

A P7 Phage-Like Plasmid Carrying *mcr-1* in an ST15 *Klebsiella pneumoniae* Clinical Isolate

Weilong Zhou^{1,2†}, Lu Liu^{1,2†}, Yu Feng^{1,2} and Zhiyong Zong^{1,2,3,4*}

¹ Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China, ² Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China, ³ Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China, ⁴ Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China

OPEN ACCESS

Edited by:

Raffaele Zarrilli, Department of Public Health, University of Naples Federico II, Italy

Reviewed by:

Remy A. Bonnin, Université Paris-Saclay, France Jason Sahl, Northern Arizona University, United States Antonio Cannatelli, University of Siena, Italy Davide Sassera, University of Pavia, Italy

*Correspondence:

Zhiyong Zong zongzhiy@scu.edu.cn

[†]These authors have contributed equally to this work.

Specialty section:

This article was submitted to Antimicrobials, Resistance and Chemotherapy, a section of the journal Frontiers in Microbiology

Received: 24 September 2017 Accepted: 05 January 2018 Published: 22 January 2018

Citation:

Zhou W, Liu L, Feng Y and Zong Z (2018) A P7 Phage-Like Plasmid Carrying mcr-1 in an ST15 Klebsiella pneumoniae Clinical Isolate. Front. Microbiol. 9:11. doi: 10.3389/fmicb.2018.00011 A *Klebsiella pneumoniae* clinical strain, named SCKP83, was isolated and found to be resistant to colistin thanks to the presence plasmid-borne colistin resistant gene *mcr-1*. The strain was subjected to whole genome sequencing and conjugation experiments. The subsequent analysis indicated that the strain belongs to ST15 and the capsular type K41. In SCKP83, *mcr-1* was carried by a 97.4-kb non-self-transmissible plasmid, a 90.9-kb region of which was predicted as an intact phage. This phage was 47.79% GC content, encoded 105 proteins and contained three tRNAs. *mcr-1* was located downstream of two copies of the insertion sequence IS*Apl1* (one complete and one truncated) and was inserted in the *ant1* gene, which encodes a putative antirepressor for antagonizing C1 repression, in this phage. The phage is highly similar to phage P7 (77% coverage and 98% identity) from *Escherichia coli*. Several similar *mcr-1*-carrying plasmids have been found in *E. coli* at various locations in China, suggesting that these phage-like plasmids are not restricted to *E. coli* and may represent new vehicles to mediate the inter-species spread of *mcr-1*.

Keywords: colistin, resistance, phagemid, plasmids, Klebsiella pneumoniae

INTRODUCTION

Klebsiella pneumoniae is a major pathogen causing a variety of infections in humans. Colistin is the last resort antimicrobial agent to treat infections caused by *K. pneumoniae* including those with resistance to carbapenems. However, colistin-resistant *K. pneumoniae* have emerged worldwide (Olaitan et al., 2014a). A few mechanisms including both chromosomal and plasmid-borne ones have been identified to be responsible for resistance to colistin in *K. pneumoniae* (Olaitan et al., 2014b). Plasmid-borne colistin resistance genes including *mcr-1* (Liu et al., 2016), *mcr-2* (Xavier et al., 2016), and *mcr-3* (Yin et al., 2017) have been found recently. In particular, *mcr-1* has been identified in various species of the Enterobacteriaceae in many countries (Poirel et al., 2017).

Bacteriophages (phages) are viruses able to infect and replicate within bacteria. Phages mediate the transfer of genetic components between bacteria via transduction. Phages may have a lytic cycle or a lysogenic cycle or both. In the lytic cycle, phage genomes are replicated and are assembled into particles, which cause cell lysis and are then released. In the lysogenic cycle, phage genomes integrate into the chromosome of host bacterial cells to exist in a latent or dormant state without causing cell lysis (Feiner et al., 2015). The structure of phages typically consists of a protein head

1

that encapsulates a DNA or RNA genome and a tail that attacks the bacterial host (Wurtz, 1992). Phage genomes vary remarkbly in form and size but usually encode products for host takeover, replication, virion assembly, or lysis (Black and Thomas, 2012). Some phages may integrate into plasmids and can therefore be transferred by the host plasmid (Oliver et al., 2005; Shin and Ko, 2015).

mcr-1 is commonly carried by plasmids of the IncI2 or IncX4 replicon type and has also been found on IncF, IncHI2, or IncP plasmids (Poirel et al., 2017). We have found a plasmid carrying *mcr-1* and phage P7-like sequences, which is reported here.

METHODS

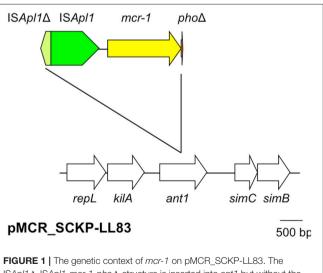
Bacterial Strain

K. pneumoniae strain SCKP83 was recovered from a sputum sample of a 90-year-old male patient with severe pneumonia in February 2017 in China, who did not receive colistin before. Species identification was performed using Vitek II (bioMérieux, Marcy-l'Étoile, France) and MALTI-TOF (Bruker, Billerica, MA, USA). *In vitro* susceptibility of colistin was performed using the broth dilution method of the Clinical Laboratory Standards Institute (CLSI) (CLSI, 2017) and breakpoints of colistin defined by EUCAST (http://www.eucast.org/) were applied. The presence of plasmid-borne colistin resistant genes *mcr-1*, *mcr-2*, and *mcr-3* was screened by PCR as described previously (Xavier et al., 2016; Zhao and Zong, 2016; Yin et al., 2017).

