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Abstract

In allergic airway inflammation, VEGFR-3-mediated lymphangiogenesis occurs in humans and 

mouse models, yet its immunological roles, particularly in adaptive immunity, are poorly 

understood. Here, we explored how pro-lymphangiogenic signaling affects the allergic response to 

house dust mite (HDM). In the acute inflammatory phase, the lungs of mice treated with blocking 

antibodies against VEGFR-3 (mF4-31C1) displayed less inflammation overall, with dramatically 

reduced innate and T cell numbers and reduced inflammatory chemokine levels. However, when 

inflammation was allowed to resolve and memory recall was induced 2 months later, mice treated 

with mF4-31C1 as well as VEGF-C/-D knockout models showed exacerbated type 2 memory 

response to HDM, with increased Th2 cells, eosinophils, type 2 chemokines, and pathological 

inflammation scores. This was associated with lower CCL21 and decreased TRegs in the lymph 

nodes. Together, our data imply that VEGFR-3 activation in allergic airways both help initiate the 

acute inflammatory response as well as regulate the adaptive (memory) response, possibly in part 

by shifting the TReg/Th2 balance. This introduces new immunomodulatory roles for pro-

lymphangiogenic VEGFR-3 signaling in allergic airway inflammation and suggests that airway 

lymphatics may be a novel target for treating allergic responses.
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INTRODUCTION

Allergic asthma is a chronic inflammatory disease that is characterized by airway hyper-

responsiveness, enhanced mucus production, type 2 immune cell infiltration, and smooth 

muscle contraction, all in response to inhalation of a specific allergen such as cat dander or 

house dust mite (HDM). Sensitization to the allergen involves the activation of type 2 CD4+ 

(Th2) T cells and IgE-producing B cells, which in turn activate and recruit eosinophils, mast 

cells (in humans), and macrophages; other cellular modulators include Th17, Th9, and 

regulatory (TReg) CD4+ T cells as well as type 2 innate lymphoid cells (ILC2) 1–3. 

Lymphatic vessels, which transport antigens, cytokines, and immune cells to the lymph 

nodes (LN), are critical to both the clearance of inflammatory cells and the induction and 

regulation of adaptive immune responses4,5. Lymphatic expansion or lymphangiogenesis, 

driven by vascular endothelial growth factor (VEGF) receptor 3 (VEGFR-3) signaling by its 

ligands VEGF-C and/or VEGF-D, occurs in allergic airway disease, particularly near 

bronchi and arteries6,7, although its pathological consequences are poorly understood8,9.

While lymphangiogenesis has been reported to occur in numerous types of chronic 

inflammatory diseases, including cancer, inflammatory bowel disease (IBD), chronic 

respiratory infection, and chronic skin inflammation, we still lack an integrated 

comprehension of how it alters adaptive immune responses in such diseases. In cancer, 

lymphangiogenesis plays complex roles in shaping the immune response4,5,10,11, both 

promoting immune suppression as well as, paradoxically, priming adaptive immune 

responses12. In mouse models of chronic inflammatory arthritis and inflammatory bowel 

disease, blocking VEGFR-3 signaling was found to exacerbate inflammation13–15, but in 

Crohn’s disease patients, excessively dilated and obstructed lymphatic vessels have been 

associated with lymph stasis, suggesting that blocking lymphangiogenesis should reduce 

inflammation16. In oxazolone-induced chronic skin inflammation, VEGFR-3 stimulation is 

protective, hampering the development of epidermal hyperplasia and accumulation of CD8+ 

T cells17,18. In corneal, cardiac, and islet transplantation studies in mice, VEGFR-3 

stimulation is promotes graft rejection19–21.

In non-allergy models of chronic lung inflammation, such as chronic respiratory infection of 

Mycoplasma pulmonis, lymphangiogenesis has been shown to play protective roles by 

promoting lymphatic drainage and resolution of inflammation22–24. However, those studies 

used inflammatory mediators that induce type 1 inflammation, such as mismatched 

transplantation24 or bacterial infection22,23. Much less is known about lymphangiogenesis in 

chronic type 2 inflammatory diseases. Interestingly, Th2 cytokines, particularly IL-4 and 

IL-13, have been reported to inhibit lymphangiogenesis25,26, which appears inconsistent to 

reports of lymphangiogenesis in allergic airway disease6,7.

