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Bending forces and nucleotide state jointly 
regulate F-actin structure

Matthew J. Reynolds1, Carla Hachicho1, Ayala G. Carl1,2, Rui Gong1 & Gregory M. Alushin1 ✉

ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular 
force generation1–3. In turn, force4,5 and actin filament (F-actin) nucleotide state6 
regulate actin dynamics by tuning F-actin’s engagement of actin-binding proteins 
through mechanisms that are unclear. Here we show that the nucleotide state of actin 
modulates F-actin structural transitions evoked by bending forces. Cryo-electron 
microscopy structures of ADP–F-actin and ADP-Pi–F-actin with sufficient resolution  
to visualize bound solvent reveal intersubunit interfaces bridged by water molecules 
that could mediate filament lattice flexibility. Despite extensive ordered solvent 
differences in the nucleotide cleft, these structures feature nearly identical lattices 
and essentially indistinguishable protein backbone conformations that are unlikely  
to be discriminable by actin-binding proteins. We next introduce a machine-learning- 
enabled pipeline for reconstructing bent filaments, enabling us to visualize both 
continuous structural variability and side-chain-level detail. Bent F-actin structures 
reveal rearrangements at intersubunit interfaces characterized by substantial 
alterations of helical twist and deformations in individual protomers, transitions that 
are distinct in ADP–F-actin and ADP-Pi–F-actin. This suggests that phosphate rigidifies 
actin subunits to alter the bending structural landscape of F-actin. As bending forces 
evoke nucleotide-state dependent conformational transitions of sufficient magnitude 
to be detected by actin-binding proteins, we propose that actin nucleotide state can 
serve as a co-regulator of F-actin mechanical regulation.

Actin polymerization powers fundamental cellular processes, including 
cell migration, organelle dynamics and endocytosis1. The propulsive 
assembly of branched actin networks is coupled to nucleotide con-
sumption by globular actin (G-actin) subunits, which hydrolyse bound 
ATP concomitant with their incorporation into growing F-actin1. An 
elastic Brownian rachet model, wherein bending filaments push against 
membranes as they polymerize2,3, quantitatively explains the conver-
sion of this chemical energy into mechanical work. Consistently, elec-
tron microscopy has resolved abundant bent filaments featuring radii 
of curvature in the hundreds of nanometres within polymerizing actin 
networks adjacent to surfaces in vitro7 and in cells8–10.

After incorporation into F-actin, subunits rapidly hydrolyse bound 
ATP in seconds. This produces metastable ADP-Pi–F-actin that per-
sists for minutes before phosphate release, resulting in long-lived 
ADP–F-actin1. Retrograde flow simultaneously pushes aged fila-
ments away from the membrane11, producing a spatial gradient of 
F-actin nucleotide states—a biochemical marker of filament age6. 
Both actin nucleotide state and mechanical forces1,4,12,13 modulate 
interactions between F-actin and key actin-binding proteins (ABPs) 
that govern actin network dynamics. The F-actin-depolymerizing 
protein cofilin preferentially binds to and severs ADP–F-actin14,15, 
facilitating the selective disassembly of membrane distal, aged 
F-actin. Cofilin and the branched F-actin nucleator ARP2/3 also fea-
ture mechanically tuned5 F-actin-binding activity16–18, specifically 

responding to filament bending17,19. This may contribute to force 
sensitivity in branched F-actin networks, which display modified 
interfilament geometry20,21 and enhanced force production20 in the 
presence of resistive loads. Several other ABPs detect the nucleotide 
state of F-actin13,22 and force across individual filaments23–25 through 
mechanisms that are unclear.

F-actin polymerization is coupled to the G-to-F transition, a sub-
stantial flattening of the actin subunit that renders its nucleotide 
cleft active site competent for hydrolysis26. By contrast, cryo-electron 
microscopy (cryo-EM) studies at a resolution of 3–4 Å found only mod-
est nucleotide-state-dependent changes in F-actin, reporting either 
localized rearrangements27,28 in actin’s flexible D-loop29–31 or nearly 
identical backbone conformations32. However, binding by ABPs can 
evoke substantial rearrangements, notably cofilin, which stabilizes 
an undertwisted F-actin lattice33,34. This discrepancy challenges a tra-
ditional allosteric model for F-actin nucleotide state discrimination by 
ABPs, which cannot directly access actin’s buried nucleotide cleft. The 
actin nucleotide state could also modulate F-actin’s deformability and 
corresponding capacity for rearrangements mediating ABP binding13,15, 
consistent with micrometre-scale persistence length measurements 
showing that ADP-Pi–F-actin is stiffer than ADP–F-actin35. Molecular 
dynamics simulations support mechanical regulation of F-actin struc-
ture36, with models abstracted to the subunit level predicting cou-
pling between filament bending and helical lattice twist modulation 
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(twist–bend coupling)37. Recent finer-grained simulations featuring 
subunits composed of multiple rigid bodies exhibited cooperativity 
between ATP hydrolysis and phosphate release through the filament 
lattice38, suggesting coupling between propagation of lattice defor-
mations and filament nucleotide state. However, in the absence of 
direct structural visualization, it remains unclear whether mechanically 
evoked conformational transitions in F-actin intersect with filament 
nucleotide state to control ABP engagement.

Solvent in the nucleotide cleft of F-actin
To investigate whether subtle F-actin conformational changes could 
explain ABP nucleotide-state sensing, we determined the structures 
of ADP–F-actin and ADP-Pi–F-actin at an improved resolution. As 
reported protocols for preparing ADP-Pi–F-actin vary13,27,32, we 
validated our approach (polymerizing G-actin in the presence of 
15 mM KH2PO4) by monitoring cofilin severing using a fluorescence 
microscopy assay (Methods). Consistent with previous reports14,15, 
ADP–F-actin rapidly depolymerized within 5 min of cofilin addi-
tion, whereas ADP-Pi–F-actin largely remained intact. Replacing 

KH2PO4 with K2SO4 produced intermediate severing, suggesting 
that phosphate specifically caused the substantially reduced sever-
ing of ADP-Pi–F-actin rather than altering the buffer’s ionic strength 
(Extended Data Fig. 1a,b). We therefore used cryo-EM and iterative 
helical real-space refinement as implemented in RELION to determine 
the structures of ADP–F-actin and ADP-Pi–F-actin at resolutions of 
2.4 Å and 2.5 Å, respectively (Fig. 1a, Methods, Extended Data Fig. 1c,d 
and Supplementary Table 1).

These maps featured sufficient resolution to accurately build and 
refine ADP, magnesium, phosphate and water molecules (Fig. 1b, 
Methods, Extended Data Fig. 1e and Supplementary Video 1). In both 
nucleotide states, extensive water-mediated hydrogen-bonding net-
works stabilize the ligands. Notably, in ADP–F-actin, four water mol-
ecules displace the inorganic phosphate’s oxygen tetrahedron. Other 
nucleotide cleft positions also featured small changes in the number 
and positioning of water molecules. These F-actin active-site composi-
tions and stereochemistry are consistent with a contemporary study39, 
providing confidence in interpreting the cryo-EM maps.

Despite substantial changes in bound small molecules, differ-
ences between the conformations of actin protomers themselves, 
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which were exquisitely resolved (Extended Data Fig. 2a), were minis-
cule (0.206 Å Cα root mean squared deviation (r.m.s.d.); Fig. 1c). 
Per-residue r.m.s.d. and per-residue strain pseudoenergy analysis 
(a metric that highlights local deformations; Methods) confirmed 
the absence of meaningful Cα deviations with the exception of the 
D-loop in subdomain 2 (Extended Data Fig. 2b,c). This region, which 
is well established to be flexible in F-actin27,32,40,41, also corresponded 
to the lowest-resolution region of our maps, and differences may 
therefore be attributable to resolution-dependent uncertainty in 
the atomic models. At the helical-lattice level, the refined rise was 
slightly larger in ADP–F-actin (28.1 Å versus 27.8 Å in ADP-Pi–F-actin), 
which accumulates into detectable differences in subunit position-
ing at longer length scales (Extended Data Fig. 2d). Nevertheless, 
these structures did not reveal changes of the magnitude asso-
ciated with ABP binding (for example, cofilin33,34). This suggests 
that nucleotide-state sensitivity in ABPs is unlikely to be mediated 
primarily by their detection of F-actin conformational changes 
concomitant with phosphate release.