Whole Genome Sequencing and Analysis

The strain was subjected to whole genome sequencing. Genomic DNA was prepared using the QIAamp DNA Mini Kit (Qiagen, Hilden, Germany) and whole genome sequencing was performed using the HiSeq X10 Sequencer (Illumina, San Diego, CA). The coverage was approximately $300 \times$ coverage, which was calculated based on the estimated genome size and the average output of the sequencer. Reads were trimmed using Trimmomatic (version 0.36) (Bolger et al., 2014) and were then assembled to contigs using SPAdes (version 3.11) (Bankevich et al., 2012) with careful mode turned on. Sequence type and capsular type were determined using the genomic sequence to query the multi-locus sequence typing and wzi allele databases of K. pneumoniae available at http://bigsdb.pasteur. fr/klebsiella/klebsiella.html. Antimicrobial resistance genes were identified from genome sequences using the ABRicate program (https://github.com/tseemann/abricate) and ResFinder (https:// cge.cbs.dtu.dk/services/ResFinder/). The plasmid carrying mcr-1, designated pMCR_SCKP-LL83, was circularized using PCR and Sanger sequencing to fill in gaps between contigs. Plasmid replicon was determined using the PlasmidFinder tool at http:// genomicepidemiology.org/. Similar plasmids were retrieved from the GenBank and pairwise comparisons were preformed using BLASTn alignment (Altschul et al., 1990) and BRIG (Alikhan et al., 2011). The presence of phages was screened using PHASTER (http://phaster.ca/) (Arndt et al., 2016). tRNAs were screened using tRNA-SE (http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe and Chan, 2016).

Nucleotide Sequence Accession Numbers


Draft whole-genome sequence of strain SCKP83 has been deposited into GenBank under the accession number NOKM00000000. Short reads of the whole-genome sequence of strain SCKP83 has been deposited into Short Reads Achieve under the accession number SRP099296. The complete sequences of pMCR_SCKP-LL83 has been deposited into GenBank under the accession number MF510496.

Conjugation and Transformation Experiments

Conjugation experiments were performed using both broth- and filter-based methods as described previously (Coque et al., 2002; Novais et al., 2006; Valenzuela et al., 2007). The azide-resistant *Escherichia coli* strain J53 was used as the recipient and 2 μ g/ml colistin plus 150 μ g/ml sodium azide were used for selecting transconjugants. Plasmids were prepared from strain SCKP83 using alkaline lysis (Sambrook and Russell, 2001) and were used for electroporation. Electroporation was conducted using a Gene Pulser (Bio-Rad, Hercules, CA, USA) with an electrical pulse of 25 μ F capacitance, 2.5 kV and 200 Ω sample resistance. *E. coli* strain DH5 α and a colistin-susceptible *K. pneumoniae* strain 020018 were used as recipient strains. Potential transformants were selected on agar plates containing 2 μ g/ml colistin.

Induction of Bacteriophage

To determine the nature of pMCR_SCKP-LL83, we performed the induction assay using ultraviolet ray and mitomycin C as described previously (Mitsui et al., 1973; Raya and H'bert, 2009). Briefly, for UV induction, 1 ml culture of strain SCKP-LL83 in the exponential phase was harvested and resuspended in 0.05 M phosphate buffer (pH 6.8). The suspension was adjusted to the

ISApI1 Δ -ISApI1-mcr-1-pho Δ structure is inserted into ant1 but without the 2-bp DR characteristic of the insertion of ISApI1. The two ISApI1 are at contrary oppositions. Δ refers to truncated genes or elements. ant1 encodes a putative antirepressor. The phage genes surrounding ant1 include repL (encoding replication protein), *kliA* (encoding a putative host killing protein), *simB* and *simC* (both encoding proteins for host immunity).

TABLE 1 | Features of pMCR_SCKP-LL83.