Here, we asked whether pro-lymphangiogenic signaling plays protective or pathogenic roles 

in allergic airway inflammation, focusing on the adaptive immune response to with memory 
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recall challenges. Using both blocking antibodies against VEGFR-3 and transgenic models, 

we show that VEGFR-3 signaling facilitates the acute inflammatory response to HDM, but 

is protective with respect to memory challenges. This work highlights the complexity of pro-

lymphangiogenic VEGFR-3 signaling in regulating both innate and adaptive immunity in 

allergic airway disease.

RESULTS

Lymphangiogenesis occurs late after the onset of allergic airway inflammation

To explore the roles of lymphangiogenesis and VEGFR-3 signaling in a murine model of 

HDM-mediated allergic airway inflammation, we developed a long-term model (Fig. 1A) 

that allowed us to study the acute inflammatory peak (day 13) 27, resolution (day 31), and 

memory recall response (day 69), as evidenced by the characteristic changes in eosinophilia 

and Th2 cells (Fig. 1B). Cell numbers were determined by flow cytometry (gating strategies 

in Suppl. Fig. 1A–C). In this model, we found that VEGF-C was significantly increased in 

the resolution phase at day 31 (Fig. 1C). Histopathological features of airway inflammation 

were seen at day 13 and after memory recall at day 69 (Fig. 1D). Lymphatic vessels, 

immunostained for VEGFR-3 (a common marker of lung lymphatics 22,23), were increased 

in density at day 31 compared to PBS-treated mice (Fig. 1E–F), although LECs began to 

express the cell proliferation marker Ki-67 by day 11 (Suppl. Fig. 1C–D). We could prevent 

lymphatic vessel expansion with systemic administration of mF4-31C1 (Fig. 1F), a blocking 

antibody against mouse VEGFR-3 that prevents lymphangiogenesis without affecting 

existing lymphatics 28.

Blocking VEGFR-3 signaling reduces overall CD45+ cells during acute allergic 
inflammation and modulates dLN cellular composition during acute inflammation and 
resolution

Having established that lymphangiogenesis occurs in the resolution phase, we sought to 

understand how blocking pro-lymphangiogenic VEGFR-3 signaling modulates the acute 

response and resolution in allergic airway inflammation. We blocked VEGFR-3 using 

mF4-31C1 throughout the entire experiment for the acute schedule and until day 21 for the 

resolution schedule (Fig. 2A). We found that VEGFR-3 blockade significantly decreased 

many inflammatory (CD45+) cell populations present in lung tissues at day 13, including 

eosinophils, T cells, B cells, monocytes, and neutrophils (Fig. 2B top, 2C), but not alveolar 

macrophages (Suppl. Fig. 2A). Blocking VEGFR-3 reduced these cell types similarly 

relative to the total CD45+ population (Fig. 2C, Suppl. Fig. 2A). During resolution at day 31, 

these were decreased below baseline levels in both the control and mF4-31C1 treated mice 

(Fig. 2B bottom); however, relative to all CD45+ cells in the lung, both neutrophil and 

eosinophil populations were reduced more in mice treated with mF4-31C1 compared to 

controls upon post-inflammatory cascade contraction (Fig. 2C). When we looked more 

specifically at the CD4+ T cell subsets, we found that at day 13 in the lungs both TReg cells 

and naïve CD4+ T cells (Tnaïve) were slightly decreased, though not significant, in 

mF4-31C1 treated mice. We also found that IL-4 and IL-10, but not IL-5 producing CD4+ T 

cells restimulated in vitro with HDM were decreased in lungs of mF4-31C1 treated mice 

(Suppl. Fig. 2B). At day 31, the lung subsets are unchanged (Fig. 2D).
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While in the lungs no significant changes in CD4+ T cell subsets were found, CD4+ T cell 

subsets in the dLN are significantly affected by mF4-31C1 treatment at both time points: 

CD4+ Tnaïve are increased, while TRreg cells are decreased (Fig. 3A). Th2 cells are only 

decreased at day 13 (Fig. 3A), consistent with overall decreased inflammation in the lungs 

upon mF4-31C1 treatment, but are unchanged at day 31 (Fig. 3A). Naïve T cells are known 

to express CCR7, the receptor for the chemokine CCL21. It has been established that 

lymphatics, particularly during inflammation and in response to pro-lymphangiogenic 

