gene comparisons 
between each method and the benchmarking set show that the genome-guided method recovers a much higher 
percentage of ortholog gene trees that agree, in terms of which genes are included, with the benchmarking set 
than either the Yang & Smith 1 to 1 or MO Methods (62%, 32%, and 31% respectively with a species cutoff of four 
and genes not found in the benchmarking set excluded. See Table 3 and Fig. 4). Because of the way Agalma is 
packaged, we were unable to modify its code to include it in this comparison, but it would likely perform similarly 
to the Yang & Smith method as it uses similar approaches. Beyond the orthologous genes in the benchmarking 
set, the Yang & Smith methods also include as many as 2,116 additional ortholog gene trees. These trees are based 
on genes which our direct synteny comparisons did not find (i.e., they did not have a detectable 1:1 orthologous 
relationship). In some cases, these are genes which the Yang & Smith method mapped in duplicate, for example, 
two S. italica genes mapped to one S. bicolor gene. In other cases, the expected 1:1 syntelog is present for some 
pairs of species but the O. sativa syntelogs is not present. These trees may or may not be based on correct orthol-
ogy assignment, but because they are not in the benchmarking set they could not be evaluated here.

We also analyzed previously published data from grape and its relatives in order to benchmark the method 
and explore the phylogenetic distance it is capable of spanning. This dataset was comprised of 17 species spanning 
from V. vinifera to A. thaliana, with the bulk of the species being found within the family Vitaceae (estimated 
age of ~90 m.y.)87. The grape data set performed similarly to the Paniceae dataset we generated in terms of the 
amount of time it took to perform the genome-guided method versus the other methods. The number of ort-
hologs retrieved was much smaller for the genome-guided method than it was for the two topology-based meth-
ods (Supplementary Table S3). This dearth of orthologs is likely due to the simple fact that syntenic relationships 
are expected to break down as the evolutionary distance between two species increases. Grape and Arabidopsis 
likely diverged between 69–150 (m.y.) with most estimates around 100 m.y., while Sorghum and Seteria prob-
ably diverged between 25–40 m.y.81,82,88. Even with substantially fewer genes, the genome-guided method still 
predicted similar topologies to those of the other two methods and those previously published (Supplementary 
Fig. S2)2.

Method 4 species 5 species 6 species

Genome-Guided All Trees Included

Trees Agreeing with Benchmark 4,119 2,169 413

Total Trees 6,669 3,700 896

Percent Trees in Agreement 61.8% 58.6% 46.1%

Yang & Smith 1 to 1

All Trees Included

Trees Agreeing with Benchmark 1,936 1,741 1,370

Total Trees 7,933 6,989 5,171

Percent Trees in Agreement 24.4% 24.9% 26.5%

Excluding trees not in 
benchmark set

Trees Agreeing with Benchmark 1,936 1,741 1,370

Total Trees 6,088 5,417 4,320

Percent Trees in Agreement 31.8% 32.1% 31.7%

Yang & Smith MO

All Trees Included

Trees Agreeing with Benchmark 2,000 1,795 1,404

Total Trees 8,619 7,560 5,464

Percent Trees in Agreement 23.2% 23.7% 25.7%

Excluding trees not in 
benchmark set

Trees Agreeing with Benchmark 2,000 1,795 1,404

Total Trees 6,503 5,757 4,516

Percent Trees in Agreement 30.8% 31.2% 31.1%

Table 3.  Grass (Poaceae) wide gene by gene comparisons of orthology detection methods to a benchmark set of 
orthologs derived entirely from syntenic relationships between sequenced genomes.
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Discussion
Phylogenetic consistency, broadly defined as convergence on the “correct” tree topology with increasing data, is 
a well-established phylogenetic accuracy assessment criterion116–118. The Genome-guided method proposed here 
consistently inferred the same subspecies level tree topology regardless of the matrix occupancy used, the tree 
building approach applied, and the number of taxa included. The topology-based approaches also resulted in the 
same tree topology in most cases, however, when the number of taxa were reduced to 33 by removing species near 
the main areas of conflict (to test the robustness of the topology inference), the topology-based approaches no 
longer produced consistent results while the Genome-guided method continued to produce the same topology. 
In general, the inclusion of more taxa, which better represent the diversity of a group of organisms, will increase 
the accuracy of phylogenetic inference116,119,120. It then follows that the topology found by both genome-guided 
and topology-based methods, when all taxa were included, is likely to be the topological estimate nearest to the 
true species history. This implies that the genome-guided method should be able to infer that topology with less 
data than the topology-based methods require for similar confidence and accuracy. Additionally, the grass bench-
marking data set comparisons indicate that, of the orthologs we know with high confidence, the genome-guided 
method predicts a higher percentage of them correctly than does the Yang & Smith method.