Feature ^a	Position (start-end)	Function	Feature ^a	Position (start-end)	Fund
0001	356–1912	Type I restriction-modification system subunit M	0051	42682-43587	Нурс
0002	1909–3114	Restriction endonuclease subunit S	0052/mcr-1	43541-45166	Colis
0002	3235-6351	Type I restriction enzyme EcoR124II R	ISApl1	45353-46422	Inser
0000	3200-0001	protein	$ISApl1\Delta$	46423-46645	Inser
0004	6616-7122	3'-Phosphatase, 5'-polynucleotide kinase	0055	46580-46915	Antin
0005/pmgS	7195–8457	Putative morphogenetic protein	0056	46912-47133	Нурс
0006	8459-8677	Hypothetical protein	0057/simB	47561-48031	Supe
0007	8759-9460	Hypothetical protein	0058/simC	48039-48818	Supe
0008/pphA	9457–10134	Serine/Threonine protein phosphatase	0059/pmgC	49028-49594	puta
0009/pmgP	10131–10757	Putative morphogenetic protein	0060/tubB	49605-50216	Majo
0010	11259–11414	Hypothetical protein	0061/pmgB	50231-51112	Puta
0011/pmgM	11481-12059	Putative morphogenetic function protein	0062	51194-54586	Trans
0012	12062-12307	Putative morphogenetic protein	0063/pmgA	54586-54942	Puta
0013	12571-12831	Baseplate protein	0064	54939-56372	Puta
0014	12841-14058	Tail protein	0065	56372-57208	Puta
0015	14062-14790	Tail protein	0066	57287-57721	Puta prote
0016	14777-15562	Hypothetical protein	0067	57733–59214	Нурс
0017	15564–16580	Tail length tape measure protein	0068	59483-59728	Нурс
0018	16573–17205	Putative baseplate protein	0069	59769-60206	Нурс
0019	17252-18250	Hypothetical protein	0070	60217-60645	Нурс
0018/ <i>dnaB</i>	18250-19614	Replicative DNA helicase	0071	60686-61159	Нурс
0021	19900–19975	tRNA-Met	0072	61188-61646	Нурс
0024/tciA	20250-20675	Putative tellurite or colicin resistance	0073/tfaE	62160-62771	Prop
		protein	0074	62771-63229	Нурс
0025	21187–21360	Hypothetical protein	0075	63240-63683	Нурс
0026	21603-21678	tRNA-Thr	0076/pin	63773-64345	Site-
0027	21681-21756	tRNA-Asn	0077	64781-65044	Нурс
0028/dmt	22429-24693	DNA adenine methylase family protein	0078/lydA	65119-65448	Lysis
0029/rdgC	24690-25595	Recombination-associated protein RdgC	0079	65445-65888	Lysis
0030	25588-25872	Hypothetical protein	0080	65875-66477	Нурс
0031	25857-26096	Hypothetical protein	0081/darA	66479-68398	Нурс
0032	26335-27123	Hypothetical protein	0082/ddrA	68395-68760	Нурс
0033	27163-27585	Outer membrane lytic protein	0083	68797-71760	Нурс
0034/upfB	27763-28155	Hypothetical protein	0084/hxr	71750-72061	Puta
0035	28048-28311	Hypothetical protein	0085/ompD	72804-73916	Oute
0036/ <i>repA</i>	28491–29375	Initiator replication family protein of	0086/ssb	74150-74638	Singl
		pO111-like replicon	0087/lys	74808-75365	Lyso
0037	29668–30477	Helicase	0088	75657-76676	Puta
IS1294	32106-32205	Insertion sequence	0089	76669–78378	Puta
0040/ <i>parA</i>	32334–33530	Plasmid partition protein A	0090	78454-85221	Puta
0041/parB	33547–34548	Plasmid partition protein B	0091	85255-85695	Нурс
0042	34774–36480	Putative baseplate protein	0092	85692-85940	Mod
0043	36541-38130	Hypothetical protein			
0044	38140-38955	Tail tube protein	0093	85982-87286 87343-87984	Hypo
0045/pmgG	38991-39572	Putative morphogenetic protein	0094	87343-87984	Matu
0046/bplB	39584-40093	Putative baseplate structural protein	0095/ref	88173–88733	Reco prote
0047	40217-40423	Hypothetical protein	0096	88981-89190	Puta
0048	40547-40792	Hypothetical protein	0090 0097 <i>/cre</i>	89343-90374	GST-
0049/repL	40843-41652	Replication protein	0091/cre 0098/cra	90382-90603	Puta
0050/ <i>kilA</i>	41718–42518	Putative host killing protein	0030/Cla	30302-30003	ruta

TABLE 1 | Continued

Feature ^a	Position (start–end)	Function	
0051	42682–43587	Hypothetical protein	
0052/mcr-1	43541-45166	Colistin resistance	
ISApl1	45353-46422	Insertion sequence	
$ISApl1\Delta$	46423-46645	Insertion sequence, truncated	
0055	46580-46915	Antirepressor protein	
0056	46912-47133	Hypothetical protein	
0057/simB	47561-48031	Superimmunity linked function	
0058/simC	48039-48818	Superimmunity linked function	
0059/pmgC	49028–49594	putative morphogenetic protein	
0060/tubB	49605-50216	Major tail tube protein	
0061/pmgB	50231-51112	Putative morphogenetic protein	
0062	51194–54586	Transglycosylase SLT domain protein	
0063/pmgA	54586-54942	Putative morphogenetic protein	
0064	54939–56372	Putative baseplate structural protein	
0065	56372-57208	Putative tail tube protein	
0066	57287-57721	Putative tail fiber structure or assembly protein	
0067	57733-59214	Hypothetical protein	
0068	59483-59728	Hypothetical protein	
0069	59769-60206	Hypothetical protein	
0070	60217-60645	Hypothetical protein	
0071	60686-61159	Hypothetical protein	
0072	61188–61646	Hypothetical protein	
0073/tfaE	62160-62771	Prophage tail fiber assembly protein Tfa	
0074	62771-63229	Hypothetical protein	
0075	63240-63683	Hypothetical protein	
0076/pin	63773–64345	Site-specific recombinase	
0077	64781–65044	Hypothetical protein	
0078/lydA	65119–65448	Lysis determining protein	
0079	65445–65888	Lysis determining protein	
0080	65875–66477	Hypothetical protein	
0081 <i>/darA</i>	66479–68398	Hypothetical protein	
0082/ddrA	68395–68760	Hypothetical protein	
0083	68797-71760	Hypothetical protein	
0084/hxr	71750-72061	Putative repressor protein Hxr	
0085/ompD	72804–73916	Outer membrane porin protein OmpD	
0086/ssb	74150–74638	Single-stranded DNA-binding protein	
0087/lys	74808–75365	Lysozyme	
0088	75657–76676	Putative head processing protein	
0089	76669–78378	Putative portal protein	
0090	78454–85221	Putative DNA adenine methyltransferase	
0091	85255-85695	Hypothetical protein	
0092	85692-85940	Modulator protein	
0093	85982-87286	Hypothetical protein	
0094	87343–87984	Maturation control protein	
0095/ref	88173-88733	Recombination enhancement function protein	
0096	88981-89190	Putative lysogeny establishment protein	
0097/cre	89343–90374	GST-loxP-cre recombinase fusion prote	
0098/cra	90382-90603	Putative Cre-associated regulatory prote	

(Continued)

(Continued)