VEGF-C, produce CCL21 4,5,29. CCL21 is present at steady state in both lungs and dLNs 

(lungGENs database) 30,32. Since VEGFR-3 signaling induces CCL21 upregulation in LECs 

and we observed changes in the CCR7+ T cell compartment, we sought to analyze CCL21 

levels in the lungs upon VEGFR-3 blocking. At day 13, mF4-31C1 treatment decreased 

CCL21 in the lungs, quantified by immunofluorescence and ELISA (Fig. 3B–C). In the 

dLNs, however, CCL21 levels did not decrease with mF4-31C1 treatment at day 13 (Fig. 

3C). In our experiments, we observed proportional decreases of several innate cells along 

with T cells, including neutrophils and monocytes (both were decreased in total number 

upon mF4-31C1 treatment), which are not known to express CCR7. We therefore sought to 

assess changes in other chemokines due to mF4-31C1 treatment. Using a multiplex kit 

(luminex), we found that several other chemokines, including CXCL2, CCL5, CCL7, 

CXCL10, CCL11, CCL12, CCL2, CXCL13, CCL3, and CXCL12 are also decreased by 

mF4-31C1 treatment (Fig. 3D).

Blocking VEGFR-3 signaling exacerbates the memory response to HDM

We sought to assess changes in the memory response when performing mF4-31C1 treatment 

during the first 21 days of the allergic response (Fig. 4A) and re-challenging with HDM after 

several weeks. We found that overall lung inflammation, as indicated by CD45+ cell 

numbers (Fig 4B), including total T cells and CD4+ T cells (Suppl. Fig. 3A), as well as 

histologically (Fig. 4C), were not enhanced in mice receiving mF4-31C1 treatment. 

However, we found an increase in eosinophils (Fig. 4D, Suppl. Fig. 3B), CD4+ Th2s (Fig 

4D), and CD4+ TEM (Suppl. Fig. 3C), but not TReg cells (Fig. 4D) or serum IgE levels 

(Suppl. Fig. 3D). Furthermore, both the ratios of CD4+ TEM to TCM and Th2 to TReg are 

increased in mF4-31C1 vs. isotype antibody (IgG) treated mice (Fig. 4E). Additionally, in 
vitro restimulation with PMA and ionomycin clearly showed enhanced levels of IL-4+, 

IL-13+, and IL-4+ IL-13+ double positive CD4+ T cells (Fig. 4F, Suppl. Fig. 3E), but not 

IFNγ+ CD4+ T cells in mF4-31C1 treated mice. Overall type 2 cytokine producing cells 

made up ~50% of CD4+ T cells in mF4-31C1 treated mice, compared to ~30% in mice 

receiving isotype antibody treatment (Fig. 4F). HDM specific restimulation of T cells 

showed increased IL-5 and IL-13, though not significant (0.05 < p < 0.1), but not IFNγ (Fig. 

4G).

Mice lacking VEGF-C and VEGF-D show exacerbated memory response to HDM.

To understand if the exacerbated memory response is dependent on the absence of one of, or 

both, pro-lymphangiogenic growth factors (i.e. VEGF-C and/or VEGF-D), we compared the 

memory response induced by HDM in wild type (‘WT’) mice with that in mice lacking 

either VEGF-C (Rosa26Cre-ERT2;Vegfcflox/flox, herein referred to as ‘VEGF-C KO’ or ‘VC 

KO’ in Figures), VEGF-D (Vegfd−/−, herein referred to as ‘VEGF-D KO’ or ‘VD KO’ in 
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Figures), or both (Rosa26Cre-ERT2; Vegfcflox/flox; Vegfd−/−, herein referred to as ‘double 

KO’) that have been previously described 33,34. We induced Vegf-c deletion prior to HDM 

challenge in our established memory schedule (Fig. 5A), and then assessed the 

histopathology of the lungs (Fig. 5B). After blinded scoring, we found that inflammation 

surrounding both vessels and airways was enhanced from 3 ± 1 around vessels and 2 ± 1 

around airways in WT mice to 5 ± 1 (vessels) and 4 ± 1 (airways) in double KO mice (Fig. 

5C, scoring criteria can be found in the Supplementary Methods Section). It also appears 

that lack of VEGF-D alone results in these pathological changes (Fig. 5C).

