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Cell therapy in myocardial infarction (MI) is an innovative strategy that is regarded as a 
rescue therapy to repair the damaged myocardium and to promote neovascularization 
for the ischemic border zone. Among several stem cell sources for this purpose, autol-
ogous progenitors from bone marrow or peripheral blood would be the most feasible 
and safest cell-source. Despite the theoretical benefit of cell therapy, this method is 
not widely adopted in the actual clinical practice due to its low therapeutic efficacy. 
Various methods have been used to augment the efficacy of cell therapy in MI, such 
as using different source of progenitors, genetic manipulation of cells, or priming of the 
cells or hosts (patients) with agents. Among these methods, the strategy to augment 
the therapeutic efficacy of the autologous peripheral blood mononuclear cells (PBMCs) 
by priming agents may be the most feasible and the safest method that can be applied 
directly to the clinic. In this review, we will discuss the current status and future directions 
of priming PBMCs or patients, as for cell therapy of MI.

Keywords: cell therapy, myocardial infarction, priming agents, peripheral blood mononuclear cells, MAGiC cell 
therapy

iNTRODUCTiON

Ischemic heart disease is one of the leading causes of death worldwide. Beyond the current practice 
guidelines of percutaneous coronary intervention and standard medication for acute myocardial 
infarction (MI; consisting of aspirin, clopidogrel, heparin, and abciximab), how to preserve or 
repopulate cardiomyocytes during the necrotic process of infarction has been left as an unsolved 
issue. Along with the boost of stem cell biology, preclinical studies have shown positive and optimistic 
results of stem or progenitor cells to repair ischemic limb or myocardium (1, 2), which brought great 
expectation that these therapies could rescue cardiomyocytes damage, enhance vascular density, and 
eventually rebuild the necrotic myocardium. Also, early human studies showed a decrease in the 
infarct size after MI by implantation of bone marrow stem cells (3). During the past decade, many 
clinical trials showed positive results of cell therapy (4–7), while other clinical studies showed no 
beneficial effect of cell therapy over placebo (8, 9). Meta-analyses have been reported, trying to give 
a clear answer to the question about the efficacy of stem cell therapy (10–12). These meta-analyses 
also have shown conflicting results due to the large heterogeneity of clinical trials of stem cell therapy 
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(i.e., cell type, delivery mode, timing of infusion, endpoint, and 
follow-up period). Until now, the accumulated evidence from the 
relatively homogenous clinical trials, which used autologous bone 
marrow monocytes or peripheral blood progenitors mobilized 
from bone marrow for patients with acute MI, indicates that the 
effect of stem cell therapy is proved, but its efficacy is modest.

The theoretical background of stem cell therapy is the pluripo-
tency and plasticity of stem cells that undergo transdifferentiation 
into mature cells and repair the damaged tissue (13). A wide vari-
ety of cell types are used, including bone marrow mononuclear 
cells (BM-MNC), endothelial progenitor cells (EPCs), peripheral 
blood mononuclear cells (PBMCs), peripheral blood mobilized-
progenitor-cells from bone marrow (PB-MPCs), mesenchymal 
stem cells, cardiac stem cells, etc. Also, various methods are 
used to augment the efficacy of stem cell therapy, such as genetic 
manipulation, or non-genetic cytokine/chemokine priming the 
cells/hosts, or ex vivo expansion of cells. Genetic manipulation 
can be performed either by direct transfer of genes into the host 
(using retroviruses or adenoviruses) or by using living cells as 
vehicles to transport the genes of interest. Priming can be done 
with various cytokines/chemokines, by direct injection to the 
host or by ex vivo application of the priming agent on cells. After 
preparation of stem cells, these cells can be delivered directly to 
the damaged tissue, by systemic injection or by intracoronary 
injection in the case of ischemic heart disease (14).

Among various methods for stem cell therapy, PB-MPCs are 
the most feasible and practical cell type, due to the comparable 
efficacy to bone marrow progenitors and the non-invasive method 
of collection compared to bone marrow progenitors. However, 
PB-MPCs have shown limited efficacy, probably owing to the low 
homing-efficiency, the poor long-term survival rate of infused 
cells, and the potential dysfunction of PB-MPCs (15, 16). In this 
review, we will discuss a method to enhance the therapeutic effi-
cacy of PB-MPCs, called “priming,” and the various non-genetic 
agents/conditions used to prime the infused cells or the patients 
themselves. Also, we will introduce recent clinical trials and 
ongoing trials for stem cell therapy in MI, along with a current 
trial conducted by our institute.