TABLE 1 | Continued

Feature ^a	Position (start–end)	Function	Feature ^a	Position (start-end)	Function
0099	91208–91417	C1 repressor inactivator	0043	36541–38130	Hypothetical protein
0100	91528-92379	Primary repressor of lytic function	0044	38140-38955	Tail tube protein
0101	92405-93889	Putative large terminase protein	0045/pmgG	38991-39572	Putative morphogenetic protein
102/pacA	93889–95082	Terminase A protein	0046/bplB	39584-40093	Putative baseplate structural protein
0103/lpa	95169-95621	Late promoter activating protein	0047	40217-40423	Hypothetical protein
0104	95710-96753	Hypothetical protein	0048	40547-40792	Hypothetical protein
0105	96781-96960	Hypothetical protein	0049/repL	40843-41652	Replication protein
0106/doc	96965-97345	Toxin Doc	0050/kilA	41718-42518	Putative host killing protein
0001	356–1912	Type I restriction-modification system subunit M	0051 0052 <i>/mcr-1</i>	42682–43587 43541–45166	Hypothetical protein Colistin resistance
0002	1909–3114	Restriction endonuclease subunit S	ISApl1	45353-46422	Insertion sequence
0003	3235-6351	Type I restriction enzyme EcoR124II R	ISApl1 Δ	46423-46645	Insertion sequence, truncate
0000	0200 0001	protein	0055	46580-46915	Antirepressor protein
0004	6616-7122	3'-Phosphatase, 5'-polynucleotide kinase	0056	46912-47133	Hypothetical protein
0005/pmgS	7195–8457	Putative morphogenetic protein	0057/simB	47561-48031	Superimmunity linked function
0006	8459-8677	Hypothetical protein	0058/simC	48039–48818	Superimmunity linked function
0007	8759–9460	Hypothetical protein	0059/pmgC	49028–49594	Putative morphogenetic protein
0008/pphA	9457–10134	Serine/Threonine protein phosphatase	0060/tubB	49605-50216	Major tail tube protein
0009/pmgP	10131-10757	Putative morphogenetic protein	0061/pmgB	50231-51112	Putative morphogenetic protein
0010	11259–11414	Hypothetical protein	0062	51194–54586	Transglycosylase SLT domain protein
0011/pmgM	11481-12059	Putative morphogenetic function protein	0063/pmgA	54586-54942	putative morphogenetic protein
0012	12062-12307	Putative morphogenetic protein	0064	54939-56372	putative baseplate structural protein
0012	12571-12831	Baseplate protein	0065	56372-57208	Putative tail tube protein
0014	12841-14058	Tail protein	0066	57287-57721	Putative tail fiber structure or assembly
0015	14062-14790	Tail protein			protein
0016	14777-15562		0067	57733-59214	Hypothetical protein
0017		Hypothetical protein	0068	59483–59728	Hypothetical protein
0018	15564–16580 16573–17205	Tail length tape measure protein	0069	59769-60206	Hypothetical protein
		Putative baseplate protein	0070	60217-60645	Hypothetical protein
0019	17252-18250	Hypothetical protein	0071	60686-61159	Hypothetical protein
0018/dnaB	18250-19614	Replicative DNA helicase	0072	61188–61646	Hypothetical protein
0021	19900-19975	tRNA-Met	0073/tfaE	62160-62771	Prophage tail fiber assembly protein TfaE
0024/tciA	20250-20675	Putative tellurite or colicin resistance protein	0074	62771-63229	Hypothetical protein
0025	21187-21360	Hypothetical protein	0075	63240–63683	Hypothetical protein
0026	21603-21678	tRNA-Thr	0076/pin	63773-64345	Site-specific recombinase
0020		tRNA-Asn	0077	64781–65044	Hypothetical protein
0021 0028/dmt	21681–21756 22429–24693		0078/lydA	65119-65448	Lysis determining protein
	24690-25595	DNA adenine methylase family protein Recombination-associated protein RdqC	0079	65445-65888	Lysis determining protein
0029/rdgC			0080	65875-66477	Hypothetical protein
0030	25588-25872	Hypothetical protein	0081/darA	66479-68398	Hypothetical protein
0031	25857-26096	Hypothetical protein	0082/ddrA	68395-68760	Hypothetical protein
0032	26335-27123	Hypothetical protein	0083	68797-71760	Hypothetical protein
0033	27163-27585	Outer membrane lytic protein	0084/hxr	71750-72061	Putative repressor protein Hxr
0034/upfB	27763-28155	Hypothetical protein	0085/ompD	72804–73916	Outer membrane porin protein OmpD
0035	28048-28311	Hypothetical protein	0086/ssb	74150-74638	Single-stranded DNA-binding protein
0036/ <i>repA</i>	28491–29375	Initiator replication family protein of pO111-like replicon	0087/lys	74808-75365	Lysozyme
0037	29668-30477	Helicase	0088	75657-76676	Putative head processing protein
IS1294	32106-32205	Insertion sequence	0089	76669–78378	Putative portal protein
0040/parA	32334-33530	Plasmid partition protein A	0090	78454-85221	Putative DNA adenine methyltransferase
0040/parA 0041/parB	33547-34548	Plasmid partition protein B	0091	85255-85695	Hypothetical protein
	VVV+1 -V+V+()	המסודות partition protein D		00000	

TABLE 1 | Continued

(Continued)

(Continued)

TABLE 1 | Continued

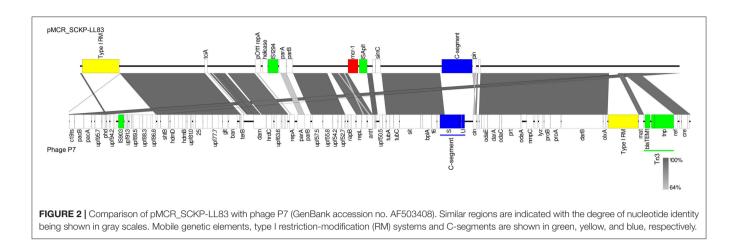
Feature ^a	Position (start-end)	Function
0093	85982-87286	Hypothetical protein
0094	87343–87984	Maturation control protein
0095/ref	88173–88733	Recombination enhancement function protein
0096	88981-89190	Putative lysogeny establishment protein
0097/ <i>cre</i>	89343–90374	GST-loxP-cre recombinase fusion protein
0098/cra	90382-90603	Putative Cre-associated regulatory protein
0099	91208-91417	C1 repressor inactivator
0100	91528-92379	Primary repressor of lytic function
0101	92405–93889	Putative large terminase protein
102/pacA	93889–95082	Terminase A protein
0103/ <i>lpa</i>	95169-95621	Late promoter activating protein
0104	95710-96753	Hypothetical protein
0105	96781-96960	Hypothetical protein
0106/ <i>doc</i>	96965–97345	Toxin Doc

^a Features: genes, mobile genetic elements or C-segments. The allele numbers of genes present on pMCR_SCKP-LL83 are shown.