We next sought to assess differential inflammatory cell infiltration into the lungs in these 

mice (Fig. 5D–G). With HDM treatment, lungs of double KO mice contained slightly 

increased eosinophils (though not significant, Fig. 5D), increased CD4+ TEM/TCM ratios 

(Fig. 5E), increased Th2 CD4+ T cells (Fig. 5F), and higher ratios of Th2/TReg cells 

(Fig .5G). No inflammation was induced by removing VEGF-C and/or VEGF-D in control 

PBS treated mice (Fig. 5D, F). When we examined the functionality of these cells by 

restimulating in vitro with PMA and ionomycin, we found a 2.8 - fold increase in both IL-5+ 

and IL-13+, but not IFNγ+ CD4+ T cells (Fig. 5H–I). This effect appeared to be antigen 

specific, as HDM restimulation of lung single cell suspension resulted in enhanced IL-4, 

IL-5, and IL-13 but not IFNγ levels produced by lung cells (Fig. 5J).

DISCUSSION

In our presented work, we have found that pro-lymphangiogenic VEGFR-3 signaling 

modulates allergic airway inflammation. During acute inflammation, VEGFR-3 blocking 

decreased immune cell recruitment into the lungs, though more naïve T cells were found in 

the dLN. In contrast, the memory response to allergen is significantly exacerbated by a lack 

of VEGFR-3 signaling (either by mF4-31C1 treatment or in mice lacking VEGF-C and/or 

VEGF-D). We found that the exacerbated memory response is dependent on the absence of 

both VEGF-C and VEGF-D, suggesting that these two growth factors may compensate for 

each other in allergic airway inflammation. We hypothesize that the changes in the memory 

response may at least in part be due to the decrease of CCL21 levels in the lungs (but not in 

the dLN) at day 13 that cause accumulation of naïve T cells in the dLN, leading to more 

priming of the increased naïve T cells. Increased T cell priming could ultimately lead to the 

exacerbated memory response we find at D69. We suspect that effects of blocking pro-

lymphangiogenic VEGFR-3 signaling were both due to altering lung lymphatics, and by 

affecting immune cells such as macrophages that may also respond to VEGFR-3 

stimulation. Taken together, our work is the first study to describe critical roles of pro-

lymphangiogenic signaling in modulating immunity during allergic airway inflammation: 

leading to enhanced acute inflammation but an ameliorated memory response later on.

Existing studies on allergic inflammation and lymphangiogenesis generally focused on 

whether or not lymphangiogenesis occurs, and have led to conflicting findings 6,9,25,35,36. 

Our findings corroborate studies showing lymphangiogenesis in a HDM model of 

respiratory allergies in rats6, and studies by Kretschmer et al demonstrating that house dust 

mite challenge leads to lymphangiogenesis and T cell infiltration in murine lungs 37. Other 

studies have also demonstrated that lymphangiogenesis occurs more broadly in chronic 
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airway inflammation, particularly during diseases such as lymphangioleiomyomatosis, and 

in certain regions within lungs of idiopathic pulmonary fibrosis patients 7,22,23,37–40. 

Interestingly, fatal asthma in humans, where fibrosis has occurred in much of the lung, is 

associated with fewer lymphatic vessels in the lungs9,25,35. However, a thorough study of 

how lymphatic vessels are altered during disease progression in human asthmatic patients 

has yet to be performed, and existing studies in mice and rats likely are more representative 

of earlier time points than fatal asthma.

The CCL21/CCR7 axis is a well-established mechanism by which lymphatics modulate 

immunity, and CCL21 production can be induced in LECs with VEGF-C. In the dLNs, 

lymphatics are one of the major sources of CCL21, which attracts CCR7+ T cells and 

DCs29,41. Previous studies by Baluk et al demonstrated that CCL21 is increased in mouse 

lung lymphatics during chronic bacterial infections 23. Here, we have found that CCL21 is 

reduced in the lungs during acute inflammation when pro-lymphangiogenic signaling is 

blocked. This axis has also been studied in allergic airway inflammation using Ccr7−/− 

knockout mice or mice lacking CCL21/CCL19 expression in secondary lymphoid organs 