Water molecules mediate intersubunit contacts
We next examined water molecules outside the nucleotide cleft, rea-
soning that solvent at intersubunit interfaces could potentially facili-
tate mechanical remodelling of the filament. As is typical for helical 
reconstructions, the highest-resolution map regions were the filament 
cores (Extended Data Fig. 1d), which revealed a continuous solvated 
channel aligned with the filament axis. Water positioning in this channel 
was largely similar between ADP–F-actin and ADP-Pi–F-actin (Fig. 2a 
and Extended Data Fig. 2e). An analysis of solvent-accessible pockets 
(Methods) indicates that the filament core is accessible to bulk solvent 
and features small channels that connect to the nucleotide clefts of the 
protomers. This positions the filament core to contribute to extensive 
solvent-mediated lateral interactions between strands, which occur 
at a vertex between three subunits (Fig. 2b (top)). We also observed 
ordered water molecules on the outer surface of F-actin that mediate 
longitudinal interactions between protomers along the same strand 
(Fig. 2b (bottom)). A detailed analysis of specific interactions42,43 is 

H-plug

D-loop

SD3
site1

K284

C285

D286

R39

T66

L65

T203

E270

M269

S265

I267

G268

K284

C285

D286

R39

T66

L65

T203

E270

M269

S265

I267

G268

H-plug

D-loop

SD3
site1

La
te

ra
l i

nt
er

fa
ce

a

b

90°

ADP ADP-Pi

PE
(–)

BE
(+)

120°

Y294

D244

R290
D-loop

SD4
core SD2

core

SD3
site1

SD3
site2

Lo
ng

itu
d

in
al

 in
te

rf
ac

e

P243

Y166

D288

K291

D286I287

G63

S60

R62
T202

T203

L65

R39

E167

A171

G168

M44

V43

Q41

Q49

i

i + 1

i + 2

Y294

D244

R290
D-loop

SD4
core SD2

core

SD3
site1

SD3
site2

P243

Y166

D288

K291

D286I287

G63

S60

R62
T202

T203

L65

R39

E167

A171

G168

M44

V43

Q41

Q49

Fig. 2 | Water molecules mediate key longitudinal and lateral contacts in 
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heteroatom. Water molecules are shown in violet, and putative hydrogen 
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presented in the Supplementary Discussion. In summary, we found that 
intersubunit interfaces are extensively solvated, which we hypothesize 
could lubricate mechanical rearrangements within the filament.

Visualizing F-actin bending deformations
Actin filaments are exposed to thermal fluctuations and fluid forces12,44 
during cryo-EM grid preparation, producing visibly bent regions 
(Fig. 3a) that are generally excluded during helical processing. Although 
other stably curved protein filaments have been structurally character-
ized45,46, non-equilibrium bending has not been visualized in atomistic 
detail. As F-actin bending is energetically unfavourable, only a small 
filament segment subpopulation should feature appreciable deforma-
tions. Moreover, bending is a continuum, rendering it refractory to 
characterization by traditional classification approaches.

We therefore developed a neural-network-based approach to identify 
bent F-actin segments in micrographs (Methods and Extended Data 

Fig. 3) and estimate their instantaneous in-plane curvature. As antici-
pated, most segments exhibited low curvature. However, a subset of 
filaments featured regions of continuous curvature gradients indicative 
of elastic bending (Fig. 3a). Consistent with persistence length meas-
urements35, segment curvature distributions revealed significantly 
greater mean curvature for ADP–F-actin compared with ADP-Pi–F-actin 
(ADP, 1.14 μm−1; ADP-Pi, 0.96 μm−1), including a long tail of highly curved 
ADP–F-actin segments (Fig. 3b). A minimal Boltzmann model of thermal 
fluctuations approximately captures the curvature distributions, yet sys-
tematic deviations are consistent with fluid forces during cryo-EM sam-
ple preparation increasing the prevalence of highly curved filaments9,10,44 
(Extended Data Fig. 4 and Supplementary Discussion).

To investigate these bending conformational landscapes, we exam-
ined 16-protomer segments featuring estimated curvatures greater 
than an arbitrary 2.5 μm−1 cut-off (hereafter, bent F-actin). After ab 
initio reconstruction in cryoSPARC and subsequent processing with 
RELION, we used the heterogeneity analysis tool cryoDRGN to generate 
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volumes spanning each dataset’s continuous bending deformations 
(Fig. 3c,d, Methods and Extended Data Fig. 5). CryoDRGN does not 
generate independent half-maps for resolution assessment, but the 
maps featured well-resolved α-helices characteristic of ~8 Å resolution. 
These reconstructions predominantly exhibited in-plane bending 
(Fig. 3d and Extended Data Fig. 5b,e), featuring central axis curvatures 
that fell within the distributions of estimated segment curvatures (ADP, 
2.0–5.4 μm−1; ADP-Pi, 3.2–4.4 μm−1). Consistently, the radii of curvature 
of volumes stitched from multiple copies of these reconstructions 
were on the order of hundreds of nanometres (Fig. 3d), similar to bent 
F-actin observed in cells7–10.

Bending remodels F-actin’s lattice
To examine lattice remodelling, we flexibly fit atomic models into these 
maps using ISOLDE and measured instantaneous helical parameters 
(rise and twist; Fig. 3e and Supplementary Video 2) along their bent 
central axes (Methods). This revealed striking bend–twist coupling, 
consistent with theoretical predictions37, with alternating overtwisting 
and undertwisting of strands that increased with filament axis curva-
ture. Symmetric twist deviations between strands remain in-phase, 
retaining canonical F-actin’s twist as the instantaneous average between 

odd/even protomers to maintain lattice structural integrity. Bend-
ing evoked twist deviations up to 15°, substantially greater than the 
twist deviation induced by cofilin (~5°)33,34. Each strand’s bend–twist 
relationship could be modelled analytically as a travelling wave along 
its component protomers (Methods), whereby increasing curvature 
modulates the twist amplitude and phase (Fig. 3f, Extended Data Fig. 6a 
and Supplementary Table 2). Both ADP–F-actin and ADP-Pi–F-actin 
exhibit nearly identical propagation speeds in twist/protomer-index 
space, but ADP–F-actin features a larger-amplitude coupling factor. 
This leads to the physical interpretation that a given curvature pro-
duces greater twist deviations in ADP–F-actin than ADP-Pi–F-actin, 
suggesting ADP F-actin’s lattice is more deformable (Extended Data 
Fig. 6b and Supplementary Table 2).

We also observed modest rise deviations that manifest as apparent 
standing rather than travelling waves, of which the amplitude also 
increases with curvature (Fig. 3f). These rise waves have wavelengths 
approximately half those of the twist waves and, to our knowledge, they 
have not been theoretically modelled in detail. Although the physical 
basis of rise deviations is less clear, we hypothesize that they result from 
subunit deformations to accommodate twist remodelling and increased 
elastic energy at intersubunit interfaces. Consistently, the most highly 
curved 16-protomer models featured nucleotide-state-dependent 
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alterations in the distances and angles between subdomains of lon-
gitudinally adjacent protomers along each strand47 (Extended Data 
Fig. 6c; a detailed analysis is provided in the Supplementary Discus-
sion). Notably, bent F-actin exhibited no clear systematic differences 
associated with subunit flattening, the hallmark of the G-to-F transi-
tion, in either nucleotide state, suggesting that F-actin bending has a 
distinct structural landscape.

To validate the cryoDRGN results, we divided the ADP segments into 
three straight bins, one low-curvature bin and one high-curvature bin, all 
of approximately equivalent size. Asymmetric single-particle reconstruc-
tions (Methods) of the straight controls (7.0 Å, 7.1 Å and 7.2 Å resolution) 
revealed negligible deviations from the helical parameters of canonical 
F-actin, whereas the low-curvature (6.9 Å resolution) and high-curvature 
(6.4 Å) reconstructions exhibited twist and rise patterns consistent with 
the cryoDRGN models (Extended Data Fig. 5d,f,g and Supplementary 
Video 3). Collectively, these data suggest that bending evokes substan-
tial, nucleotide-state-modulated F-actin conformational transitions.

Nucleotide clefts feature shear strain
We next sought to visualize protomer structural deformations accom-
panying filament bending. Reasoning that continuous conformational 
flexibility was limiting the resolution of the 16-protomer reconstruc-
tion, we focused on the central 7 subunits (Methods). Focused refine-
ment substantially improved the resolution of both bent F-actin 
reconstructions (ADP–F-actin, 3.6 Å; ADP-Pi–F-actin, 3.7 Å; Fig. 4a, 
Extended Data Fig. 7a–c and Supplementary Table 3), facilitating 
direct atomic model building and refinement. We also reconstructed 
two straight ADP–F-actin bins featuring matched segment numbers—
both yielded 3.7 Å maps, into which we built control atomic models 
(Extended Data Fig. 7 and Supplementary Table 3).