0.5 McFarland turbidity. Six aliquots of 150 μ l were spotted on a 9 cm Petri dish and irradiated by a germicidal UV lamp at a distance of 100 cm. The drops were collected at 10, 20, 30, 60, 90, and 120 s serially, each of which was then incubated with 1 ml LB broth under 37°C in dark for 3–4 h. Lysis was observed by naked eyes. For mitomycin C induction, 100 ml cultures of strain SCKP-LL83 were added with mitomycin C to a final concentration of 0.1, 1, 10, 20, and 40 µg/ml and were incubated under 37°C with shaking. Aliquots (1 ml) were sampled at 2, 4, 12, and 24 h. The cultures were filtrated through 0.22 µm polyethersulfone membranes (Merck Millipore, Billerica, MA, USA) and the membranes were used for the plaque formation test, which was carried out via the agar overlay method (Kropinski et al., 2009). All of the tests were performed in triplicate.

Assay for Replication Module

The replication initiation protein-encoding gene *repB* and its replication origin sequence (*ori*) of pMCR_SCKP-LL83 were amplified with self-designed primers OriF (<u>CGGAATTC</u>GAAAT GGGATCAACATTGACTATACG) and OriR (<u>CGGAATTC</u>GATAT CAATACCACTGCTTGATGAGA; *EcoRI* sites are underlined). The amplicons were cloned onto the vector pKC1139, which has a temperature sensitive origin *oriT* and cannot replicate at temperatures higher than 30°C. The ligated vectors were transformed into *E. coli* DH5 α and the transformants were screened by apramycin (100 µg/ml) at 37°C. The presence of *repB* and *ori* in transformants were confirmed by PCR with M13 (-21) Forward and M13-R primers binding to the clone vector and Sanger sequencing.


RESULTS AND DISCUSSION

Strain SCKP83 was resistant to colist in (MIC, $8 \mu g/ml$) and had *mcr-1* but no *mcr-2* and *mcr-3* genes. Whole genome sequencing of strain SCKP83 generated 5,247,124 clean reads, which were then assembled to 119 contigs (89 >1,000 bp) with a 50.38% GC content. Strain SCKP83 belonged to ST15, which is a relative common type of *K. pneumoniae* seen in China (Zhang et al., 2017b). The capsular type of strain SCKP83 was K41.

mcr-1 was carried by a 97.4 kb plasmid, pMCR_SCKP-LL83, which did not carry any additional known antimicrobial resistance genes. Despite repeated attempts, no colistin resistant transconjugants were obtained, suggesting that pMCR_SCKP-LL83 is not self-transmissible. In addition, the transformation of this plasmid into *E. coli* strain DH5 α and a colistin-susceptible *K. pneumoniae* strain was unsuccessful. This suggests that this plasmid may be strain-specific or its transformation occurs at a low frequency, which could not be detected in our experiments. pMCR_SCKP-LL83 had a single pO111 plasmid replicon. Transformants containing *repB* and its *ori* were obtained. The presence of *repB* and *ori* allows the temperature sensitive vector pKC1139 to replicate at 37°C, suggesting that the replication module of pMCR_SCKP-LL83 indeed leads to the replication of this plasmid.

On pMCR_SCKP-LL83, mcr-1 was located downstream of a complete insertion sequence ISApl1. The phosphoesteraseencoding pho gene that is always located downstream of mcr-1 was truncated at its 3'-end with only 38 bp out of the 747-bp gene remaining. Surprisingly, immediate upstream of the complete ISApl1 (1,070 bp in length) lies another ISApl1 that is truncated at its 5'-end with the presence of 223 bp including an intact right-hand inverted repeat (IRR) (Figure 1). When we artificially subtract the ISApl1 Δ -ISApl1mcr-1-pho Δ region from pMCR_SCKP-LL83, the remaining artificially-joining sequence perfectly matched the ant1 gene, which encodes a putative antirepressor for antagonizing C1 repression by formation of Ant1/Ant2/C1 complex. It therefore becomes evident that the ISApl1 Δ -ISApl1-mcr-1-pho Δ structure is inserted into ant1. It has been found that a single copy of ISApl1 is able to mobilize mcr-1 and pho together with itself (Li et al., 2017; Zhao et al., 2017). The insertion of ISApl1 would generate 2-bp direct target repeats (DR). However, no 2-bp DRs were present flanking the ISApl1 Δ -ISApl1-mcr-1-pho Δ structure, suggesting that the formation of such a complex structure was not directly due to the insertion mediated by ISApl1. The mechanism responsible for generating the ISApl1 Δ -ISApl1-mcr-1-pho Δ structure remains unclear but might have involved recombination.