(plt/plt mice) 30,31. Kawakami et al showed that Ccr7−/− KO mice have an exacerbated 

response to HDM, with increased eosinophilia, IL-13 levels in the lungs, and airway 

response to acetylcholine 30. In contrast, Ploix et al demonstrated that plt/plt mice did not 

appear to have significantly changed responses to an OVA/alum based model of allergic 

airway inflammation31. Another study by Xu et al with plt/plt mice appears to contradict 

this, clearly demonstrating greater eosinophilia and lymphocyte numbers in the 

bronchoalveolar lavage fluid (BAL), inflammation score of lung histology, type 2 cytokines 

(as detected by RNA), and IgE production in plt/plt mice compared to controls42. A third 

study by Yamashita et al suggests that early on, airway inflammation was reduced in plt/plt 
mice, as indicated by airway response to acetylcholine and overall lymphocytes and cell 

numbers in BAL43. However, after cessation of antigen dosing, inflammation appears to 

resolve less in plt/plt mice compared to wild type controls, reconciling the earlier studies 43. 

Similarly, our data demonstrate that overall inflammatory cell numbers are decreased early 

on, though allergic inflammation is still present, and a robust memory response is formed. 

Differences between our results and those from plt/plt mice likely stem from the fact that in 

plt/plt mice, CCL21 is still produced at low levels in LECs, which may have been increased 

during inflammation, a possibility that was not considered in the discussed studies. In 

addition, both CCL21 and CCL19 are abrogated entirely from the dLNs in plt/plt mice, 

whereas our studies likely affected mostly the LEC population. This is substantiated by 

previous studies showing that VEGFR-3 blocking abrogates CCL21 production mainly in 

LECs, but may not modulate CCL21 production in other cell types20,44,45. Additionally, we 

found that VEGFR-3 blocking not only modulated CCL21, but also decreased other 

chemokines involved in recruitment of immune cells including T cells, eosinophils, 

neutrophils, and basophils, which could explain changes in non-CCR7+ inflammatory cells 

we have observed. Furthermore, other cells, including macrophages and ILCs, have been 

shown to express VEGFR-3 and produce chemokines, and thus may be responsible for some 

of the changes in chemokines and thus inflammatory cells we have observed (see Immgen 

database 46–49). It is therefore likely that VEGFR-3 blocking modulates other chemokine 

secretion by other immune cells during the allergic response.
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Interestingly, LECs have been shown to produce several cytokines. This includes IL-7 in 

response to viral infection and IL-15 in response to lipopolysaccharide induced 

inflammation50,51. IL-7 and IL-15 production suggests a role for lymphatics in the 

maintenance of T cell homeostasis (by IL-7) 52 and memory, as well as homeostasis of NK 

cells and NK T cells (by IL-15)53. Interestingly, in a model of allergic airway inflammation 

that specifically induces bronchus-associated lymphoid tissues by adoptive transfer of 

activated Th2 cells from DO11.10 OVA-specific Tg mice, Thy1+ LECs were shown to 

produce IL-736. The authors postulate that this enhances local survival of the memory Th2 

population in the lungs, suggesting a critical role for LECs in immune memory 

maintenance36. Interestingly, we have also seen that chronic allergic airway inflammation 

enhances IL-7 production in lung LECs (data not shown), and studies on whether VEGFR-3 

signaling is critical in inducing memory T cell-maintaining phenotype in LECs during 

chronic HDM mediated allergic inflammation are currently ongoing.

In summary, we have found that pro-lymphangiogenic signaling exacerbates allergic 

memory responses. This is likely in part due to an increase in naïve T cells in the dLN, and 

chemokine levels in the lungs. Therefore, our studies provide new evidence that pro-

lymphangiogenic signaling modulates the allergic response by first reducing inflammatory 

cells in the acute phase and then exacerbating memory responses.

