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Pyroptosis is recently identified as an inflammatory form of programmed cell death.
However, the roles of pyroptosis-related genes (PS genes) in major depressive
disorder (MDD) remain unclear. This study developed a novel diagnostic model for
MDD based on PS genes and explored the pathological mechanisms associated with
pyroptosis. First, we obtained 23 PS genes that were differentially expressed between
healthy controls and MDD cases from GSE98793 dataset. There were obvious variation in
immune cell infiltration profiles and immune-related pathway enrichment between healthy
controls and MDD cases. Then, a novel diagnostic model consisting of eight PS genes
(GPER1, GZMA, HMGB1, IL1RN, NLRC4, NLRP3, UTS2, and CAPN1) for MDD was
constructed by random forest (RF) and least absolute shrinkage and selection operator
(LASSO) analyses. ROC analysis revealed that our model has good diagnostic
performance, AUC = 0.795 (95% CI 0.721–0.868). Subsequently, the consensus
clustering method based on 23 differentially expressed PS genes was constructed to
divide all MDD cases into two distinct pyroptosis subtypes (cluster A and B) with different
immune and biological characteristics. Principal component analysis (PCA) algorithm was
performed to calculate the pyroptosis scores (“PS-scores”) for each sample to quantify the
pyroptosis regulation subtypes. The MDD patients in cluster B had higher “PS-scores”
than those in cluster A. Furthermore, we also found that MDD patients in cluster B showed
lower expression levels of 11 interferon (IFN)-α isoforms. In conclusion, pyroptosis may
play an important role in MDD and can provide new insights into the diagnosis and
underlying mechanisms of MDD.
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INTRODUCTION

Pyroptosis, a programmed cell death mode closely related to the inflammatory response, plays an
important role in a variety of physiological processes and disease progression (Broz et al., 2020). The
characteristics of pyroptosis include activation of caspase-1, 4, 5, and 11; formation of cell membrane
pores mediated by gasdermin protein; cell swelling and rapid rupture; and release of intracellular
inflammatory factors (Shi et al., 2017). Therefore, inflammatory vesicles, gasdermin protein, and

Edited by:
Javier R. Caso,

Universidad Complutense de Madrid,
Spain

Reviewed by:
Li Tian,

University of Tartu, Estonia
Silvia Alboni,

University of Modena and Reggio
Emilia, Italy

*Correspondence:
Shen He

shenhe0204@126.com
Wenqi Gao

gwq1103@ctgu.edu.cn

Specialty section:
This article was submitted to

Neuropharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 05 January 2022
Accepted: 28 April 2022
Published: 19 May 2022

Citation:
Deng Z, Liu J, He S and Gao W (2022)

The Pyroptosis-Related Signature
Predicts Diagnosis and Indicates
Immune Characteristic in Major

Depressive Disorder.
Front. Pharmacol. 13:848939.

doi: 10.3389/fphar.2022.848939

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 8489391

ORIGINAL RESEARCH
published: 19 May 2022

doi: 10.3389/fphar.2022.848939

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.848939&domain=pdf&date_stamp=2022-05-19
https://www.frontiersin.org/articles/10.3389/fphar.2022.848939/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.848939/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.848939/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.848939/full
http://creativecommons.org/licenses/by/4.0/
mailto:shenhe0204@126.com
mailto:gwq1103@ctgu.edu.cn
https://doi.org/10.3389/fphar.2022.848939
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.848939


pro-inflammatory cytokines are key factors involved in
pyroptosis. The expressions and functions of these core
regulatory components influence pyroptosis progression.
Further study of these regulatory components may help to
clarify the role of pyroptosis in disease pathogenesis (Ahechu
et al., 2018).

Major depressive disorder (MDD) is a serious
neuropsychiatric disorder and a leading cause of suicide
(Lépine and Briley, 2011). The incidence of depression is
increasing annually to rank third among global disease
burdens (Malhi and Mann, 2018). The pathogenesis of
depression is complex, and inflammation is one of the main
pathogenic factors (Troubat et al., 2021). Inflammation results
from abnormal immune system activation. The imbalance of
immune cells in the body can lead to illness, including mental
illness such as MDD. Patients with depression show
dysregulation of the innate and adaptive immune systems; for
example, monocyte activation, decreased T-cell number and/or
activity, and increased production of pro-inflammatory cytokines
(Beurel et al., 2020). Excessive inflammation caused by pyroptosis
and the release of various inflammatory factors after cell rupture
may aggravate the disease development by forming an
inflammatory immune microenvironment (Xia et al., 2019).