We compared these asymmetric models with our helically symmetric 
models by superimposing their central protomers, revealing systematic 
rearrangements solely in the bent models (Extended Data Fig. 7d). The 
straight controls featured only small, randomly distributed deviations, 
suggesting that the bent structures capture conformational rearrange-
ments rather than merely reflecting model building uncertainty at 
3.6–3.7 Å resolution. To examine the internal deformations of individual 
subunits, we superimposed each protomer with a subunit from its 
nucleotide-state-matched helically symmetric model and examined 
subdomain-averaged Cα displacements (Fig. 4b, Methods and Supple-
mentary Video 4). This revealed complex displacement patterns that 
were dependent on a protomer’s strand membership and lattice posi-
tion, primarily characterized by subunit shearing around the nucleotide 
cleft. These rearrangements are captured by a shear index (Fig. 4c; the 
dot product of the indicated vectors), which reveals increased shearing 
near the barbed ends of our reconstructions, probably due to the local 
orientation of the lattices relative to the plane of curvature. Although 
subdomain displacement patterns were highly similar between ADP and 
ADP-Pi (Fig. 4b), the shearing magnitude was greater in ADP (Fig. 4c), 
consistent with the higher overall average curvature of bent ADP seg-
ments and enhanced deformability of ADP subunits.

To identify specific structural elements experiencing deformations, 
we once again performed per-residue strain pseudoenergy analysis 
(Methods), which is insensitive to rigid-body displacements. This 
revealed three primary sites of strain: the H-plug (Extended Data Fig. 8a 
(left)), the D-loop (Extended Data Fig. 8a (right)) and the nucleotide 
cleft (Fig. 4d). Strain in the H-plug and D-loop is consistent with their 
roles as primary mediators of intersubunit interactions. Notably, bent 
ADP–F-actin displayed significantly higher total strain in residues 
adjacent to the nucleotide (7.5 Å distance cut-off) compared with bent 
ADP-Pi–F-actin or the straight ADP–F-actin controls (Fig. 4d,e). Consist-
ently, solvent-accessible volume measurements (Methods) also revealed 
expanded nucleotide clefts in the bent ADP–F-actin protomers relative 
to bent ADP-Pi–F-actin and straight ADP–F-actin controls (Fig. 4e). We 

also examined detailed rearrangements within the subunits (Extended 
Data Figs. 8b and 9, Supplementary Discussion and Supplementary 
Videos 5 and 6). These were broadly consistent with actin’s nucleotide 
cleft functioning as a deformable locus that coordinates mechanical 
rearrangements, the rigidity of which is dependent on phosphate occu-
pancy. This provides a structural mechanistic explanation for actin 
nucleotide state’s modulation of F-actin bending mechanics.

Discussion
Our direct structural visualization of a mechanically regulated F-actin 
conformational landscape modulated by actin nucleotide state reveals 
substantial remodelling of helical lattice twist, producing substan-
tial rearrangements at protomer–protomer contacts. We therefore 
speculate that F-actin bending could modulate binding by numerous 
ABPs, as their binding sites generally span two longitudinally adjacent 
protomers. Indeed, mapping the known binding sites of representative 
force- and nucleotide-state sensitive ABPs on bent F-actin suggests that 
they are likely to be impacted by these structural transitions (Extended 
Data Fig. 10). Although it is possible that nucleotide-state-sensing 
ABPs detect the very small structural changes (most plausibly, the 
0.3 Å rise increase) allosterically triggered by phosphate release from 
ADP-Pi–F-actin22,27, our high-resolution structures suggest that this is 
unlikely to be the primary mechanism. Our bent actin structures sup-
port an alternative model in which phosphate both rigidifies F-actin 
(consistent with previous studies)33 and modifies the structural land-
scape evoked by bending forces, enabling discrimination by ABPs. This 
model is furthermore compatible with the rigidification of canonical 
F-actin by phosphate inhibiting engagement by ABPs that must sub-
stantially deform the lattice to bind, such as cofilin15,32,48.

Our studies also provide insights into the mechanisms of F-actin 
bending, a model for regulation of protein structure by mechanical 
force. As force is a delocalized perturbation across the filament, it 
has been unclear how it is transduced into conformational remodel-
ling of component subunits. We propose a ‘steric boundaries’ concep-
tual model of mechanical regulation, wherein lattice rearrangements 
reposition a subunit’s contacting neighbours (Fig. 4f). This remodels 
the physical space available for it to occupy, inducing it to deform to 
minimize clashes. The model predicts coupling between a subunit’s lat-
tice position, local filament curvature and its resultant conformation, 
consistent with our observations. Ligand binding/chemical modifica-
tions can also alter a subunit’s deformation landscape, providing a 
framework for intersecting biochemical and mechanical regulation. 
As shown here for actin and phosphate, this does not require ligand 
engagement to modify the protein’s ground-state conformation, a 
departure from traditional allosteric regulation that bears resemblance 
to dynamic allostery49. However, in the steric boundaries framework, 
the ligand co-regulates mechanical deformations rather than altering 
the protein’s intrinsic conformational fluctuations (a non-exclusive 
mode of regulation). Consistently, we found that actin’s nucleotide cleft 
mediates subunit shearing deformations, enabling its biochemical con-
tent to modulate F-actin’s mechanics. This additionally suggests that 
force could modulate F-actin’s nucleotide hydrolysis and phosphate 
release kinetics, as has previously been predicted50. Beyond F-actin, 
we anticipate the steric boundaries mechanism could also explain 
joint mechanical and biochemical regulation of other multisubunit 
complexes—a subject for future research.
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Methods

Protein preparation
Chicken skeletal muscle actin was purified as previously described51. In 
brief, 1 g of chicken skeletal muscle acetone powder was resuspended 
in 20 ml of G-Ca buffer (G buffer: 2 mM Tris-Cl pH 8.0, 0.5 mM DTT, 
0.2 M ATP, 0.01% NaN3, supplemented with 0.1 mM CaCl2) and mixed by 
inversion for 30 min. The suspension was centrifuged in a Beckman Ti70 
rotor at 42,500 rpm (79,766g) for 30 min. Then, 50 mM KCl and 2 mM 
MgCl2 were added to the supernatant, containing G-actin monomers, 
to stimulate F-actin polymerization for 1 h. KCl (0.8 M) was then added, 
and the solution was incubated for 30 min to facilitate dissociation 
of contaminants from F-actin. The solution was then centrifuged in a 
Ti70 rotor at 42,500 rpm (79,766g) for 3 h. The pellet was resuspended 
in 2 ml of G-Ca buffer and incubated overnight. The mixture was then 
homogenized in a Dounce chamber for 10–15 passes, consecutively 
sheared through 26G and 30G needles, then dialysed in 1 l of G-Ca buffer 
overnight in Spectra/Por 1 dialysis tubing (MWCO 6–8 kDa). The actin 
solution was then sheared through a 30G needle again before dialysis in 
1 l of fresh G-Ca buffer for another day. It was then centrifuged in a Beck-
man Ti90 rotor at 70,000 rpm (187,354g) for 3 h. The top two-thirds of 
the supernatant was then loaded onto a HiLoad 16/600 Superdex 200 
column (Cytiva) for size-exclusion chromatography. Purified G-actin 
was maintained in G-Ca buffer at 4 °C before use.

A Flag–GFP tagged version of human myosin VI-S1 (used to anchor 
actin filaments to coverslips for cofilin severing assays) was purified as 
described previously24, flash-frozen in liquid nitrogen and maintained 
at −80 °C. Lyophilized human cofilin 1 was purchased from Cytoskel-
eton (CF01) and reconstituted in MB buffer (20 mM MOPS pH 7.4, 
5 mM MgCl2, 0.1 mM EGTA, 50 mM KCl, 1 mM DTT), then incubated 
overnight at 4 °C . Aliquots were then flash-frozen in liquid nitrogen 
and maintained at −80 °C. Aliquots (20 μg) of lyophilized rhodamine 
actin (Cytoskeleton AR05) were resuspended in 18 μl of G-Ca buffer 
and 2 μl of MilliQ water, incubated at 4 °C for at least 1 h, then clarified 
by ultracentrifugation in a Beckman TLA100 rotor at 100,000 rpm 
(335,400g) for 20 min.

Cofilin severing assays
Glass coverslips (Corning 22 × 50 mm, 1½) were cleaned for 30 min 
using 100% acetone, 10 min using 100% ethanol and 2 h using 2% Hell-
manex III liquid cleaning concentrate (HellmaAnalytics) in a bath soni-
cator followed by rinsing with MilliQ water. The cleaned glass coverslips 
were coated with 1 mg ml−1 mPEG5K-Silane (Sigma-Aldrich) in a 96% 
ethanol, 10 mM HCl solution for at least 16 h with rocking. After coating, 
the coverslips were rinsed with 96% ethanol and water, then air-dried 
and stored at 4 °C until use.