METHODS

We induced HDM mediated allergic airway inflammation in mice. To test the effects of pro-

lymphangiogenic signaling, mice were treated with VEGFR-3 antibody (mF4-31C1) 

blockade and lung and lymph node inflammatory cell infiltration and lymphatics were 

assessed using flow cytometry, in vitro restimulation, fluorescence immunostaining, and 

histology, and cytokine and chemokine levels were assessed using ELISA and multiplex 

assays. More extensive methods can be found in the Supplementary Materials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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TReg regulatory T cells

HDM house dust mite

LN lymph node

dLN draining lymph node

ILC innate lymphoid cells

LECs lymphatic endothelial cells

OVA ovalbumin

PD-L1 programmed death ligand 1

Tnaïve naïve CD4 T cells

WT wild type mice

VC KO Rosa26Cre-ERT2Vegfcflox/flox mice

VD KO Vegfd−/− mice

double KO mice Rosa26Cre-ERT2Vegfcflox/floxVegfd−/−

TEM effector memory T cells

TCM central memory T cells

BAL bronchoalveolar lavage
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Figure 1: HDM-mediated allergic airway inflammation induces lymphangiogenesis during 
resolution and lymphangiogenesis can be blocked using anti-VEGFR-3 antibody treatment.
(A) Schedule of HDM-induced allergic airway inflammation in mice. On day 0, 100 μg 

HDM in 50 μl PBS was given intranasally on day 0, followed by 4 challenges of 25 μg each 

on days 7-10; after 8 weeks, 25 μg HDM was given as a memory recall on day 66, followed 

by sacrifice on day 69. (B) Numbers of eosinophils (Ly-6G-CD11cloSiglec-F+, left) and Th2 

(Foxp3−Gata3hi) CD4+ T cells (right) in the lung throughout the acute, resolution, and 

memory recall phases. (C) VEGF-C and VEGF-D levels in the lungs using ELISA. (D) 

H&E staining showing inflammation and (E) VEGFR-3 immunofluorescence showing 

lymphatic vessels, comparing control (PBS-infused) with the three phases of HDM-induced 

inflammation. Scale bars, 500 μm. (F) Quantification of lymphatic area (VEGFR-3+ pixels/

DAPI+ pixels) in the lungs at these timepoints, as well as at day 31 using anti-VEGFR-3 

mF4-31C1 (αR3). Boxes represent median (central bar) with range from 25th-75th 

percentile, and whiskers represent min to max value. Data is representative of n ≥ 4 mice 

each in 2-3 experiments, and statistics (one-way ANOVA with Dunnett’s Multiple 

Comparison Test) were performed in GraphPad Prism. * p<0.05.
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Figure 2: VEGFR-3 blocking dampens acute HDM mediated inflammation in murine lungs and 
modulates dLN composition in the acute phase and during resolution.
(A) Schedule of HDM-induced allergic airway inflammation in mice. Mice were challenged 

with receiving 100 μg HDM on day 0, followed by 4 consecutive challenges of 25 μg of 

HDM on days 7-10. Pro-lymphangiogenic signaling was blocked using mF4-31C1 and mice 

were sacrificed to assess the level of inflammation either at day 13 (inflammatory peak) or at 

day 31 (final dose of mF4-31C1 given on day 21) in mice. (B) Overall CD45+ cells at day 

13 and 31, with subsets including monocytes, neutrophils, B cells, alveolar macrophages, 

DCs, T cells, and eosinophils in the lungs. (p<0.05: * - day 13, # - day 31). (C) Eosinophils, 

neutrophils, T cells, CD4+ T cells, and CD8+ T cells as %CD45+ cells at day 13 and 31. (D) 

CD4+ T cell subsets in lungs at day 13 and day 31, including TReg cells, Th2s, and Tnaïve 

cells as %CD4+ cells. All cell numbers were assessed via flow cytometry. Boxes represent 

median (central bar) with range from 25th-75th percentile, and whiskers represent min to 

max value. Data is representative of n ≥ 4 mice and 2-3 experiments, and statistics (two-
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tailed student’s t test) were performed in GraphPad Prism. * or # p<0.05 , and + 0.05 < p < 

0.1.
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Figure 3: VEGFR-3 blocking treatment increases CD4+ Tnaïve in the dLN during acute 
inflammation and resolution, and decreases CCL21 and other chemokines in the lungs during 
acute inflammation.
Mice were challenged as described in Figure 2. CD4+ T cell subsets including CD4+ Tnaïve, 

TReg cells, and Th2s in the dLN at (A) day 13 and day 31. Levels of the CCR7 chemokine, 

CCL21, in lungs and dLN as determined by (B) immunofluorescence staining, possible 

since CCL21 both sticks to extracellular matrix and cytoplasm, (scale bar indicates 400 μm) 

and (C) ELISA. (D) Luminex assay on lung lysates to assess chemokine levels including 

CXCL2, CCL5, CCL7, CXCL10, CCL11, CCL12, CCL2, CXCL13, CCL3, and CXCL12 at 

Maisel et al. Page 15

Mucosal Immunol. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



day 13. Boxes represent median (central bar) with range from 25th-75th percentile, and 

whiskers represent min to max value. Data is representative of n ≥ 4 inflamed mice and 

statistics (two-tailed student’s t test) were performed in GraphPad Prism. # 0.05 < p ≤ 0.15, 

* p <0.05, **p ≤ 0.01, *** p < 0.001.