Comprehensive analysis of pyroptosis characteristics
alteration in depression may be a key strategy for diagnosis
and physiopathologic mechanism exploration of depression.
Due to technical limitations, previous studies were limited to
one or two key factors of pyroptosis. However, disease occurrence
and progression involve a series of factors that form a highly
synergistic network. Nowadays, the developments of high-
throughput genomics technology and bioinformatics analysis
have helped researchers to study genes expression profiles at
the genomic level, generated new ideas for the interpretation of
genomic results, and provided an ideal resource for the
comprehensive analysis of pyroptosis and immune regulation
in MDD (Gururajan et al., 2016; Ferrúa et al., 2019; Takahashi
et al., 2019). In this study, we first established a novel diagnostic
model by eight pyroptosis-related genes (PS genes) for MDD
based on the GSE98793 dataset from the Gene Expression
Omnibus (GEO) database. We found that MDD patients
could obtain a good clinical benefit based on this model.
Secondly, we explored the role of pyroptosis in
physiopathologic mechanism of MDD. According to PS genes,
data from patients with depression were clustered and two MDD
subtypes were identified. We observed different immune
properties and biological functions of these two subtypes. In
all, our present study indicated that pyroptosis plays an important
role in depression occurrence and progression, which may guide
depression diagnosis, treatment and intervention plans.

MATERIALS AND METHODS

Data Acquisition and Processing
GSE98793 dataset, the expression profile of whole blood samples,
was downloaded from the Gene Expression Omnibus (GEO)
database. This dataset totally included 128 MDD cases (64 with

anxiety symptoms and 64 without) and 64 healthy controls. 64
MDD cases without anxiety symptoms and 64 healthy controls
were included in our analysis. All the participants of GSE98793
were from the GlaxoSmithKline–High-Throughput Disease-
specific target Identification Program (GSK-HiTDiP) study.
The MDD patients were evaluated by the semi-structured
Schedule for Clinical Assessment in Neuropsychiatry (SCAN)
(Wing et al., 1990), which was administered by trained staff.
Furthermore, patients had a diagnosis of recurrent MDD (at least
two episodes of depression satisfying DSM-IV or ICD10 criteria)
were included as well. The exclusion criteria were as follows: if
they had experienced mood incongruent psychotic symptoms, a
lifetime history of intravenous drug use or diagnosis of drug
dependency, depression secondary to alcohol or substance abuse
or depression as clear consequence of medical illnesses or use of
medications. Patients with co-morbid anxiety disorders, with the
exception of obsessive compulsive and post traumatic stress
disorders, were included. Patients with diagnosis of
schizophrenia, schizoaffective disorders and other axis I
disorders were excluded from the study (Leday et al., 2018).
The detail information of participants included in the present
study was showed in Table 1. GPL570 (Affymetrix Human
Genome U133 Plus 2.0 Array) was detection platforms for
GSE98793. Gene symbols were used to annotate the
downloaded gene probes, eliminate probes without matching,
and retain any gene probes with multiple matching.

Screening for Pyroptosis-Related
Differentially Expressed Genes
“Limma” package (R Foundation for Statistical Computing) was
used for gene differential expression analysis with the processed
gene expression matrix (Diboun et al., 2006). Before the
bioinformatic analysis, all the samples were tested in two
batches, and batch information could be extracted from
phenotypic data. Thus, removeBatchEffect from the limma
package was used to remove the batch effect (Ritchie et al.,
2015). We conducted the gene differential expression analysis
with set threshold: |log2(FC)|>0.1 and Benjamini–Hochberg-
adjusted p < 0.05. Finally, we identified 2,216 DEGs in
GSE98793. A total of 184 PS genes were obtained by inputting

TABLE 1 | Clinical and demographic characteristics of participants (GSE98793)
included in the present study.

All participants MDD Healthy controls

128 64 64

Gender

Male 32 16 16
Female 96 48 48

Comorbidities

Anxiety 0 0 0
Without anxiety 128 64 64

Age (years) 52.06 ± 11.49 52.03 ± 11.41 52.09 ± 11.66
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the keyword “pyroptosis” in the GeneCards database. The overlap
of 2,216 DEGs in GSE98793 dataset and 184 PS genes were
defined as pyroptosis-related DEGs, totally 23 pyroptosis-
related DEGs acquired.

Screening MDD-Specific Genes and
Constructing Diagnostic Model for MDD
We applied random forest (RF) and least absolute shrinkage and
selection operator (LASSO) to establish a diagnostic model for
MDD. First, we used RF to screen candidate MDD-specific genes
from pyroptosis-related DEGs. RF is a general technique for the
training and prediction of samples based on the classification tree.
The number of decision trees (ntree) and the value of MTRY in
this study were 300 and 4, respectively. The RF was performed by
R package “randomforest” (Kursa, 2014). Subsequently, to reduce
the number of genes in the model and to solve the
multicollinearity problem in regression analysis, we used
LASSO logistic regression to screen feature genes and then
construct a diagnostic model for MDD. The “glmnet” package
was applied for LASSO algorithm (Friedman et al., 2010). Finally,
a receiver operating characteristic (ROC) curve was created to
investigate whether the built model could effectively
predict MDD.