Rhodamine-labelled ADP–F-actin (20%) was prepared by diluting 
unlabelled G-actin and rhodamine G-actin stocks to 0.9 μM and 0.1 μM, 
respectively, in KMEH buffer (50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 
10 mM HEPES pH 7.0, 1 mM DTT) supplemented with G-Mg (G Buffer + 
0.1 mM MgCl2), for a final actin concentration of 1 μM. The mixture was 
incubated at 25 °C for 1 h, then 4 °C overnight. Before use, the F-actin 
was pelleted by centrifugation at 60,000 rpm (120,744g) in a TLA100 
rotor for 20 min and resuspended in fresh KMEH to remove any free 
phosphate ions. Rhodamine-labelled ADP-Pi–F-actin (20%) was pre-
pared as described above, except KMEH + G-Mg was supplemented 
with 15 mM K2HPO4 (pH 7.0). The mixture was incubated at 25 °C for 
1 h, then placed on ice and used immediately. Rhodamine-labelled 
ADP–F-actin (20%) in the presence of K2SO4 was prepared identically, 
except 15 mM K2SO4 (pH 7.0) was substituted for K2HPO4.

For preparation of total internal reflection fluorescence (TIRF) sam-
ples, a PDMS gasket (Grace Bio-Labs, 103380) was placed onto the cover 
slip and 20 μl of 0.25 μM rigor myosin VI S1 in MB buffer was added to 
the well and incubated for 2 min, followed by blocking with 20 μl of 
0.1% polyvinylpyrrolidone (Sigma-Aldrich, 9003-39-8) in MB buffer 

for 1 min. Next, 20 μl of 1 μM F-actin was added to the well for 30 s. The 
actin was then washed with 20 μl MB buffer (for ADP–F-actin) or MB 
buffer + 15 mM KH2PO4/K2SO4 (for ADP-Pi–F-actin/ADP–F-actin in the 
presence of sulfate).

TIRF videos were recorded using Nikon’s NIS-Elements software at 
either a 1 s or 2 s frame rate on a Nikon H-TIRF system using a CFI Apo 
×60 TIRF oil-immersion objective (NA 1.49), a quad filter (Chroma) and 
an iXon EMCCD camera (Andor). Rhodamine was excited by a 561 nm 
laser. Filaments were initially imaged for 2 min, the video was paused, 
and 20 μl of 2 μM cofilin in MB buffer (1 μM final concentration) was 
added to the well. The video was then resumed and filament severing 
was recorded for an additional 8 min.

Cofilin severing quantification
Videos were analysed using custom Python scripts that measured the 
change in filament intensity over the course of the experiments. Video 
regions containing F-actin were identified and masks were generated 
by operating on a projection of the first 50 frames of the video using 
the functions in the scikit-image Python package52. This projection’s 
background (computed using a rolling ball radius of 50 pixels) was 
subtracted and subjected to a gaussian blur with a filter size of 2 pixels. 
A Li adaptive threshold was used to binarize the projection, morpho-
logical objects with an area smaller than 100 pixels were removed and 
the remaining binarized image was dilated by 1 pixel. This set of masks 
for each video was applied to all frames of the video, and quantification 
of actin intensity was performed on a per-mask basis.

For each mask, the summed pixel intensity was measured for each 
frame and normalized by dividing by the 90th percentile intensity. 
The maximum intensity was not used for normalization because the 
intensity often spiked with the addition of buffer/cofilin at time 0 s. The 
intensity traces for each mask of each video of the same experimental 
condition were pooled and their average was plotted (Extended Data 
Fig. 1a,b).

Cryo-EM grid preparation
ADP-Pi–F-actin was prepared as described above (without incorporation 
of rhodamine actin), then diluted to 0.5 μM in KMEH + 15 mM KH2PO4 
supplemented with 0.01% Nonidet P40 (NP40) substitute (Roche), an 
additive that we have found improves our ability to achieve thin vitreous 
ice films. Solution (3 μl) was applied to a plasma-cleaned C-flat 1.2/1.3 
holey carbon Au 300 mesh grid (Electron Microscopy Sciences) in a 
Leica EM GP plunge freezer operating at 25 °C. After incubation for 
60 s, the grid was blotted from the back using a Whatman no. 5 filter 
paper for 4 s, then flash-frozen in liquid ethane.

The ADP–F-actin sample corresponds to a pre-existing dataset 
described in a recent study41. ADP–F-actin was prepared as described 
above, except KH2PO4 was omitted and KMEI buffer (50 mM KCl, 1 mM 
MgCl2, 1 mM EGTA, 10 mM imidazole pH 7.0, 1 mM DTT) + 0.01% NP40 
substitute was used instead of KMEH.

Cryo-EM data collection
ADP–F-actin and ADP-Pi–F-actin datasets were collected on the same 
FEI Titan Krios system operating at 300 kV and equipped with a Gatan 
K2-Summit direct electron detector using super-resolution mode. 
Videos were recorded using the SerialEM software suite53 at a nominal 
magnification of ×29,000, corresponding to a calibrated pixel size of 
1.03 Å at the specimen level (super-resolution pixel size of 0.515 Å per 
pixel). Each 10 s exposure was dose-fractionated across 40 frames, 
with a total electron dose of 60 e− Å−2 (1.5 e− Å−2 per frame), with defocus 
values ranging from −1.5 to −3.5 μm underfocus. For the ADP-Pi–F-actin 
dataset, beam-image shift was used to collect 4,834 single exposures 
from nine holes in a 3-by-3 grid per each stage translation. For the 
ADP–F-actin dataset, which has previously been reported41 and was 
reprocessed here, 1,548 exposures were directly targeted using stage 
translations with a single exposure per hole.



Article

Micrograph pre-processing
Movies were aligned with MotionCor2 using 5 × 5 patches54, and 
dose-weighting sums55 were generated from twofold binned frames 
with Fourier cropping, resulting in a pixel size of 1.03 Å in the images. 
Non-dose-weighted sums were used for contrast transfer function 
(CTF) parameter estimation using CTFFIND456.

Synthetic dataset generation
Accurate nanoscale curvature measurements of F-actin in noisy cryo-EM 
micrographs requires high-quality, pixel-wise image segmentation. 
Traditional cross-correlation-based approaches for filament particle 
picking use templates derived from 2D class averages or projections of 
a straight F-actin map. This strategy features limitations, notably that 
cross-correlation will be lower between straight templates and highly 
curved filament segments in experimental images. Moreover, discrimi-
nation of filaments from background or non-protein signal may be 
poor. To achieve high-quality semantic segmentation, we implemented 
a convolutional neural-network-based approach to identify filament 
segments of all curvatures. Although other machine-learning-based 
pickers have recently been introduced57–59, to our knowledge, they do 
not explicitly focus on detecting or flagging instantaneous curvature 
within a filamentous assembly. From semantically segmented micro-
graphs, we identified filaments and measured their instantaneous 
in-plane 2D curvature.

To train the neural networks, synthetic pairs of noisy and noiseless 
projections that mimicked experimental data were used. Plausible 3D 
synthetic models of F-actin bent around a circular central axis were 
generated using a custom Python script that loaded and operated on 
Protein Data Bank (PDB) models using functions from the ProDy pack-
age60. Individual actin protomers were treated as rigid objects and 
positioned using a toroidal helix function:
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where the parameters are defined as follows: γ is the position in 
3D space along the toroid, r is the filament radius, ω is the average 
twist, t is the parameterized position along the helical curve, φ is 
the phase of the twist, d1, d2, and d3 are the displacements of the 
toroid from the origin, c is the rise parameter and R is the toroid’s 
radius of curvature. Note that this function converges to a canonical 
F-actin helix when the curvature is zero. Furthermore, the equation 
does not explicitly encode emergent architectural remodelling phe-
nomena such as twist–bend coupling. Using this synthetic filament 
generation scheme, a library of 135 bent actin models consisting 
of 35 protomers and of systematically varying curvature and rota-
tion about the central filament axis were generated. These models 
were then converted to volume files using the PDB2MRC function in 
EMAN261. These volumes were saved within 256-voxel boxes (voxel 
size, 4.12 Å). The volumes were rotated about the phi and rot angles 
by a random, uniformly sampled value between 0° and 359°, and 
the tilt was randomly sampled from a Gaussian probability distri-
bution centred at 90° with a s.d. of 2.5°, then randomly translated 
around the box by ±250 Å and projected along the z axis to generate 
a noiseless projection. A paired noisy projection was generated by 
adding pink noise in Fourier space, as implemented in EMAN2’s 
Python package to generate realistic-looking synthetic data61. These 
projection images were cropped to a smaller box size of 128 pixels 
to ensure that filaments would span the image. Two-channel stacks 
of semantic maps associated with the noisy–noiseless projection 
pairs were generated by low-pass filtering the noiseless projection 
to 40 Å and binarizing it.