A 90.9-kb region of the 97.4-kb pMCR_SCKP-LL83 was predicted as an intact phage. Neither the appearance of lysis nor the formation of plaques was observed in the UV induction. In mitomycin C induction, no plaques were formed at the tested concentrations and intervals. These results suggest that pMCR_SCKP-LL83 was indeed a plasmid. Nonetheless, the phage region on pMCR_SCKP-LL83 had 47.79% GC content, encoded 105 proteins and contained three tRNAs, i.e., tRNA-Asn, tRNA-Thr, and tRNA-Met (**Table 1**). pMCR_SCKP-LL83 is highly similar (72% coverage and 98% identity) to the 101.7kb *Enterobacteria* phage P7 (GenBank accession no. AF503408). Phage P7 (previously called as φamp) was isolated from *E. coli* of human fecal flora (Smith, 1972) and exists as a

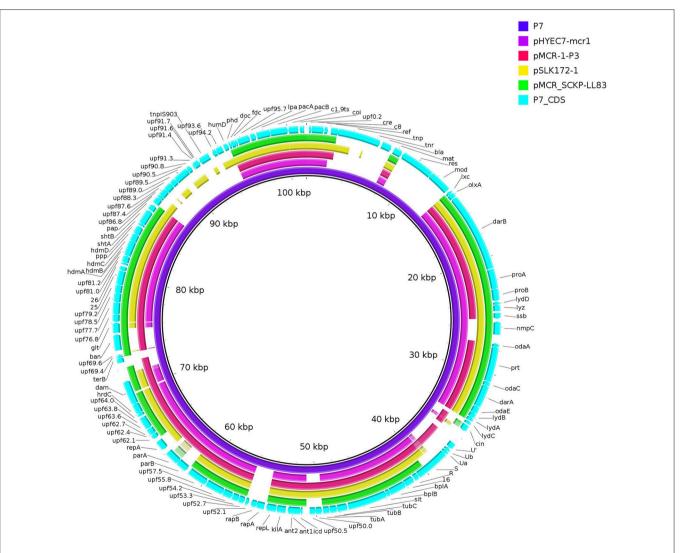


FIGURE 3 | Comparison of phage P7 and similar *mcr*-1-carrying plasmids. The comparison is a pairwise BLASTn alignment performed using BRIG (Alikhan et al., 2011). Plasmids are pMCR_SCKP-LL83 (this study), pHYEC7-mcr1 (GenBank accession no. KX518745) and pSLK172-1 (GenBank accession no. CP017632) and pMCR-1-P3 (GenBank accession no. KX880944). Coding sequences (CDS) of phage P7 (GenBank accession no. AF503408) are indicated. CDS of phage P7 absent from pMCR_SCKP-LL83 or vice-verse are listed in Table S1.

nonintegrated autonomous circular plasmid that constitutes a unique compatibility group (Hedges et al., 1975). Compared with P7, pMCR_SCKP-LL83 did not have the bla_{TEM-1} -carrying transposon Tn3, the type I restriction-modification system *Eco*P7, a 4-kb invertible C-segment and a few genes, most of which encode proteins of unknown function (Table S1 in the Supplementary file and **Figure 2**). C-segment contains several genes encoding phage tail fibers and also determines the host specificity of the phage (Iida, 1984). In contrast, pMCR_SCKP-LL83 had a few extra genes including an unnamed type I restriction-modification system, *mcr-1* and a 5-kb putative invertible C-segment (Table S1), which is highly similar (92% coverage and 99% identity) to the multiple DNA inversion region *min* on plasmid p15B of *E. coli* 15T (Sandmeier et al., 1991).

It is well known that phages can transfer genetic components between bacterial isolates, but the role of phages in disseminating antimicrobial resistance genes is still a matter of debate (Colavecchio et al., 2017; Enault et al., 2017). Nonetheless, some studies have found that phages are able to transfer genes conferring resistance to aminoglycosides (*aadA*, *aphA1*, *strA*, *strB*), β -lactams (*bla*_{CMY-2}, *bla*_{CTX-M-9}, *bla*_{OXA-2}, *bla*_{OXA-2}, *bla*_{PSE-1}, *bla*_{TEM}), chloramphenicol (*floR*), or tetracycline (*tet*(A), *tet*(B), *tetG*, *tetO*, *tetW*) via transduction (Zhang and LeJeune, 2008; Colomer-Lluch et al., 2014; Bearson and Brunelle, 2015; Ross and Topp, 2015; Shousha et al., 2015; Anand et al., 2016). In addition, a recent study has identified that two *E. coli* phages could promote the transformation of plasmids carrying antimicrobial resistance genes (Keen et al., 2017).

During the process of this work, *mcr-1* in either complete or interrupted version has been found on plasmids containing similar phage sequences including pHYEC7-mcr1 (GenBank accession no. KX518745), pSLK172-1 (GenBank accession no. CP017632) (Bai et al., 2017), and pMCR-1-P3 (GenBank accession no. KX880944) (Zhang et al., 2017a). All of these plasmids have been recovered from *E. coli* at various locations of China and are highly similar (75–79% coverage, 97–99% identity, identified by BLAST; **Figure 3**) to pMCR_SCKP-LL83. This suggests that the phage sequence-containing plasmids represent new vehicles, which may have circulated in China, to mediate the spread of *mcr-1* in addition to plasmids of IncI2, X4, F, HI2, and P types. The identification of pMCR_SCKP-LL83 from a

REFERENCES

- Alikhan, N. F., Petty, N. K., Ben Zakour, N. L., and Beatson, S. A. (2011). BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics* 12:402. doi: 10.1186/1471-2164-12-402
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. doi: 10.1016/S0022-2836(05)80360-2
- Anand, T., Bera, B. C., Vaid, R. K., Barua, S., Riyesh, T., Virmani, N., et al. (2016). Abundance of antibiotic resistance genes in environmental bacteriophages. J. Gen. Virol. 97, 3458–3466. doi: 10.1099/jgv.0.000639
- Arndt, D., Grant, J. R., Marcu, A., Sajed, T., Pon, A., Liang, Y., et al. (2016). PHASTER: a better, faster version of the PHAST phage search tool. *Nucleic Acids Res.* 44, W16–W21. doi: 10.1093/nar/gkw387
- Bai, L., Wang, J., Hurley, D., Yu, Z., Wang, L., Chen, Q., et al. (2017). A novel disrupted mcr-1 gene and a lysogenized phage P1-like sequence detected from a large conjugative plasmid, cultured from a human atypical enteropathogenic

K. pneumoniae is worrisome, suggesting that the P7 phage-like plasmids are not restricted to *E. coli* and may involve in the interspecies spread of *mcr-1*. The various locations of *mcr-1* on these plasmids suggest that these plasmids may have acquired *mcr-1* independently.