RATiONALe FOR CeLL THeRAPY iN Mi

After an ischemic insult in the myocardium, endogenous repair 
would be minimal or insufficient. The various cell types including 
cardiomyocytes and stem cells within or out of heart participate 
in this endogenous repair process (17). However, this is not suf-
ficient to prevent deleterious remodeling, leading researchers to 
pursue exogenous cell delivery to achieve the substantial degree 
of cardiac regeneration. The best-case scenario would be that the 
delivered cells differentiate into functional cardiomyocytes and 
replace the necrotic tissue, which turned out to be unachievable 
due to the low retention rate and limited differential potential of 
injected cells (18). Therefore, the aim of current cell therapy has 
been established to improve myocardial perfusion through neo-
vascularization, modulate the inflammatory response by ischemia, 
and correct metabolic and electromechanical disturbances (19). 
Currently, it is well recognized that the prominent mechanism 
of the beneficial effect of cell therapy involves the activation of 

endogenous healing pathways through paracrine factors. These 
pathways can improve the survival of cardiomyocytes and activate 
recruitment of endogenous stem cells (17). Also, cell therapy aids 
angiogenesis to the damaged myocardium by either direct dif-
ferentiation or by activating endogenous angiogenic progenitors 
(20). Overall, the goal for cell therapy is more to achieve a niche 
favorable for regeneration, rather than for direct differentiation 
to cardiomyocytes.

vARiOUS PRiMiNG AGeNTS FOR  
PBMCs OR PB-MPCs

Currently, various cell types have been studied for cell therapy in 
MI. Among them, the most commonly used cells are BM-MNCs, 
PBMCs, or PB-MPCs containing stem cells mobilized from 
bone marrow by mobilizers such as subcutaneous injection of 
granulocyte colony-stimulating factor (G-CSF) (21). To augment 
the therapeutic efficacy of these cells, strategy to prime the cells 
by direct exposure to the priming agent or to prime the patients 
by systemic administration of the priming agent is a useful and 
practical method in the clinic. Major priming agents include 
G-CSF, angiopoietin-1 (Ang-1), erythropoietin (EPO), activated 
platelet supernatant (APS), growth factors such as SDF-1 and 
vascular endothelial growth factor (VEGF), and conditions 
such as hypoxia. The action mechanism of these agents is the 
induction of many genes that can induce angiogenesis, control 
inflammation, and promote tissue regeneration, leading to the 
enhanced therapeutic efficacy of stem cells. The following are 
preclinical study results explaining the mechanism of major 
agents or conditions that have been used for priming of cell or 
host (Figure 1).

Granulocyte Colony-Stimulating Factor
Granulocyte colony-stimulating factor is a well-known agent 
that potently mobilizes hematopoietic stem cells from the 
bone marrow (22). G-CSF acts via the activation of the G-CSF 
receptor, which initiates maturation, survival, proliferation, 
and functional activation of granulocytes (23). The most criti-
cal factor determining the therapeutic efficacy of mobilization 
using G-CSF may be the homing of mobilized PBMCs or 
PB-MPCs, which is mediated by the SDF-1/CXCR4 axis (24). 
Several mechanisms have been reported for G-CSF itself to help 
repair the damaged myocardium, such as, apoptosis inhibition 
(25), induction of angiogenesis (26), anti-inflammatory effects 
(27), modulation of extracellular matrix (28), and many other 
paracrine effects (29).

Until now, several human clinical trials have evaluated the 
safety and efficacy of G-CSF injection in patients with acute MI, 
where they tested the effect of G-CSF to prime the host or patient, 
but not the effect of cell-priming or mobilization effect. Some tri-
als have shown positive results (30–32), while others have failed 
to confirm the above beneficial effects of G-CSF in patients with 
acute MI (33–35). Disappointingly, meta-analyses showed that 
G-CSF therapy was not associated with any significant benefit in 
left ventricular systolic function, whereas subgroup analyses sug-
gested that G-CSF therapy might be beneficial in selected patients 
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FiGURe 1 | Scheme of the cellular effects of priming agents.
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(36, 37). But, these negative or conflicting results do not deny the 
efficacy of G-CSF as a mobilizer of progenitor from bone marrow 
to peripheral blood or as a cell-priming agent.

Angiopoietin-1
Angiopoietin-1 is a growth factor binding to the Tie2 receptor 
expressed on endothelial cells and hematopoietic stem cells. 