Network architecture and training
A denoising autoencoder (DAE) was trained using the architecture 
outlined in Extended Data Fig. 3a. Each trainable layer had a ReLU acti-
vation function, except for the final layer, which had a linear activa-
tion function. The negative of the cross-correlation coefficient was 
used as the loss function. For training, the weights were initialized 
using the default initialization in TensorFlow62. The model was trained 
using the Adam optimizer version of stochastic gradient descent with 
a learning rate of 0.00005 and minibatch size of 16 until the model 
converged (no improvement in validation loss for 3 epochs). After 
network convergence, the weights from the best epoch were restored. 
For training, 800,000 noisy–noiseless projection pairs with box sizes 
of 128 × 128 were generated, 90% of which were used for training and 
10% for validation. After network convergence, the DAE had an average 
cross-correlation coefficient of 0.9887 on the validation set.

After training the model as a DAE, a semantic segmentation net-
work was trained by copying the convolutional encoding layers and 
weights of the DAE while adding convolutional layers. The final layer 
was a two-channel layer with sigmoid activation and default Tensor-
Flow initialization. This semantic segmentation network was then 
trained with a learning rate of 0.001. For training, 30,000 pairs of noisy 
inputs and semantically segmented targets of dimension 128 × 128 and 
128 × 128 × 2, respectively, were used with a minibatch size of 32; 90% 
of the synthetic data were used for training and 10% for validation. The 
loss function was binary cross-entropy and, after network convergence, 
the model had a loss of 0.0651 on the validation set. Example network 
performance on synthetic data is shown in Extended Data Fig. 3.

Models were trained on a single NVIDIA Titan XP GPU with 12 GB 
of VRAM. Training required approximately 1 h per epoch for the DAE 
and 3 min per epoch for the semantic segmentation network. After 
initiating this project, we continued developing deep-learning-based 
filament particle pickers. The architectures described here have been 
superseded by a U-net architecture, which we found produces better 
segmentation with a smaller training set in a shorter time63.

Particle picking
A custom Python script was used to pass images to the fully convo-
lutional neural network for semantic segmentation (FCN-SS) and 
execute curvature-sensitive filament picking. Each micrograph was 
binned by 4 to a pixel size of 4.12 Å per pixel, then 128-pixel tiles fea-
turing 32 pixels of overlap were extracted and passed as inputs to the 
network. The outputs were stitched together by maximum intensity 
projection at the overlaps, producing a semantic segmentation map 
of the micrograph. These maps were then binarized using a fixed, 
empirically determined threshold of 0.9 and skeletonized. Branches 
shorter than 8 pixels were pruned, and pixels within a radius of 48 pix-
els from filament intersections were removed. Continuous filaments 
were then identified by matching tracks with common end points, 
and 2D splines were fit through the filaments for curvature estima-
tion. To prevent spuriously high curvature values due to edge effects, 
the terminal 50 pixels of the spline were omitted from picking. From 
the remaining filament sections, the instantaneous curvature was 
measured along the spline at 56 Å intervals (corresponding to a step 
size of the length of one protomer) and used for segment selection. 
For picking segments from the identified filaments for asymmetric 
reconstructions, a step size equivalent to two short-pitch helical rise 
steps (56 Å) was used for extracting segments. Filament segments with 
a curvature greater than or equal to 2.5 μm−1 were considered to be 
bent, whereas those with a curvature of less than or equal to 2.0 μm−1 
were considered to be straight. To select segments from the identified 
filaments for high-resolution helical reconstructions, a step size of 
three times the helical rise was used (83.4 Å), and segments that were 
members of the same filament were flagged in the output metadata (a 
RELION-formatted STAR file).



Helical image processing
High-resolution reconstructions were determined using the iterative 
helical real space refinement64 approach as implemented in RELION65. 
We reprocessed our ADP–F-actin dataset that previously produced a 
map at 2.8 Å resolution41, and the ADP-Pi–F-actin dataset from this work 
in parallel. Our neural-network-based picker eliminated intersections 
where filaments overlapped. After initial picking, particles were extracted 
without binning in 512-pixel boxes using RELION, with 81 Å (3 protom-
ers) of non-overlap. Our picking scheme did not include psi (in-plane 
rotation) angle estimates, so an initial refinement was performed with 
global angular searches and a bare actin reference (EMD-24321) low-pass 
filtered to 35 Å. After this initial alignment, the psi angles were changed 
to a psi prior, all poses were removed from the metadata file and the tilt 
prior was set to 90. This dataset was then processed for a previously 
described F-actin cryo-EM data processing workflow23,41 in RELION-3.166, 
with minor modifications described below. In brief, initial 2D classifica-
tion was performed to remove junk particles (only 0.4% of picked parti-
cles for ADP–F-actin and 11.2% of particles for ADP-Pi–F-actin), followed 
by 3D classification with alignment and five classes. For alignment, a 
search range of 15° around the tilt and psi priors was used, and global 
searches of the rot angle with an angular sampling of 7.5° was used. For 
ADP–F-actin, no particles were excluded at the 3D classification stage 
because all five classes were of high quality. For ADP-Pi–F-actin, two 
classes comprising 23% of the remaining segments (128,533 segments 
total) were excluded because their helical parameters were at the border 
of the search range and the classes appeared to be abnormal. Selected 
particles were then processed for unmasked 3D auto-refinement using 
the same angular search range described above (with local angular sam-
pling starting at 1.7°) with helical symmetry searches as implemented in 
RELION-3.1. This yielded a map at 4.2 Å-resolution for ADP–F-actin and 
4.1 Å-resolution map for ADP-Pi–F-actin. Post-processing was performed 
using a loose mask trimmed to 50% of the box size along the helical axis 
(z-length), which resulted in a resolution of 3.4 Å for ADP–F-actin and 
3.5 Å for ADP-Pi–F-actin.

Then, several iterative rounds of CTF refinement, Bayesian polish-
ing and 3D auto-refinement were performed. For both datasets, CTF 
refinement was initially performed by estimating the anisotropic 
magnification for each optics group. Defocus values were next fit 
on a per-particle basis and astigmatism was fit on a per-micrograph 
basis, along with beam tilt estimation. For the ADP-Pi–F-actin data-
set, because beam-image shift was used during data collection, the 
data were processed in nine optics groups. Only a single optics group 
was used for the ADP–F-actin dataset, which was collected with stage 
translations. After CTF refinement, Bayesian polishing was used to 
improve the data’s motion correction on a per-particle basis. The initial 
helical parameters for RELION’s symmetry search were updated and 
the mask used for post-processing was used to run another round of 
3D auto-refinement. This process was repeated using a 30% z-length 
mask, including estimation of trefoil and fourth order aberrations 
during CTF refinement. After the second round of particle polishing, 
a third round of CTF refinement was performed.

After the last iteration of CTF refinement, estimated defocus values 
were smoothed over the length of each continuous filament, similar 
to previously reported approaches46. Finally, a single round of masked 
refinement using a 30% z-length mask with local angular and translational 
searches was performed using solvent-flattened Fourier shell correla-
tion (FSC) resolution assessment. The final reconstructions converged 
with resolutions of 2.43 Å for ADP–F-actin and 2.51 Å for ADP-Pi–F-actin.

Image processing of bent F-actin
Selected bent segments were extracted in RELION with a box size of 
512 × 512 pixels and pixel size of 1.03 Å per pixel (bin 1), initially with 
filament overlap. To avoid reference bias, ab initio initial model gen-
eration was performed using cryoSPARC67 (v.2.11.0) using the subset 

of ADP–F-actin segments with an estimated curvature of greater than 
4.0 μm−1. Subsequent homogeneous refinement of these particles in 
cryoSPARC produced an asymmetric map with clear curvature. The data 
were then imported into RELION-3.0, and 2D classification without align-
ment was performed to remove junk particles, followed by unsupervised 
3D classification with three classes using global angular searches. Two 
clearly bent, low-resolution classes curved in opposite directions and 
one junk class were produced. The particles in the bent classes were 
then processed for supervised classification using the two bent classes 
as references and one straight F-actin reference as a decoy using global 
angular alignment. Only 0.3% of particles were assigned to the decoy, 
consistent with the selected segments almost exclusively featuring 
bent F-actin. Alignment of the two bent classes revealed that they were 
nearly identical but displaced by one protomer, making them appear to 
bend in opposite directions. Their particles were therefore pooled for 
homogeneous refinement in cryoSPARC using global searches and the 
first bent class as a reference, low-pass filtered to 30 Å. These particles 
were then reimported to RELION, and underwent 3D auto-refinement 
using the cryoSPARC map low-pass filtered to 10 Å as a reference, local 
angular searches, a loose 70% z-length mask and solvent-flattened FSCs. 
This process was repeated to generate a less-bent map from segments 
with measured curvatures in the 2.5 μm−1 to 4.0 μm−1 range.