Orthology inference with the genome-guided pipeline is also many times faster than the topology-based meth-
ods and, except for the CoGe step, can be run efficiently on a standard desktop computer; something not possible 
with either of topology-based methods. This computational efficiency results from the fact that the genome-guided 
method does not require all-by-all BLAST or iterative tree pruning steps. The CoGe step is also very simple and 
straight-forward to run, as is the process of loading new genomes into the CoGe database. CoGe also has the capac-
ity for uploading and analyzing private genomes without making them public and is exceptionally well documented.

A natural downside of the genome-guided method is the need for two genomes that span the taxonomic clade 
one is working with. While this approach could be used with only one genome or even a list of genes from a de 
novo transcriptome assembly, doing so negates its benefits and will increase the likelihood of including paral-
ogs in the analysis. In these situations, topology-based methods are probably the best analysis choice. Because 
syntenic relationships often break down with increased phylogenetic distance there is likely a limit to the age of 
clades for which this method can be applied. Based on our experiments with the grape and Poaceae data sets, 
the method is functional up to at least 100 m.y. of divergence, and can likely be used successfully in any group 
for which a reasonable number of orthologs can be found between the ingroup and outgroup taxa. However, our 
experience indicates that syntenic conservation does not always correlate with divergence time, so the method’s 
utility will have to be evaluated on a case by case basis.

Based on both the binning analysis and the syntenic block trees, we conclude that the secondary topology, or at least 
the differential placement of the Anthephorine relative to the MPC, is not an artifact of the topology-based methods, 
but is supported by an appreciable number of genes regardless of the orthology determination method employed. The 
different topologies of these genes may result from either ILS or post-speciation hybridization, or both.

Figure 4.  A Venn Diagram comparing the Poaceae gene sets derived from whole genomes, the genome-guided 
approach, and the Yang & Smith MO pipeline (the 1to1 pipeline is not shown because of large overlap with 
MO). Diagram created using Inkscape and the R package Vennerable108,109.



www.nature.com/scientificreports/

9Scientific REPOrTS | 7: 13528 | DOI:10.1038/s41598-017-13236-z

The small numbers of transcripts representing many of the syntenic blocks in Fig. 3, likely contributed to an 
inability to infer well supported phylogenies for some of the blocks. However, RF based topology distribution tests 
confirmed that tree topology distributions in at least certain areas of the genome are likely more similar for genes 
in a syntenic block than they are across the whole genome. This type of local-synteny analysis should become 
even more informative in future studies as more sequenced genomes are generated and included in phylogenetic 
inference. These types of analyses are also not limited to transcriptomic data but have the potential to add value 
to other data sets generated with probe/hybridization based data collection methods, as long as one or more 
sequenced genomes exist within the taxonomic group being studied.

The nuclear phylogeny of the Tribe Paniceae produced in this study is consistent with that produced in a pre-
vious study. However, that study was only able to sample one nuclear gene and because the inferred topology was 
incongruent with the many chloroplast phylogenies of the group, it was generally dismissed. This study demon-
strates that in fact the nuclear phylogeny of the Paniceae is very different than the chloroplast one, and that those 
differences are not due to signals in one or a few genes, but are wide spread across the genome. This study also 
shows that while that original topology, based on only one nuclear gene is supported by many other genes, not 
all nuclear genes agree with it, and in fact a significant minority of the genes are incongruent with that topology.

The differences between the nuclear and chloroplast phylogenies shown here are critical to both basic and 
applied questions within the tribe Paniceae. For example, investigations within the tribe of the evolution of C4 
photosynthesis, a trait with great economic importance, have focused on the MPC clade at the exclusion of the 
subtribe Anthephorinae80,82,121. Choices about resource investment, such as which genomes to sequence, have also 
been based almost exclusively on the chloroplast phylogeny122. Given our results, further resource investment in 
Paniceae (at least for the purpose of studying C4 photosynthesis) should be directed within the genus Sacciolepis 
or a close relative to it and the subtribe Anthephorinae. We suggest Sacciolepis indica as a model C3 species for 
further study as it is a close relative the MPCA clade in both chloroplast and nuclear phylogenies, has a genome 
size of approximately 523 Mb, and is easily self-pollinated80. An ideal Anthephorinae species for further invest-
ment is less clear, but Digitaria cuyabensis has an approximate genome size of 798 Mb making it a good candidate 
for genome sequencing80. Species within the Crabgrass complex, which includes several different species in the 
genus Digitaria, might also be good candidates for resource investment due to their economic importance as a 
noxious weed. Data from both nuclear and organellar genes allows for a more informed way to choose future 
genomes to sequence than simply using organellar data as was done in the past.
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