Through the Tie2 signaling, Ang-1 plays an essential role in 
postnatal angiogenesis by mediating vessel maturation and 
maintaining vessel integrity (38). In a previous preclinical study, 
we found that most of the PB-MPCs had Tie2 receptor and that 
short-term Ang-1 exposure induced PB-MPCs to differentiate 
into endothelial lineage through the Tie2/Ets-1 signaling path-
way. This eventually enhanced the neovasculogenic potential in 
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the ischemic tissue (39). Additionally, short-term Ang-1 prim-
ing induced PB-MPCs to express α4, α5, and β1 integrins that 
were also downstream targets of Ets-1. These in vitro results are 
important because the weakest point of intra-arterial delivery of 
progenitors to myocardium is the poor retention rate. PB-MPCs 
that were primed with Ang-1 become “sticky,” leading to signifi-
cant improvement of retention efficiency and therapeutic efficacy 
after intra-arterial delivery. The process of applying Ang-1 to the 
clinic is ongoing by producing human-grade Ang-1 protein in an 
economically feasible way.

erythropoietin
Erythropoietin, a glycoprotein hormone produced primarily by 
the kidney, is a well-known cytokine that controls erythropoiesis 
(40). Therapeutically, EPO is commonly used as a treatment for 
anemia in patents with renal failure or hematologic disorders. 
At the cellular level, EPO acts through the EPO receptor, which 
changes its conformation upon binding with EPO. This results 
in phosphorylation of JAK2 kinases, leading to the activation of 
numerous intracellular signaling cascades, such as the JAK/STAT, 
PI3-kinase/Akt, and MAPK pathway (41).

Due to its cellular effect (i.e., enhanced proliferative, vascu-
logenic, and anti-apoptotic properties) (42), EPO has been used 
in clinical trials as a host-priming agent in MI patients, so as to 
decrease infarct size and preserve cardiac function. However, the 
results were disappointing, showing conclusions that EPO did not 
reduce myocardial infarct size (43–45). This discrepancy between 
the positive cellular effect and negative results in clinical trials 
can be explained by several hypotheses; the insufficient local 
concentration at the infarcted myocardium and the unwanted 
systemic effects of EPO (46, 47).

Based on these facts, our group performed a preclinical study 
using EPO as a cell-priming agent for PBMCs or PB-MPCs (48). 
With adoption of an ex vivo cell-priming strategy, we expected 
several benefits; to maximize the cellular effect of EPO on 
target cells, while avoiding the systemic side effects of EPO. As 
a result, cell-priming with EPO induced a shift in monocytes 
polarization toward CD14(++)/CD16(+) monocytes, which 
are so-called vasculogenic/anti-inflammatory monocytes that 
play a pivotal pro-healing action in debris scavenging, wound 
healing, and angiogenesis (49). Also, EPO-primed PBMCs could 
upregulate expression of integrins, which could enhance homing 
to the infarcted myocardium. In a paracrine matter, EPO-primed 
PBMCs secreted cytokines such as IL8 and IL10, to form a vas-
culogenic niche at the target ischemic tissue. Taken together, our 
results showed that ex vivo EPO-priming augmented the vasculo-
genic potential of human PBMCs, proving to be a promising and 
practical method to augment the therapeutic efficacy of PBMCs 
in cell therapy.

Activated Platelet Supernatant
Platelets, which are known to play a role in hemostasis, simul-
taneously promote tissue repair via releasing a vast amount of 
cytokines and chemokines that favor angiogenesis and wound 
healing (50). In previous studies, autologous platelets have been 
used in human clinical trials for bone repair (51), wound healing 
in ocular surface disease (52), and for cardioprotection from 

ischemia–reperfusion injury (53). Immediately after an ischemic 
injury, platelets play a key role in the surge of local cytokines and 
chemokines, which recruit monocytes to the damaged tissue, 
stimulate endothelial cell proliferation, and increase vascular 
permeability (54).

Based on this background, we used the surge of cytokines 
and chemokines from platelets, the so-called APS, as a priming 
agent for human PBMCs or PB-MPCs in a previous preclinical 
study. We could find that APS-primed PBMCs were polarized 
to M2 monocytes, which could efficiently induce gene expres-
sion of angiogenic molecules. Furthermore, APS priming could 
promote angiogenesis in a paracrine manner, by secreting 
angiogenic cytokines, such as IL8, IL10, and PDGF (55). Also, in 
a rat MI model, APS-primed PBMCs could decrease fibrosis area 
and myocardium wall thinning, which leads to improvement in 
cardiac function (56).