After demonstrating the feasibility of reconstructing bent filaments, 
all segments with a curvature above 2.5 μm−1 were then processed for 
homogeneous refinement in cryoSPARC using the highly bent RELION 
refinement result as an initial reference, low-pass filtered to 30 Å. This 
was done separately for ADP–F-actin and ADP-Pi–F-actin in parallel. The 
data were then reimported into RELION for masked 3D auto-refinement 
using local searches. Successive rounds of CTF refinement, Bayesian 
particle polishing and 3D auto-refinement using a 70% z-length mask 
were performed until resolution improvement plateaued. For the bent 
ADP–F-actin dataset, four rounds of CTF refinement and three rounds 
of Bayesian polishing were performed. For the bent ADP-Pi–F-actin 
dataset, three rounds of CTF refinement and two rounds of Bayesian 
polishing were performed. From this stage, the data were either pro-
cessed for high-resolution asymmetric analysis or continuous confor-
mational variability analysis.

For high-resolution analysis, segment overlap within 360 pixels 
(corresponding to 7 protomers) was removed and the particles were 
processed for a final masked (70% z-length) 3D auto-refinement with 
local searches and solvent-flattened FSC calculations. Resolution ani-
sotropy of these maps was assessed with the 3DFSC server68. For con-
tinuous conformational variability analysis, segment overlap within 
the entire 512-pixel box (corresponding to 16 protomers) was removed 
before final masked (90% z-length) 3D auto-refinement (also with local 
searches and solvent-flattened FSC calculations). These segments and 
their assigned poses were then used for training of neural networks in 
cryoDRGN69 to assess conformational variability.

Asymmetric ADP–F-actin straight controls were generated using a 
similar method. All filament segments with a measured curvature less 
than or equal to 2.0 μm−1 were subjected to ab initio map generation 
and homogeneous refinement in cryoSPARC. They were then imported 
to RELION for subsequent rounds of local 3D auto-refinement, CTF 
refinement and Bayesian polishing as described above. Then, all seg-
ment overlap was removed within 360 pixels, and two random subsets 
of sufficient size to generate maps of comparable resolution to the 
bent asymmetric maps were generated. These two subsets of particles 
underwent a final local 3D auto-refinement as described for the bent 
asymmetric reconstructions, and the resulting ~3.7 Å maps were used 
as controls for model building and analysis.

Variability analysis of bent F-actin
To perform variability analysis on the consensus, 16-protomer asym-
metric bent reconstructions, the particles were downsampled by 2 
to a box size of 256 and a pixel size of 2.06 Å. Two cryoDRGN neural 
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networks were trained, one for the bent ADP–F-actin dataset and one 
for the bent ADP-Pi–F-actin dataset. In both cases, the network had 
a variational auto-encoder architecture of seven 1,024-dimensional 
encoding layers and seven 1,024-dimensional decoding layers with 
a 10-dimensional latent space. All of the other parameters were set 
to the default. The networks were trained for 40 epochs. Using four 
NVIDIA Titan XP GPUs, the average epoch time was ~12 min. Principal 
component analysis of the individual particle embeddings in the trained 
10-dimensional latent space revealed the major variability present in 
the dataset to be flexible conformational heterogeneity due to bending 
deformations. Predicted reconstructions sampled along this trajectory 
in the latent space were used in subsequent analysis.

High-resolution atomic models
Before model building and refinement, maps were processed for den-
sity modification with phenix.resolve_cryo_em70, using only the maps 
as inputs, then resampled onto a grid featuring 0.2575 Å voxels through 
fourfold Fourier unbinning with the program resample.exe (distributed 
with FREALIGN71).

Our previous model of bare ADP–F-actin (PDB: 7R8V) was copied and 
rigid-body fit into the central three protomers in the ADP–F-actin and 
ADP-Pi–F-actin maps using UCSF Chimera72. Atomic models for each 
nucleotide state were then built and refined independently. Manual 
adjustments were made to the central protomer using Coot73, and the 
other two chains were replaced with this updated protomer. These 
models, containing three actin protomers with associated ADP, and 
Mg2+ (and PO4

3−) ligands were refined using PHENIX real-space refine-
ment74 with non-crystallographic symmetry (NCS) restraints. After 
real-space refinement in phenix, initial solvent water molecules were 
placed using phenix.douse75 with the mean scale parameter set to 0.4. 
Approximately 140 water molecules per protomer were initially placed 
with this automatic function. The maps and models were then manu-
ally inspected in Coot, and water molecules were added or pruned. As 
the map resolution decreased radially from the filament core, phenix.
douse was unable to reliably detect water peaks in all of the map regions 
using a single threshold. After manual adjustments, all water molecules 
outside a central slab 28 Å along the filament axis (the approximate 
span of a single helical rise) were deleted. The water molecules within 
the slab were then symmetrized to make an 84-Å-long slab containing 
waters, and two protomer chains were added to the model to fully 
satisfy all neighbour contacts for the central protomer. Water mol-
ecules were then associated with the closest protomer. This central 
protomer was copied twice and each protomer with its ligands were 
then fit as rigid bodies into the map to form a new trimer model. Each 
water molecule was then manually inspected in Coot and adjusted to 
fit into the map density if needed. A final PHENIX real-space refine-
ment was performed with NCS restraints on the protein chains but 
not the solvent waters. A summary of validation statistics is provided 
in Supplementary Table 1.

Atomistic models from variability analysis
From each cryoDRGN frame, 16 copies of the corresponding helically 
symmetric central actin protomer model were rigid-body fit into the 
central 16 protomer sites in the map and combined into a single model. 
The map and initial model were then adjusted using the molecular 
dynamics flexible fitting76-based modelling software ISOLDE77 imple-
mented in ChimeraX78, using secondary structure distance and tor-
sional restraints. Owing to the relatively low resolution of the cryoDRGN 
predictions (by visual inspection estimated to be ~8 Å), the map weight 
was reduced to 10% of the automatically determined weight. The simu-
lation temperature was set to 120 K, and the flexible fitting simulation 
was run for five real-time clock minutes before lowering the simulation 
temperature to 0 K and stopping it. These models were subsequently 
used for measurement of helical parameters and subdomain distance/
angle measurements.

Bent and control F-actin atomic models
Before model building, maps were processed for standard 
post-processing using RELION. Models were built into the ~3.6 Å asym-
metric reconstructions by rigid-body fitting the central protomer from 
the corresponding helically symmetric model into each of the seven 
central protomer sites in the map along the filament length. Initial, 
large-scale adjustments to the model were performed using ISOLDE. 
For each condition, the map and model were loaded without apply-
ing any restraints, and the simulation temperature was set to 120 K. 
The simulation was then run for 5 min before lowering the simulation 
temperature to 0 K and ending the simulation. These models were then 
processed for PHENIX real-space refinement without using NCS. A 
summary of validation statistics is provided in Supplementary Table 3.

Extended F-actin model for rise analysis
The extended 31-protomer helically symmetric actin filament models 
for ADP–F-actin and ADP-Pi–F-actin were generated using UCSF Chi-
mera as previously described41. Starting from the modelled actin trimer, 
a copy was generated and the two terminal protomers on the barbed end 
were superimposed onto the two terminal protomers on the pointed 
end. These two protomers of the newly generated trimer were deleted, 
and the remaining protomer was combined with the original model, 
extending it by one protomer. This process was repeated iteratively 
until a 31-protomer filament was generated.

Central pore and nucleotide cleft analysis
The CASTp web server79 was used to identify continuous 
solvent-accessible pockets within the high-resolution helically sym-
metric F-actin structures. To eliminate boundary effects, each model 
was extended to five protomers as described above. Using an initial 
probe size of 1.4 Å revealed a solvent-accessible core that connected 
through narrow channels to the nucleotide pocket and broader chan-
nels to the filament’s exterior and bulk solvent. Increasing the probe 
size to 1.6 Å isolated the central solvent channel from these pockets. 
Water molecules contained within this discrete pocket at the filament’s 
core are displayed in Fig. 2a and Extended Data Fig. 2e.

The CASTp server was also used with a probe size of 1.4 Å to measure 
the volume of the solvent-accessible nucleotide pocket in the asym-
metric, seven-protomer F-actin models. The nucleotide pocket volume 
of individual protomers from each model was measured to separate 
the nucleotide pocket from the filament’s central core.

Analytical modelling of thermal fluctuations
Boltzmann modelling of thermal bending fluctuations was performed 
as described in the Supplementary Discussion. Residuals between the 
modelled curves and experimental curvature histograms (Fig. 3b) were 
calculated by computing the difference between the modelled probabil-
ity distribution and the histogram heights at the centre of each 0.2 μm−1 
bin. An adjusted Boltzmann distribution with a multiplicative constant 
α was fit to each dataset by minimizing the sum of the squared residu-
als between the adjusted model and the data, converging to α values 
of 0.80 for ADP–F-actin and 0.93 for ADP-Pi–F-actin. Model distribu-
tions featuring integer persistence lengths between 5 and 15 μm were 
additionally calculated to visualize the effects of varying persistence 
length on the curvature distribution.