Internal and External Validation for
Diagnostic Model
10-fold cross-validation as internal validation method was
performed to confirm the predictive performance of our
diagnostic model for MDD (Martinez et al., 2011). We chosed
10-fold cross-validation because 10-fold cross-validation
techniques could test all data in the dataset and produce stable
predictive accuracy. Therefore, the 10-fold cross-validation
method with 2000 iterations of resampling was used for
internal validatIon.

GSE76826 was used as an external validation dataset to examine
the universality and reliability of the diagnostic model. GSE76826
dataset (expression profiling by array) included 20 MDD patients
and 12 healthy controls (Miyata et al., 2016).

In addition to this, we examined the effectiveness of this
diagnostic model in other mental illness as well. The
GSE38484 dataset was used to analyze the diagnostic model.
This dataset, based on the microarray platform of the Illumina
HumanHT-12 V3.0 expression beadchip (GPL6947), included 96
healthy controls and 106 schizophrenia patients (Van Eijk et al.,
2015).

The same model and the same coefficient were conducted for
GSE76826 and GSE38484. The characteristic information of
participants in GSE76826 and GSE38484 datasets were
exhibited in Tables 2, 3.

Diagnostic Markers Verified by Postmortem
Brain Tissue Samples
GSE53987 was based on the platform of the Affymetrix
Human Genome U133 Plus 2.0 Array (Lanz et al., 2019).
There were 17 subjects with MDD and 18 healthy controls
in this dataset, and three brain regions (hippocampus,
prefrontal cortex, and striatum) were included. We used the
GSE53987 dataset to verify the diagnostic model. The
characteristic information of participants in GSE53987
dataset were showed in Table 4.

Consensus Clustering of 23PS Genes by
Partitioning Around Medoids
Consensus clustering is an algorithm used to identify subgroup
members and verify subgroups based on resampling. We performed
consensus clustering with PAM mehod (Wilkerson and Hayes,
2010) to identify distinct pyroptosis regulation clusters according
to the expression profiles of 23 PS genes. PCA was then used to
further validate different regulation clusters.

Immune Cell Infiltration Estimation by
ssGSEA
Single-sample gene set enrichment analysis (ssGSEA) was used to
quantify the relative abundance of 28 immune cell types related to
immune response. In ssGSEA, the relative abundance of each
immune cell was expressed as an enrichment score that was

TABLE 2 | Clinical and demographic characteristics of participants (GSE76826).

Dataset Participants Age (years) Source

GSE76826 Healthy 18 48.44 ± 10.82 PBMCs
Male 10 47.30 ± 11.47
Female 8 49.88 ± 10.52
MDD 16 56.5 ± 9.96
Male 10 46.30 ± 10.18
Female 6 46.83 ± 10.53

TABLE 3 | Clinical and demographic characteristics of participants (GSE38484)
included in the present study.

Dataset Participants Age (years) Source

GSE38484 Healthy 96 39.46 ± 12.47 Whole blood
Male 42 39.52 ± 14.41
Female 54 39.15 ± 14.15
SCZ 106 39.58 ± 10.74
Male 76 39.47 ± 10.50
Female 30 39.87 ± 11.49

TABLE 4 | Clinical and demographic characteristics of participants (GSE53987)
included in the present study.

Dataset Participants Age (years) Source

GSE53987 Healthy 12 62.50 ± 9.39 Striatum
Male 5 58.00 ± 6.44
Female 7 65.71 ± 10.24
MDD 20 71.45 ± 11.71
Male 9 68.56 ± 14.45
Female 11 73.82 ± 8.93
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normalized to a uniform distribution of 0–1. A deconvolution
approach CIBERSORT (http://cibersort.stanford.edu/) was used
to evaluate the relative abundances of 22 distinct leukocyte
subsets with gene expression profiles in the blood samples.

Gene Set Variation Analysis and Gene
Ontology Annotation
We utilized GSVA analysis by “GSVA” package (Hänzelmann
et al., 2013) to explore the differentiation in biological processes
between different pyroptosis regulation clusters. The well-defined
biological signatures were derived from the Hallmark geneset
(MSigDB database v7.1) (Denny et al., 2018). The GO annotation
for different clusters was performed using the R package
“clusterProfiler” (Kursa, 2014) with a false discovery rate
(FDR) cutoff of <0.01.

Identification of DEGs in Distinct Pyroptosis
Regulation Subtypes
The consensus clustering algorithm classified MDD patients into
two distinct pyroptosis regulation subtypes. We next identified

DEGs between two different clusters using the “limma” package.
Specifically, gene expression data were normalized using “voom”
function and then inputted to the “lmFit” and “eBayes” functions
to calculate the differential expressed statistics. The selection
criteria were an adjusted P of <0.01 and |FC| of >1.0.