In the previous study on the ability of *E. coli* phages to promote the transformation of plasmids carrying antimicrobial resistance gene, phages, and plasmids are separate entities (Keen et al., 2017), which are different from the phage-like plasmid in the present study. As mentioned above, the conjugation and transformation of pMCR_SCKP-LL83 were unsuccessful. Among phage-like plasmids carrying *mcr-1*, pMCR-1-P3 was not self-transmissible and there are no data about whether it can be transferred by transformation (Zhang et al., 2017a), while pSLK172-1 was self-transmissible (Bai et al., 2017). This suggests that some phage-like plasmids may have lost the conjugative module and are therefore not self-transmissible. It is possible that these plasmids acquire genes encoding the conjugative module to become self-transmissible.

In conclusion, we identified and characterized a *mcr-1*-carrying P7 phage-like plasmid from a *K. pneumoniae* clinical isolate. Such phage-like plasmids may represent new types of vehicles to mediate the spread of *mcr-1*.

AUTHOR CONTRIBUTIONS

ZZ: designed the experiments, analyzed the data, and wrote the MS. LL: performed the experiments and analyzed the data. WZ and YF: analyzed the data.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (project no. 81222025, 81572030, and 81661130159).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2018.00011/full#supplementary-material

Escherichia coli (aEPEC) recovered in China. J. Antimicrob. Chemother. 72, 1531–1533. doi: 10.1093/jac/dkw564

- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., et al. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 19, 455–477. doi: 10.1089/cmb.2012.0021
- Bearson, B. L., and Brunelle, B. W. (2015). Fluoroquinolone induction of phagemediated gene transfer in multidrug-resistant Salmonella. Int. J. Antimicrob. Agents 46, 201–204. doi: 10.1016/j.ijantimicag.2015.04.008
- Black, L. W., and Thomas, J. A. (2012). Condensed genome structure. Adv. Exp. Med. Biol. 726, 469–487. doi: 10.1007/978-1-4614-0980-9_21
- Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30, 2114–2120. doi: 10.1093/bioinformatics/btu170
- CLSI (2017). "Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Third Informational Supplement. M100-S27." (Wayne, PA: Clinical and Laboratory Standards Institute).

- Colavecchio, A., Cadieux, B., Lo, A., and Goodridge, L. D. (2017). Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the enterobacteriaceae family - a review. *Front. Microbiol.* 8:1108. doi: 10.3389/fmicb.2017.01108
- Colomer-Lluch, M., Calero-Cáceres, W., Jebri, S., Hmaied, F., Muniesa, M., and Jofre, J. (2014). Antibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each population. *Environ. Int.* 73, 167–175. doi: 10.1016/j.envint.2014.07.003
- Coque, T. M., Oliver, A., Perez-Diaz, J. C., Baquero, F., and Canton, R. (2002). Genes encoding TEM-4, SHV-2, and CTX-M-10 extended-spectrum β-lactamases are carried by multiple *Klebsiella pneumoniae* clones in a single hospital (Madrid, 1989 to 2000). *Antimicrob. Agents Chemother.* 46, 500–510. doi: 10.1128/AAC.46.2.500-510.2002
- Enault, F., Briet, A., Bouteille, L., Roux, S., Sullivan, M. B., and Petit, M. A. (2017). Phages rarely encode antibiotic resistance genes: a cautionary tale for virome analyses. *ISME J.* 11, 237–247. doi: 10.1038/ismej.2016.90
- Feiner, R., Argov, T., Rabinovich, L., Sigal, N., Borovok, I., and Herskovits, A. A. (2015). A new perspective on lysogeny: prophages as active regulatory switches of bacteria. *Nat. Rev. Microbiol.* 13, 641–650. doi: 10.1038/nrmicro3527
- Hedges, R. W., Jacob, A. E., Barth, P. T., and Grinter, N. J. (1975). Compatibility properties of P1 and PhiAMP prophages. *Mol. Gen. Genet.* 141, 263–267. doi: 10.1007/BF00341804
- Iida, S. (1984). Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome. *Virology* 134, 421–434. doi: 10.1016/0042-6822(84)90309-X
- Keen, E. C., Bliskovsky, V. V., Malagon, F., Baker, J. D., Prince, J. S., Klaus, J. S., et al. (2017). Novel "Superspreader" bacteriophages promote horizontal gene transfer by transformation. *MBio* 8:e02115-16. doi: 10.1128/mBio.02115-16
- Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., and Johnson, R. P. (2009). Enumeration of bacteriophages by double agar overlay plaque assay. *Methods Mol. Biol.* 501:69. doi: 10.1007/978-1-60327-164-6_7
- Li, R., Xie, M., Zhang, J., Yang, Z., Liu, L., Liu, X., et al. (2017). Genetic characterization of *mcr-1*-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. *J. Antimicrob. Chemother*. 72, 393–401. doi: 10.1093/jac/dkw411
- Liu, Y.-Y., Wang, Y., Walsh, T. R., Yi, L.-X., Zhang, R., Spencer, J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. *Lancet Infect. Dis.* 16, 161–168. doi: 10.1016/S1473-3099(15)00424-7
- Lowe, T. M., and Chan, P. P. (2016). tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. *Nucleic Acids Res.* 44, W54–W57. doi: 10.1093/nar/gkw413
- Mitsui, N., Kiritani, K., and Nishida, S. (1973). A Lysin(s) in lysates of *Clostridium botulinum* A190 induced by ultraviolet ray or Mitomycin C. *Jpn. J. Microbiol.* 17, 353–360. doi: 10.1111/j.1348-0421.1973.tb00786.x
- Novais, A., Canton, R., Valverde, A., Machado, E., Galan, J. C., Peixe, L., et al. (2006). Dissemination and persistence of $bla_{\rm CTX-M-9}$ are linked to class 1 integrons containing CR1 associated with defective transposon derivatives from Tn402 located in early antibiotic resistance plasmids of IncHI2, IncP1- α , and IncFI groups. *Antimicrob. Agents Chemother.* 50, 2741–2750. doi: 10.1128/AAC.00274-06
- Olaitan, A. O., Diene, S. M., Kempf, M., Berrazeg, M., Bakour, S., Gupta, S. K., et al. (2014a). Worldwide emergence of colistin resistance in *Klebsiella pneumoniae* from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator *mgrB*: an epidemiological and molecular study. *Int. J. Antimicrob. Agents* 44, 500–507. doi: 10.1016/j.ijantimicag.2014.07.020
- Olaitan, A. O., Morand, S., and Rolain, J. M. (2014b). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. *Front. Microbiol.* 5:643. doi: 10.3389/fmicb.2014.00643
- Oliver, A., Coque, T. M., Alonso, D., Valverde, A., Baquero, F., and Cantón, R. (2005). CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital. *Antimicrob. Agents Chemother.* 49, 1567–1571. doi: 10.1128/AAC.49.4.1567-1571.2005