Rise, twist and curvature measurements
Rise and twist were measured along deformed actin filament axes using 
custom Python scripts, implementing an approach similar to previ-
ously described helix deformations80–82. First, a central axis was defined 
using a 3D spline fit. To minimize edge effects, the model was extended 
by copying the model twice, aligning the terminal three subunits of 
one copy’s barbed end with the terminal three subunits of the original 
model’s pointed end and then aligning the terminal three subunits 
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of the other copy’s pointed end with the terminal three subunits of 
the original model’s barbed end. The overlapping subunits from the 
copied models were deleted to generate a final, 42-protomer model. 
This was used to define the central spline while sufficiently minimizing  
edge effects.

To define the 3D spline for each filament’s central axis, an iterative, 
orientation-independent approach was implemented using a set of 
waypoints. The initial 41 waypoints were defined as the set of 3D coor-
dinates corresponding to the centroid of 2 consecutive subunits in a 
rolling window along the filament. A 3D cubic spline with a natural 
boundary condition was then fit through the set of waypoints to gener-
ate the initial filament axis. A set of line segments with a length equal to 
the filament’s radius and one end positioned at each subunit’s centroid 
was aligned to minimize the free end’s distance from the spline. The 
waypoints were then updated to become the Euclidean average of 
two of these consecutive free ends. The process of updating the 3D 
cubic spline, defining new line segment extensions from the subunit 
centroids, and updating waypoints was repeated 500 times to obtain 
the final central axis spline.

Rise was measured by computing the distance travelled along the 
path of the central axis spline between protomer centroids. For each 
protomer, the point on the central axis that was the closest to the subu-
nit’s centroid was stored, and the distance along the spline path was 
calculated to the next protomer. The twist between protomers along 
the deformed short-pitch F-actin helix was measured in the context of 
the moving Frenet–Serret frame of reference. The Frenet–Serret frame 
of reference was defined by the orthonormal basis of the unit tangent, 
unit normal and unit binormal vectors along the length of the spline. 
The set of unit tangent vectors sampled at the positions along the 3D 
cubic spline corresponding to each subunit (as determined during the 
rise measurements) was calculated. A vector with a magnitude equal to 
the filament’s radius oriented along the normal axis in the Frenet–Ser-
ret frame and its tail at the origin in the Frenet–Serret frame was then 
rotated in the normal-binormal plane until the distance between its 
head and the corresponding subunit centroid was minimized. This 
rotation angle defined the absolute angular twist for the protomer. To 
measure the twist along the short-pitch helix, the difference between 
consecutive absolute angular twists was calculated.

Travelling-wave analytical model
Inspection of instantaneous twist versus protomer index plots for bent 
filaments revealed a clear sinusoidal pattern along each strand. Fur-
thermore, as the curvature increased along the cryoDRGN trajectory, 
both the magnitude and position of this sinusoidal pattern changed. 
We therefore modelled the bend–twist phenomenon for each strand 
as travelling waves using the equation:

u x t Ax kx ωt φ B( , ) = sin( + + ) + ,

where u(x,t) is the instantaneous twist, A is a coupling factor between 
curvature and twist amplitude, k is the propagation factor that deter-
mines how rapidly the twist wave travels along the filament’s length with 
bending, x is the curvature, ω is the period of twist, t is the position along 
the central axis (parameterized to protomer index), φ is the phase shift 
of twist and B is the overall average twist. This equation was jointly fit 
against the measured twist values and estimated curvatures for each 
of the 16-protomer cryoDRGN models. Curvature for each model was 
measured as the average of the instantaneous 3D curvatures of the 
central axis spline. For the ADP nucleotide state, all frames were used. 
For the ADP-Pi state, the first three frames had low curvature and had 
fluctuating curvature measurements, so they were omitted due to the 
inaccurate average curvature measurement of the central spline. The 
fit values for the model parameters are presented in Supplementary 
Table 2, and example fit functions through experimental data are pre-
sented in Extended Data Fig. 6a,b.

Analysing central axis deformations
Analysis of the bending deformations of filaments were performed on 
the central axes of the 16-protomer cryoDRGN models. Principal com-
ponent analysis was performed on the coordinates sampled along the 
axis spline in Euclidean space. The plane defined by the first and second 
principal components represents the plane of maximum filament cur-
vature. The plane formed by the first and third principal components 
represents an orthogonal plane capturing the 3D character of the bent 
filament. Central axis deformation was also analysed by measuring the 
deviation of the central axis from a straight line fit. For each curved 
cryoDRGN model, a straight line was aligned to the terminal 56 Å of 
its central axis at the barbed end. Discrete 0.28 Å sampling steps were 
then made along the central axis, and the distance from the sampled 
point and the straight line was plotted in Extended Data Fig. 5e.

Actin subdomain measurements
Actin subdomains were defined using previously established residue 
assignment conventions83: subdomain 1 (SD1): amino acids 5–32, 
70–144, 338–375; SD2: amino acids 33–69; SD3: amino acids 145–180, 
270–337; SD4: amino acids 181–269. Using a custom Python script, the 
Euclidean distances, angles, and dihedral angles between subdomains 
indicated in Extended Data Fig. 6a were measured. The protomer index-
ing started at the pointed end and progressed to the barbed end. For 
measurements that spanned multiple protomers, the protomer index 
corresponded to the most pointed-end protomer.

Subunit shear measurements
For shear measurements, each protomer of the asymmetric F-actin mod-
els was aligned to the protomer of the corresponding high-resolution, 
helically symmetric model of the same nucleotide state. The average 
displacement vector for each subdomain between these models was 
then computed. Observing anti-correlated displacements between 
non-adjacent subdomains led us to define two shear indices to describe 
these coordinated deformations: shear index 1, the dot product of the 
subdomain 1 and 4 displacement vectors, and shear index 2, the dot 
product of the subdomain 2 and 3 displacement vectors. Shear indices 
of pairs of subdomain displacement vectors that have large individual 
magnitudes and opposing directionality will have large negative values, 
indicative of shear, whereas small displacements or lack of correlated 
subdomain displacements will produce values near zero.

Strain analysis
To quantify protein deformations not explained by rigid-body motions, 
strain pseudoenergy analysis was performed using a custom Python 
script, implementing a previously described approach84,85. In brief, 
a reference helical F-actin protomer was rigid-body fit into each 
protomer of the model to which it was being compared. The local 
deformation matrix within an 8 Å neighbourhood was estimated for 
each alpha-carbon of the reference protomer. The Eulerian strain ten-
sor is computed using a first order approximation of the deformation 
matrix’s spatial derivative. The shear strain energy is then calculated 
directly from this strain tensor. This approach to protein deformation 
has the major advantage of being rotationally invariant and distin-
guishing rigid-body motions from internal deformation. However, the 
local deformation estimation can be inaccurate for very large defor-
mations, which limited our strain analysis to individual protomers. 
Furthermore, the first-order approximation assumes continuous, as 
opposed to granular, deformations, which makes the measurements 
relative pseudoenergies.

Plots, statistics and molecular graphics
Plots were generated using GraphPad Prism or Matplotlib86. Statistical 
tests were performed using GraphPad Prism. Molecular graphics were 
prepared using UCSF Chimera72 and UCSF ChimeraX78.
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Cryo-EM density maps and corresponding atomic models have been 
deposited in the PDB and EMDB with the following accession codes: 
helically symmetric ADP–F-actin (PDB: 8D13, EMDB: EMD-27114); heli-
cally symmetric ADP-Pi–F-actin (PDB: 8D14, EMDB: EMD-27115); asym-
metric bent ADP–F-actin (PDB: 8D15, EMDB: EMD-27116); asymmetric 
bent ADP-Pi–F-actin (PDB: 8D16, EMDB: EMD-27117); asymmetric straight 
ADP–F-actin control 1 (PDB: 8D17, EMDB: EMD-27118); asymmetric straight 
ADP–F-actin control 2 (PDB: 8D18, EMDB: EMD-27119). Cryo-EM data-
sets have been deposited in the EMPIAR with the following accession 
codes: ADP–F-actin (EMPIAR-11128); ADP-Pi–F-actin (EMPIAR-11129). 
These depositions include the raw movies and processed particle stacks 
used to generate the final reconstructions deposited in the EMDB. Data-
sets for cryoDRGN analysis, neural network training and cofilin severing 
assays are available at Zenodo. Synthetic datasets used to train denoising 
auto-encoder and semantic segmentation neural networks as well as the 
trained networks are available at https://doi.org/10.5281/zenodo.6917913. 
CryoDRGN reconstructions, fitted models, trained cryoDRGN networks 
and the data required to train the cryoDRGN networks are available at 
https://doi.org/10.5281/zenodo.6928604. Cofilin TIRF microscopy data 
are available at https://doi.org/10.5281/zenodo.6929148. All other data 
required to assess this study’s conclusions are presented in the manu-
script. Materials are available from the corresponding author without 
restriction.  Source data are provided with this paper.