Construction of the Pyroptosis Score
To quantitatively analyze the pyroptosis subtypes, PCA was used
to quantify the pyroptosis level of individual patients. First, PCA
was used to distinguish pyroptosis subtypes. Then, the formula
was performed to measure the pyroptosis scores (PS) as
following: PS score = PC1i, where PC1 represents principal
component 1 and i represents DEG expression.

RESULTS

Study Design
The framework and workflow are described as following. First, the
characteristic information and gene expression profiles of MDD
cases and healthy controls in GSE98793, GSE76826, and GSE53987
were obtained from the GEO database (https://www.st-va.ncbi.nlm.

FIGURE 1 | Characterization of pyroptosis-related genes in MDD (A). The location of pyroptosis-related genes on chromosomes by GSE98793 (B–C). The
Volcano and heat map of 23 differentially expressed pyrotopsis-related genes (D). Box plot of differential expression of 23 differentially expressed pyrotopsis-related
genes in control and depression samples. Adjusted p-values were showed as: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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nih.gov/gds/?term=). Using GSE98793 dataset, we developed a novel
diagnostic model for MDD based on PS genes by machine learning
methods (RF and LASSO). GSE76826 and GSE53987 datasets were
used as external validation and postmortem brain tissue samples
valiadtion. Furthermore, GSE38484 dataset (96 healthy controls and
106 schizophrenia patients) was used to examine whether this
diagnostic model was unique for MDD. Then, immune cell
infiltration profiles and immune-related pathway enrichment
were compared between healthy controls and MDD cases as well.

To discover the connections between PS genes and MDD
subtypes, MDD cases were divided into two subtypes (A and B
clusters) by consensus clustering analysis according to the PS
genes expression profiles. The particular immune and biological
characteristics of these two clusters were observed.

We developed a pyroptosis-related signature score, the “PS-
score,” to quantify the pyroptosis phenotype subtype.

Identification of DEGs Between Healthy
Controls and MDD Cases
The GSE98793 dataset and Genecard database included 2,216 DEGs
and 184 PS genes, respectively, among which 23 PS genes with
significant expression differences were distributed on
chromosomes as shown in Figure 1A. The upregulated genes
included C-type lectin member 5 A (CLEC5A); cathelicidin
antimicrobial peptide (CAMP); Toll-like receptor 2 (TLR2);
adenosine A3 receptor (ADORA3); NOD-, LRR-, and pyrin
domain-containing protein 3 (NLRP3); cluster of differentiation
14 (CD14); CD274; NLR family CARD domain containing 4
(NLRC4), NLR family apoptosis inhibitory protein (NAIP);
calpain 1 (CAPN1), G-protein coupled estrogen receptor 1

(GPER1); Vitamin D receptor (VDR); fibroblast growth factor 21
(FGF21); interleukin-1 receptor antagonist (IL1RN); forkhead box
O3 (FOXO3); serpin family Bmember 1 (SERPINB1); and activating
transcription factor 6 (ATF6). The downregulated genes included
high mobility group box 1 (HMGB1), processing of precursor 1
(POP1), immunity-related GTPase family (IRGM), baculoviral IAP
repeat-containing protein3 (BIRC3), granzyme A (GZMA), and
urotensin-II (UTS2) (Figures 1B,C).

Interactions among the 23 pyroptosis-related DEGs were
observed, and each gene was mapped to the STRING database
to show their interaction relationships (interaction
minimum>0.9, highest confidence) and visualize in Cytoscape.

There were totally 54 interaction relationships among
23 pyroptosis-related DEGs. Figure 1D indicated the protein-
protein interaction (PPI) network diagram.

The correlation analysis showed that CD14 was significantly
positively correlated with NLRP3, while CD14 was significantly
negatively correlated with HMGB1 in all healthy controls and
MDD samples (Figure 2). These results indicated that expression
imbalances of PS genes played important roles in the occurrence
and development of MDD.

A Diagnostic Model for MDD Constituting of
PS Genes
Firstly, the RF was used to screen MDD-specific genes that
optimally differentiated MDD cases from healthy controls.
When the number of decision trees reached 300, the error
changes of the three kinds gradually decrease (Figure 3A).
The 23 PS genes identified by MeanDecreaseAccuracy and
MeanDecreaseGini were showed in Figure 3B. The top 10 of

FIGURE 2 | Correlation analysis of 23 differentially expressed pyroptosis-related genes in all samples and MDD samples.
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these—UTS2, NLRC4, GZMA, GPER1, IL1RN, CAPN1, NLRP3,
HMGB1, ATF6, and ADORA3—were candidate genes.

Secondly, to establish an MDD-specific diagnostic model,
LASSO regression was conducted based on the above 10
genes and basic phenotype information (age and sex), we
contained eight genes (GPER1, GZMA, HMGB1, IL1RN,
NLRC4, NLRP3, UTS2, CAPN1) according to lambda.1se
(Figures 3C,D).