Maisel et al. Page 16

Mucosal Immunol. Author manuscript; available in PMC 2021 January 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Blocking pro-lymphangiogenic signaling using the VEGFR-3 blocking antibody 
mF4-31C1 induces an exacerbated memory response to HDM.
(A) Schedule of HDM-induced allergic airway inflammation in mice (as described 

previously) including anti-VEGFR-3 blocking treatment using mF4-31C1. (B) Overall 

CD45+ inflammatory cell numbers. (C) Blinded inflammation score performed by a 

pathologist: perivascular inflammation and peribronchiolar inflammation was scored from 

0-5 on an ordinal scale, with 0 indicating normal structures with no pathologic inflammatory 

cells, 1 indicating few scattered inflammatory cells, 2 indicating a circumferential 

inflammatory band 1 cell thick, 3 indicating a circumferential inflammatory band 2-4 cells 

thick, 4 indicating a circumferential inflammatory band >4 cells thick, and 5 indicating the 

presence of nodular lymphoid follicular hyperplasia. (D) Eosinophils, Th2 cells, and TReg 

cells levels as assessed by flow cytometry. (E) CD4+ TEM to TCM and Th2 to TReg ratios. (F) 

IL-4+ and IL-13+ CD4+ T cells levels after in vitro restimulation with PMA and ionomycin. 

(G) ELISAs for IL-4, −5, and −13 on HDM specific in vitro restimulated single cell lung 

lysate samples (48h). Boxes represent median (central bar) with range from 25th-75th 

percentile, and whiskers represent min to max value. Data is representative of n ≥ 4 inflamed 

mice (n ≥ 3 for PBS treated mice) and 2-3 experiments, and statistics (two tailed student’s t 

test, comparing only HDM treated groups) were performed in GraphPad Prism. * p <0.05, 

** p ≤ 0.01.
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Figure 5: The exacerbated memory response is dependent on absence of both VEGF-C and 
VEGF-D.
(A) Schedule of HDM-induced allergic airway inflammation in mice including treatment of 

all mice with tamoxifen more than two weeks prior to inducing allergic inflammation. 

Allergic inflammation was induced in wild type (‘WT’) mice and mice lacking either 

VEGF-C (Rosa26Cre-ERT2;Vegfcflox/flox, here referred to as ‘VC KO’), VEGF-D (Vegfd−/−, 

here referred to as ‘VD KO’), or both (Rosa26Cre-ERT2;Vegfcflox/flox;Vegfd−/−, here referred 

to as ‘double KO’) that have been previously described 33,34. (B) H&E staining showing 

inflammation (scale bar indicates 500 μm), and (C) blinded inflammation scores. Flow 

cytometric analysis of immune cell infiltration into the lungs including (D) eosinophils, (E) 

CD4+ TEM/TCM ratios, (F) TReg cells, and CD4+ Th2 cells, and (G) Th2/TReg ratios. (H-I) 

IL-5+, IL-13+, IFNγ+, and IL5+13+ double producing CD4+ T cells after in vitro 
restimulation with PMA and ionomycin on lung single cell suspensions quantified via flow 

cytometry. (J) IL-4, IL-5, and IL-13 levels after 48h in vitro restimulation with HDM on 

lung single cell suspensions to assess antigen specificity of the Th2 cells in the lungs. Boxes 

represent median (central bar) with range from 25th-75th percentile, and whiskers represent 

min to max value. Data is representative of n = 4 mice for PBS treated and n = 6 mice for 
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inflamed mice (n = 1 experiment for mice lacking VCA/D), and statistics (one-way ANOVA 

with Dunnett’s Multiple Comparison mice lacking VEGF-C and/or VEGF-D). Test) were 

performed in GraphPad Prism.* p<0.05, ** p ≤ 0.01.
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