Code availability
All custom code associated with this study is open source and is avail-
able for download without restriction. Cryo-EM analysis software is 
available at GitHub (https://github.com/alushinlab/bent_actin), and 
scripts for analysing TIRF videos are available at Zenodo (https://doi.
org/10.5281/zenodo.6929148). 
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Extended Data Fig. 1 | See next page for caption.



Article
Extended Data Fig. 1 | Validation of ADP–Pi-F-actin preparation and 
helically symmetric reconstructions. a, Representative TIRF-microscopy 
video frames from cofilin severing assays. Cofilin-free controls are shown in 
the top row of each condition, indicated by a darker border. Scale bar, 40 μm.  
b, Quantification of TIRF videos showing the average normalized actin channel 
intensity. Error margin in graph indicates +/− 95% CI. Half-lives represent 
exponential decay at time 0 s, with 95% CI, and n values represent independent 
experiments: ADP–F-actin - cofilin (778 ± 24 s, n = 3); ADP-Pi–F-actin - cofilin 
(454 ± 14 s, n = 3); ADP-sulfate–F-actin - cofilin (348 ± 16 s, n = 3); ADP–F-actin + 

cofilin (50.4 ± 2.1 s, n = 4); ADP-Pi–F-actin + cofilin (177.5 ± 10.3 s, n = 3); ADP-
sulfate–F-actin + cofilin (86.8 ± 2.5 s, n = 3). c, Half-map (left) and map-to-model 
(right) Fourier Shell Correlation (FSC) curves for helically symmetric 
reconstructions of ADP- and ADP-Pi-F-actin. d, Local resolution assessment of 
helically symmetric ADP–F-actin and ADP-Pi–F-actin. PE: pointed end; BE: 
barbed end. e, Potential hydrogen-bonding networks adjacent to the 
nucleosidyl region of ADP. Key side chains and back bone atoms participating 
in hydrogen-bonding networks are displayed and coloured by heteroatom.



Extended Data Fig. 2 | Additional analysis of helically symmetric 
ADP–F-actin and ADP-Pi–F-actin models. a, Example cryo-EM map density 
superimposed with atomic model residues A131–A135 from ADP–F-actin (top) 
and ADP–Pi-F-actin (bottom). b, Individual ADP–F-actin protomer shown in Cα 
representation, coloured by per-residue RMSD between ADP–F-actin and 
ADP-Pi–F-actin. c, Same as b, but coloured by per-residue strain pseudo-energy. 

d, Superposition of extended 31-protomer ADP- (blue) and ADP-Pi-F-actin 
(orange) models, aligned at the terminal barbed end protomer. e, Water 
molecules (violet) contained within the ADP-Pi–F-actin filament’s core. Actin 
subunits are shown in transparent grey backbone representation. PE: pointed 
end; BE: barbed end.
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Extended Data Fig. 3 | Neural network architecture and example 
performance. a, Neural network architecture diagram for denoising 
auto-encoder. Example network input and output is displayed for a 
representative extracted segment. b, Network architecture diagram for 

semantic segmentation fully convolutional network. Example input and 
output for a representative extracted segment is shown. c, Representative 
network performance on filament segments from synthetic projections (top) 
and experimental cryo-EM micrographs (bottom). Scale bars, 20 nm.



Extended Data Fig. 4 | Boltzmann modelling of filament segment curvature 
distributions. a, Curvature distributions (left column) of ADP–F-actin (top) 
and ADP–Pi-F-actin (bottom) with modelled thermal bending probability 
distributions. Residual plots (right column) between the measured and 
theoretical distributions. Grey curves correspond to adjusted bending models 

fit with a multiplicative parameter in the energy term. b, Theoretical 
probability distributions of 500 Å elastic rods bending due to thermal 
fluctuations, modelled as Boltzmann distributions. Varying the persistence 
length between 5 μm and 15 μm demonstrates the effect of filament bending 
stiffness.
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Extended Data Fig. 5 | Additional analysis of filament bending deformations. 
a, Helically symmetric ADP-Pi–F-actin (left map) and cryoDRGN reconstructions 
sampling ADP-Pi–F-actin bending (right three maps). Maps are lowpass filtered 
to 8 Å, and strands are coloured in shades of orange. PE: pointed end; BE:  
barbed end. Scale bar, 10 nm. b, Stitched volumes of straight and bent maps 
from a, aligned on the bottom 16 protomers. Scale bar, 100 nm. c, Projections of 
zeroth (cyan) and ninth (magenta) cryoDRGN reconstructions from ADP–F-actin 
(left) and ADP-Pi–F-actin (right) aligned on the bottom protomer and oriented 
to display maximum displacement. d, Asymmetric reconstructions of ADP–F-actin 

from indicated curvature bins. Scale bar, 10 nm. e, Plots of central axis 
deviations from straight lines in ADP–F-actin and ADP-Pi–F-actin cryoDRGN 
reconstructions. First and second columns show principal component analysis 
of the cryoDRGN reconstructions’ central axes. Third column shows displacement 
of the cryoDRGN reconstructions’ central axes from straight lines which were 
aligned to the barbed-end terminal 56 Å of the central axes. f, Half-map Fourier 
Shell Correlation (FSC) curves for control asymmetric 16-protomer 
reconstructions. g, Twist and rise measurements of control asymmetric 
16-protomer reconstructions.



Extended Data Fig. 6 | Quantitation of lattice architectural remodelling 
during filament bending. a, Plots of travelling wave equation fits (black lines) 
with measured twist values (coloured points) from cryoDRGN reconstructions 
of different curvatures. b, Plots of twist travelling wave function at various 
curvatures, separated by strand. c, Plots of intra-strand, inter-strand, and 

intra-protomer subdomain distances and angles from ISOLDE models of the 
most curved cryoDRGN reconstructions of ADP–F-actin (blue) and 
ADP-Pi–F-actin (orange). Solid and dashed lines represent even (concave side) 
and odd (convex side) protomers, respectively.



Article

Extended Data Fig. 7 | Resolution assessment and validation of high- 
resolution bent F-actin asymmetric reconstructions. a, Local resolution 
assessment of bent ADP–F-actin and ADP-Pi–F-actin reconstructions, as well as 
two independent straight ADP–F-actin controls. PE: pointed end; BE: barbed 
end. b, Half-map (left) and map-to-model (right) Fourier Shell Correlation (FSC) 
curves for asymmetric bent ADP–F-actin, ADP-Pi–F-actin, and straight 
ADP–F-actin controls. c, 3D-FSC curves for asymmetric reconstructions, which 

indicate equivalently isotropic resolution between bent and straight 
reconstructions. Dotted green lines indicate +/− 1 s.d. from average FSC.  
d, Vector plots (coloured by direction and scaled 6X) representing Cα 
displacements between helically symmetric models and those built into 
indicated asymmetric reconstructions, aligned on the central protomer.



Extended Data Fig. 8 | Strain and flexibility of inter-protomer contact sites 
in bent F-actin. a, Grey Cα representations of indicated protomers from bent 
F-actin, locally coloured by computed per-residue strain pseudo-energy 
relative to helically symmetric models on their H-plugs (left) and D-loops 

(right). b, D-loop heterogeneity in asymmetric F-actin maps. Local density 
around each of the unique D-loops from the asymmetric reconstructions are 
shown with a docked PDB model of ADP–F-actin (7R8V) featuring both “in” and 
“out” D-loop conformations.
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Extended Data Fig. 9 | Steric encounters at inter-subunit interfaces 
transduce filament bending strain to protomers. a, Longitudinal interfaces 
and b, lateral interfaces of bent ADP–F-actin (left) and ADP-Pi–F-actin (right). 
Solid and dashed borders represent inside (concave) and outside (convex) of 

curve, respectively. Transparent arrows represent individual Cα displacements 
from helically symmetric models scaled 6X, and solid arrows show averaged 
displacements of indicated regions scaled 20X. PE: pointed end; BE: barbed end.



Extended Data Fig. 10 | F-actin bending remodels inter-subunit interfaces 
engaged by ABPs. a, Cα representations of inner strand protomer 6-protomer 
8 (concave, cornflower blue) and outer strand protomer 7-protomer 9 (convex, 
light blue) longitudinal interfaces extracted from the most curved ADP–F-actin 
cryoDRGN 16-protomter atomic model, superimposed on the barbed end 
subunit of 2 protomers extracted from the ADP–F-actin helical model (grey). 

Box encloses a region featuring major contacts by ABPs. BE: barbed end; PE: 
pointed end. Actin subdomains are indicated. b, Binding interfaces of 
indicated ABPs (pink space filling model) are displayed superimposed on the 
bent interfaces from a. Cofilin, PDB 5YU8; coronin, EMDB 6100 / PDB 2AQ5; 
ARP2/3, PDB 7TPT; α-catenin, PDB 6UPV; myosin-5, PDB 7PLT.
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