Furthermore, to improve the diagnostic efficiency of
biomarkers, a novel diagnostic risk score was constructed by
multiplying the gene expression. The total risk score was
imputed as follows: (1.163 × GPER1 expression level) +
(−0.474 × GZMA expression level) + (−0.588 × HMGB1
expression level) + (0.003 × IL1RN expression level) + (1.111
× NLRC4 expression level) + (0.479 × NLRP3 expression level) +
(−0.294 × UTS2 expression level) + (0.644 × CAPN1 expression
level). Receiver operating characteristic (ROC) analysis was
used to evaluate the diagnostic ability of eight genes, which
showed a favorable diagnostic value, with an AUC of 0.795 (95%
CI 0.721–0.868) (Figure 3E). The coefficient of eight genes were
showed in Table 5.

Internal and External Validation of
Diagnostic Model Performance
The internal validation of our diagnostic model was performed by
10-fold cross-validation (n = 2000). The model demonstrated good
discrimination (bias-corrected AUC = 0.774, 95% CI =

FIGURE 3 | The construction of our diagnostic model for MDD (A). Error between the number of decision trees and different groups (B). The
MeanDecreaseAccuracy andMeanDecreaseGini of 23 pyroptosis-related genes (C). Screening of the optimal parameter (using lambda.1se as the best lambda) at which
the vertical lines were drawn (D). LASSO coefficient profiles of the 23 differentially expressed PS genes plus age and sex (E). The ROC value of our diagnostic model in
GSE98793 dataset.

TABLE 5 | The coefficient of eight genes.

Gene Coefficient

GPER1 1.162
GZMA −0.474
HMGB1 −0.588
IL1RN 0.003
NLRC4 1.112
NLRP3 0.479
UTS2 −0.294
CAPN1 0.644
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0.679–0.864) (Figure 4A). The external analysis using independent
dataset GSE76826 revealed a good performance of our diagnostic
model for stratifying MDD patients (AUC = 0.891, 95% CI =
0.657–0.941) (Figure 4B).

Furthermore, the accuracy of our diagnostic model was
validated using brain tissue GSE53987 dataset. The AUC was
0.86 (95% CI = 0.669–0.933), which also indicated good
performance (Figure 4C).

In order to observe the effectiveness of this diagnostic
model in other mental illness, the analysis of schizophrenia
GSE38484 dataset was performed. The AUC of GSE38484
dataset was 0.593 (95% CI = 0.507–0.686) (Figure 4D),
suggesting that this diagnostic model was not effective and

accurate for schizophrenia. We speculated that our diagnostic
model constituting of eight PS genes was more appropriate
for MDD.

Immune Cell Infiltration Profile and
Immune-Related Pathway Enrichment
Between Healthy Controls and MDD Cases
Many studies have indicated that MDD is accompanied by
immune dysregulation, pyroptosis is closely related to immune
response as well, thus we want to further explore the relationship
between pyroptosis and immune response in MDD. The
differences in immune cell infiltration profile and immune-

FIGURE 4 | The validation of this diagnostic model (A). The ROC value in internal validation of this diagnostic model (B). The ROC value in external validation of this
diagnostic model by GSE76826 dataset (C). The ROC value in validation of this diagnostic model by GSE53987 dataset (D). The ROC value in validation of this
diagnostic model by GSE38484 dataset.
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related pathway enrichment between healthy controls and MDD
cases were quantified.

Firstly, ssGSEA was used to calculate the relative abundance
of immune cells in each sample. Eight of the immune cell types
discovered significant changes in depression samples, with
activated dendritic cells, immature dendritic cells, monocytes,
and neutrophils showing upregulation and activated B cells,
activated CD4 T-cells, effector memory CD8 T-cells, and
immature B cells showing downregulation (Figure 5A).
These results suggested significantly altered immune cell
profiles in MDD cases comparing with healthy controls
(Figure 5B). BIRC3 exhibited the most obvious positive
correlation with activated CD4 cells, with low scores in MDD
(Figures 5C–E). Meanwhile, HMGB1 showed a significant
negative correlation with monocyte. The score for HMGB1
was lower in MDD, while monocytes showed the opposite
phenomenon (Figures 5F–H).

Similarly, the enrichment fractions of immune-related
pathways were also calculated by ssGSEA (Figure 6A). We
observed differences in the antimicrobial pathway, B cell
receptor (BCR) signaling pathway, chemokines, cytokines,
TCR signaling pathway, and transforming growth factor
(TGF)-β family member receptors between healthy controls
and MDD cases (Figure 6B). CAPN1 was positively correlated

with antimicrobials (Figures 6C–E), while FOXO3was negatively
correlated with the TCR signaling pathway (Figures 6F–H). We
speculated that these changes immune cells and immune-related
pathways played important roles in occurrence and development
of MDD.