- Poirel, L., Jayol, A., and Nordmann, P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. *Clin. Microbiol. Rev.* 30, 557–596. doi: 10.1128/CMR.00064-16
- Raya, R. R., and H'bert, E. M. (2009). Isolation of phage via Induction of Lysogens. *Methods Mol. Biol.* 501, 23–32. doi: 10.1007/978-1-60327-164-6_3
- Ross, J., and Topp, E. (2015). Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction. *Appl. Environ. Microbiol.* 81, 7905–7913. doi: 10.1128/AEM.02363-15
- Sambrook, J., and Russell, D. W. (2001). *Molecular Cloning. A Laboratory Manual*. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.
- Sandmeier, H., Iida, S., Hübner, P., Hiestand-Nauer, R., and Arber, W. (1991). Gene organization in the multiple DNA inversion region *min* of plasmid p15B of *E. coli* 15T-: assemblage of a variable gene. *Nucleic Acids Res.* 19, 5831–5838. doi: 10.1093/nar/19.21.5831
- Shin, J., and Ko, K. S. (2015). A plasmid bearing the *bla*_{CTX-M-15} gene and phage P1-like sequences from a sequence type 11 *Klebsiella pneumoniae* isolate. *Antimicrob. Agents Chemother.* 59, 6608–6610. doi: 10.1128/AAC.00265-15
- Shousha, A., Awaiwanont, N., Sofka, D., Smulders, F. J., Paulsen, P., Szostak, M. P., et al. (2015). Bacteriophages isolated from chicken meat and the horizontal transfer of antimicrobial resistance genes. *Appl. Environ. Microbiol.* 81, 4600–4606. doi: 10.1128/AEM.00872-15
- Smith, H. W. (1972). Ampicillin resistance in *Escherichia coli* by phage infection. *Nat. New Biol.* 238, 205–206. doi: 10.1038/newbio238205a0
- Valenzuela, J. K., Thomas, L., Partridge, S. R., van der Reijden, T., Dijkshoorn, L., and Iredell, J. (2007). Horizontal gene transfer in a polyclonal outbreak of carbapenem-resistant Acinetobacter baumannii. J. Clin. Microbiol. 45, 453–460. doi: 10.1128/JCM.01971-06
- Wurtz, M. (1992). Bacteriophage structure. Electron Microsc. Rev. 5, 283–309. doi: 10.1016/0892-0354(92)90013-G
- Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., et al. (2016). Identification of a novel plasmid-mediated colistin-resistance gene, *mcr-2*, in *Escherichia coli*, Belgium, June 2016. *Euro Surveill*. 21:30280. doi: 10.2807/1560-7917.ES.2016.21.27.30280
- Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., et al. (2017). Novel plasmid-mediated colistin resistance gene *mcr-3* in *Escherichia coli*. *MBio* 8:e00543–e00517. doi: 10.1128/mBio.00543-17
- Zhang, C., Feng, Y., Liu, F., Jiang, H., Qu, Z., Lei, M., et al. (2017a). A phage-like IncY plasmid carrying the *mcr-1* gene in *Escherichia coli* from a pig farm in China. *Antimicrob. Agents Chemother.* 61:e02035–e02016. doi: 10.1128/AAC.02035-16
- Zhang, R., Liu, L., Zhou, H., Chan, E. W., Li, J., Fang, Y., et al. (2017b). Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. *EBioMed.* 19, 98–106. doi: 10.1016/j.ebiom.2017.04.032
- Zhang, Y., and LeJeune, J. T. (2008). Transduction of bla_{CMY-2}, tet(A), and tet(B) from Salmonella enterica subspecies enterica serovar Heidelberg to S. Typhimurium. Vet. Microbiol. 129, 418–425. doi: 10.1016/j.vetmic.2007.11.032
- Zhao, F., and Zong, Z. (2016). Kluyvera ascorbata carrying the mcr-1 colistin resistance gene from hospital sewage. Antimicrob. Agents Chemother. 60, 7498–7501. doi: 10.1128/aac.01165-16
- Zhao, F., Feng, Y., Lü, X., Mcnally, A., and Zong, Z. (2017). Remarkable diversity of *Escherichia coli* carrying *mcr-1* from hospital sewage with the identification of two new *mcr-1* variants. *Front. Microbiol.* 8:2094. doi: 10.3389/fmicb.2017.02094

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Zhou, Liu, Feng and Zong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.