Identification of MDD Subtypes Based on
23PS Genes
To explore the connections between the expression profiles of
23 PS genes (CLEC5A, CAMP, TLR2, ADORA3, NLRP3, CD14,
CD274, NLRC4, NAIP, CAPN1, GPER1, VDR, FGF21, IL1RN,
FOX O 3, SERPINB1, ATF6, HMGB1, POP1, IRGM, BIRC3,
GZMA, and UTS2) and MDD subtypes, we performed
unsupervised clustering using data from 64 MDD cases. By
increasing the clustering variable (k) from 2 to 10, we
observed the highest intra-group correlation and lowest inter-
group correlation for k = 2, suggesting that the 64 MDD cases
could be divided into two clusters according to these genes.
Cluster A included 30 samples and cluster B contained 34
samples (Figures 7A–C).

PCA analysis indicated these two clusters differentiated
significantly (Figure 7D). The heatmap and boxplot showed
the expression differences of 23 PS genes between two clusters,

FIGURE 5 | Correlation between pyroptosis-related genes and immune infiltrating cells (A). Differences in the abundance of immune infiltrating cells between
healthy control and MDD samples (B). Correlation between pyroptosis-related genes and immune infiltrating cells (C–E). The most positive correlation between immune
infiltrating and pyroptosis-related genes (F–H). Themost negative correlation between immune infiltrating and pyroptosis-related genes. Adjusted p-values were showed
as: ns, not significant; *p < 0.05; **p < 0.01.
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in which the expressions of ATF6, BIRC3, CAMP, CAPN1, CD14,
CLEC5A, GZMA, NLRP3, POP1, SEPRINB1, and TLR2 were
significantly increased in cluster B, while the expressions of
FGF21, FOX O 3, HMGB1, IL1RN, and VDR were significantly
decreased. ADORA3, CD274, GPER1, IRGM, NAIP, NARC4, and
UTS2 did not differ significantly (Figures 7E,F).

Distinct Immune and Biological
Characteristics Between Two Clusters
To explore the immune characteristics between these two
clusters, we measured the immune cells enrichment fractions,
immune pathway activity, and human leukocyte antigen (HLA)
gene expression profiles. The two clusters revealed completely
different immune characteristics: for example, memory B cells
and cytokines were mainly enriched in cluster A, while HLA
genes mostly concentrated in cluster B (Figures 8A–C).

In addition to immune characteristics, we further explored the
biological functions. We analyzed the enrichment scores of the
Hallmark pathways and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways in the two clusters by GSVA,
which revealed enrichment of pathways in cluster A, including
fatty acid metabolism and neuroactive receptor interaction
(Figures 8D,E).

Generation of “PS-Scores” and Functional
Annotation
To further explore the pathological mechanisms of MDD
related to pyroptosis, we developed a pyroptosis-related
signature score, the “PS-score,” including the phenotype-
related genes to quantify the pyroptosis regulation pattern
of each MDD sample. The “PS-scores” for two distinct
subtypes were calculated. The “PS-scores” of cluster B was
significantly higher than that of cluster A (Figure 9A).
Figure 9B exhibited that the relationships between gender,
pyroptosis clusters, and “PS-scores”.

IFN-α is currently suggested to be an important link in the
pathogenesis of MDD. Clinical studies have shown
significantly higher serum IFN levels in depression patients
than those of normal people. After 12 weeks of antidepressant
treatment, IFN levels were significantly lower than those
before treatment (Shelton et al., 2011). Thus, we explored
the relationship between two subtypes and expression
profiles of IFN-α isoforms. Figure 9C indicated that the
expression profiles of IFN-α1, IFN-α2, IFN-α4, IFN-α5,
IFN-α7, IFN-α8, IFN-α10, IFN-α14, IFN-α16, IFN-α17, and
IFN-α21 were all lower in cluster B, although the difference
was not significant for IFN-α17.

FIGURE 6 |Correlation between pyroptosis-related genes and immune response geneset (A). Differences in the abundance of immune response geneset between
healthy control and MDD samples (B). Correlation between pyroptosis-related genes and immune response geneset (C–E). The most positive correlation between
immune response geneset and pyroptosis-related genes (F–H). The most negative correlation between immune response geneset and pyroptosis-related genes
Adjusted p-values were showed as: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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DISCUSSION

Major depression is a debilitating mental illness and a leading
cause of suicide (Ting et al., 2020). Pyroptosis is originally
identified as a key mechanism in fighting infection, and a
growing number of research suggests its role in the
development of several diseases. However, the role of
pyroptosis in MDD remains unclear. Our present study first
constructed a diagnosis model for depression based on PS genes
and then explored the role of pyroptosis in depression.

Currently, there is no clear boundary between normal and
depressive behavioral manifestations (Wakefield et al., 2007);
thus, the diagnosis of depression is subjective and difficult to
implement (Pan et al., 2018). Previous studies have reported
several diagnostic biomarkers for depression. Leday, the original
author of the GSE98793 dataset, reported an AUC of 0.71 for 165
gene combinations (Leday et al., 2018). In addition, in two
independent sample sets of patients with depression,
Papakostas et al. (2013) reported high diagnostic performance
and sensitivity and specificity >80% for nine biomarkers (alpha1
antitrypsin, apolipoprotein CIII, brain-derived neurotrophic
factor, cortisol, epidermal growth factor, myeloperoxidase,
prolactin, resistin, and soluble tumor necrosis factor-alpha

receptor type II). We previously constructed a diagnostic
model with the signature of four autophagy-related genes used
GSE98793 dataset and autophagy gene set as well. The AUC of
autophagy-related diagnostic model was 0.779 (He et al., 2021).
In the present study, we explored a molecular diagnostic model
forMDD based on PS genes and observed whether this model had
higher efficiency. We firstly identified 23 differentially expressed
PS genes between MDD cases and healthy controls. Further
analysis using RF in machine learning identified UTS2, NLRC4,
GZMA, GPER1, IL1RN, CAPN1, NLRP3, HMGB1, ATF6, and
ADORA3 as key PS genes affecting MDD classification. Then,
the LASSO logistic regression finally screened feature genes and
develop a diagnostic model based on eight genes (GPER1, GZMA,
HMGB1, IL1RN, NLRC4, NLRP3, UTS2, CAPN1). Our present
diagnostic model showed the AUC was 0.795 (95% CI:
0.721–0.868) for this model, indicating the high performance
for differentiating MDD cases from healthy controls.

Of these eight genes (GPER1, GZMA, HMGB1, IL1RN,
NLRC4, NLRP3, UTS2, CAPN1), GPER1, IL1RN, NLRP3, and
HMGB1 are reported associated with MDD previously. Pattern
recognition receptors (PRRs) may play an important role in the
interaction between inflammatory response and behavior. Several
damage-associated molecular patterns (DAMPs) are associated

FIGURE 7 | The construction of pyroptosis-related MDD subtypes (A). The empirical cumulative distribution function (CDF) plots revealed the consensus
distributions for each k (k = 2–10) (B). Area change under CDF curve when K = 2–10. (C). Two pyroptosis-related MDD clusters were generated via unsupervised
consensus cluster (D). PCA for the expression profiles of the 23 pyroptosis-related genes (E,F). Expression heat map and boxplot map of the 23 pyroptosis-related
genes in cluster A and cluster B. Adjusted p-values were showed as: ns, not significant; **p < 0.01; ***p < 0.001.
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with stress and depression, especially NLRP3 and HMGB1. The
NLRP3 inflammasome is activated and GSDMD cleavage,
subsequent IL-1β and IL-18 release, finally pytoptosis occurs.
HMGB1 can induce NLRP3 activation, play an important role in
pyroptosis as well.

The activation level of NLRP3 inflammasome was increased in
multi-pathway induced depressed mouse models. Furthermore,
the specific inflammasome inhibitor VX-765 blocked NLRP3
activation in the hippocampus and improved depression-like
behavior in chronically unpredictable stressed mice. Clinical
investigation reported increased NLRP3 mRNA and protein
levels in peripheral blood mononuclear cells of MDD patients
compared with healthy controls (Kaufmann et al., 2017). HMGB1
can be highly expressed in the cerebral cortex (Lian et al., 2017)
and hippocampus (Liu et al., 2019) of CUMS mice. It is reported
that stress can induce depression-like behaviours through the
HMGB1/TLR4/NF-κB signalling pathway in the hippocampus
(Liu et al., 2019) and PFC (Xu et al., 2020). G protein-coupled
receptor 30 (GPR30), also known as G protein-coupled estrogen
receptor 1 (GPER1), levels in MDD patients were significantly
higher than that in the healthy controls (Findikli et al., 2017).
GPER stimulates IL-1β secretion via JNK and p38 MAPK

signaling pathways, and then induce pyroptosis (Deng et al.,
2020). IL1RN (the gene encoding IL-1RA) encodes a classical
signal peptide that secretes cytokines through the endoplasmic
reticulum and Golgi apparatus (Lennard, 2017). The NLRP3 and
caspase-1 affect the release of IL-1RA, which has a broad effect on
the inflammatory response and pyroptosis in bladder epithelial
cells (Lindblad et al., 2019). Ameta-analysis reported significantly
higher levels of cytokine receptor antagonists (IL-1RA) in MDD
patients compared to those in normal controls (Goldsmith et al.,
2016). However, no associations between the other six candidate
genes and depression have been reported. We believe that our
present results will provide a direction for future research on early
diagnosis of depression based on pyroptosis.

A growing number of studies have reported the associations
between pro-inflammatory cytokines and emotional, cognitive and
behavioral changes, many of which are associated with depression.
For example, higher levels of pro-inflammatory cytokines such as
interleukin-6 and C-reactive protein have been discovered in MDD
patients (Howren et al., 2009). Poor response to antidepressant
treatment is obviously associated with elevated levels of
proinflammatory cytokines (Hiles et al., 2012). Traditional
antidepressants, such as fluoxetine and imipramine, had no

FIGURE 8 | The immune and biological landscapes of two pyroptosis-related clusters (A–C). The results of immune infiltrating cells (A), immune response gene set
(B), and HLA gene set (C): boxplot map of the enrichment scores among cluster A and cluster B (D,E). The results of Hallmark pathways (D) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways (E): heat map of the enrichment scores among cluster A and cluster B Adjusted p-values were showed as: ns, not significant;
*p < 0.05; **p < 0.01; ***p < 0.001.
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obvious effects onmore than 40%ofMDDpatients. Surprisingly, the
use of anti-inflammatory drugs in conjunction with antipsychotics
can relieve a range of psychotic symptoms (Berk et al., 2020).
Therefore, we next observed the immune status of MDD patients
and healthy controls in GSE98793 dataset. We found that activated
dendritic cells, immature dendritic cells, monocytes, and neutrophils
were higher, and activated B cells, activated CD4 T-cells, effector
memory CD8 T-cells, and immature B cells were lower in MDD
patients compared with healthy controls, with similar to Pfau’ (Pfau
et al., 2018) and Kronfol’s studies (Kronfol, 2002). The up-regulation
profiles of dendritic cells, monocytes, and neutrophils illustrate
infection and inflammation occur and progress. Our results
indicated MDD patients might present immune imbalance and
inflammatory status.

Pyroptosis is a type of programmed cell death that is closely
related to the inflammatory response. In the process of pyroptosis,
cells form various vesicles, with pores 10–20 nm in diameter
appearing on the cell membrane after gasdermin shear. It is
reported that the release of many inflammatory factors leads to
cascade amplification of cellular inflammatory responses (Frank and
Vince, 2019), and pyroptosis is closely related to the immune

response. We also discovered PS genes were closely associated
with the changes of immune cells and immune-related pathway
in GSE98793 dataset. Furthermore, our molecular diagnostic model
based on pyroptosis showed a good performance. It was attractive for
us to explore the immune-related mechanisms and search effective
therapy based on pyroptosis can target a specific group of depression
patients. So, we divided the MDD patients in GSE98793 into two
subtypes according to pyroptosis, and found the immune
characteristics and “PS scores” of subtypes were different. The
“PS score” of cluster B was significantly higher than that of
cluster A, and patients in cluster B presented lower profiles of
B cells memory, dendritic cells, eosinophil, cytokines receptor
pathway, and IFN-α family, which suggesting higher “PS score”
might indicate lower levels of inflammatory condition. In addition,
HLA genes play an important role in immune response and immune
therapy. Attractively, most HLA genes were up-regulated in cluster
B, indicating that patients in cluster B might be more sensitive to
immune therapy. Previous studies identified different pyroptosis-
related subtypes for gastric cancer and melanoma, providing a new
method for the prognosis and survival of tumor patients and
promoting the development of personalized therapy (Liu et al.,

FIGURE 9 | Differences in PS-scores and IFN-α isoforms between two pyroptosis-related clusters (A). Differences in PS-scores between cluster A and cluster B
(B). The relationships between clusters, gender, and “PS-scores” (C). Differential expression levels of IFN-α isoforms between cluster A and cluster B. Adjusted p-values
were showed as: ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 13 | Article 84893912

Deng et al. The Pyroptosis-Related Signature in MDD

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


2021). According to our results, deep exploration of immune
regulation in depression could help us understand and develop
accurate and effective anti-inflammatory therapy for MDD patients.
However, unfortunately, the clinical information of MDD patients is
very limited, so we only conducted a partial study to observe the
phenomenon, and further study is needed.

Few studies have assessed the role of pyroptosis in depression.
This preliminary study explored the diagnostic values of PS genes in
depression, and systematically analyzed the relationships between PS
genes and the immune response in depression, providing theoretical
support for future research. However, our study has some
limitations. First, the total sample size was relatively small (MDD:
n = 64; Normal: n = 64). Secondly, this study was based on
bioinformatics analysis; thus many of the results were theoretical.
However, as experiments are the only standard for verifying the
results, their accuracy requires verification without experimental
methods. Third, due to the lack of abundant clinical data, we cannot
determine the specific role of these PS genes in depression, which
warrants further study.

In summary, our study provided a molecular model for MDD
diagnosis.We additionally revealed the pyroptosis was closely related
with immune imbalance in MDD. Comprehensive analysis of the
pyroptosis pattern of MDD will improve our understanding of the
internal mechanism of the MDD immune regulatory network and
inform the development of more effective treatment methods.
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