Hypoxia
Although not exactly an “agent” but rather a “condition,” hypoxia 
has been used to augment the efficacy of cell therapy. In various 
preclinical studies, hypoxia could direct embryonic stem cells or 
PBMCs to differentiate into cardiomyocytes (57), chondrocytes 
(58), or vascular progenitor cells. In previous preclinical stud-
ies, hypoxia priming enhanced the differentiation of embryoid 
bodies into meso-endodermal cells, which differentiated into 
vascular-lineage cells more efficiently than normoxic embryoid 
bodies (59). Also, hypoxic preconditioning to cardiosphere-
derived cell monolayer sheets, increasing the expression of VEGF 
through the PI3-kinase/Akt signaling pathway, which leads to 
improved left ventricular function in chronically infarcted hearts 
(60). Although ischemic preconditioning has been proven to be 
beneficial, applying this to the clinic is difficult due to the inability 
to predict the onset of ischemia in the apparently normal persons.

Other Growth Factors
Other than the priming agents/conditions listed above, various 
agents have been studied to enhance the therapeutic efficacy of 
stem cell therapy in MI.

vascular endothelial Growth Factor
Initial research of VEGF, which plays a critical role in angiogen-
esis (61), was promising in preclinical studies as a therapeutic 
agent for ischemic disorders. However, clinical trials failed, only 
to reveal that VEGF offered no improvement in treated patients 
as compared with placebo (62). These results may have been 
partially attributed to the short-lived effect and high instability 
of the protein when injected as a bolus (63). Currently, differ-
ent methods to deliver VEGF, such as using scaffolds or other 
biomaterials, are under research.

SDF-1
The interaction between SDF-1 and CXCR4 plays an important 
role in vasculogenesis especially for the engraftment and main-
tenance in  situ (64). In preclinical studies, SDF-1 priming of 
EPCs could enhance adhesion and extravasation of progenitor 
cells to ischemic sites, promoting firm adherence to activated 
endothelium (65) and effective to enhance cardioprotective 
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TABLe 1 | Recent human clinical trials for stem cell therapy in Mi.

Name of study, 
reference

Cell type Patients enrolled Follow-up 
(months)

Results

FINCELL, Huikuri 
et al. (68)

BM-MNC STEMI patients 6 Improvement in LVEF
No difference in adverse clinical events

REGENT, Tendera 
et al. (69)

Unselected BM-MNC 
and selected 
[CD34(+) CXCR4(+)] 
BM-MNC

Acute MI with LVEF 
<40%

6 No difference in changes of LVEF, left ventricular end-systolic volume, and left 
ventricular end-diastolic volume (significant increase of LVEF subgroup of patients 
with severe LVEF impairment)
No difference in major cardiovascular event (death, reinfarction, stroke, target 
vessel revascularization)

BONAMI, Roncalli 
et al. (70)

Autologous BM cells Acute MI patients 3 Improvement in myocardial viability

LateTIME, Traverse 
et al. (9)

BM-MNC MI patients 6 No difference in LVEF, wall motion abnormality of the infarct zone, and border zone
No significant change in LV volumes and infarct volumes

APOLLO, Houtgraaf 
et al. (72)

Adipose tissue-
derived cells

STEMI patients 6 Positive trend toward improved cardiac function, perfusion defect
50% reduction of myocardial scar formation
No severe adverse events

CADUCEUS, Makkar 
et al. (6)

Cardiosphere-derived 
cells

MI patients 6 Reduction in scar mass
Increase in viable heart mass, regional contractility, and regional systolic wall 
thickening by MRI imaging
No change in end-diastolic volume, end-systolic volume, and LVEF

TIME, Traverse  
et al. (71)

BM-MNC STEMI patients with 
LV dysfunction

6 No difference in increase of LVEF or global left ventricular function

SWISS-AMI, Sürder D 
et al. (8)

BM-MNC STEMI patients 4 No improvement in LV function

BM-MNC, bone marrow mononuclear cells; LV, left ventricular; LVEF, left ventricular ejection fraction; STEMI, ST segment elevation myocardial infarction.
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effect in animal experiments (66), which need to be confirmed 
in human studies.

Quality and Quantity Culture
Due to the limited effect of single agents, there have been trials 
that used multiple agents for priming. In a previous animal study, 
EPC populations, such as CD34+ and CD133+ cells, could be 
enriched by the method for quality and quantity-control culture 
(QQ culture; a combination of stem cell factor, thrombopoietin, 
Flt-3 ligand, VEGF, and interleukin-6). Also, priming monocytes 
under QQ culture induced anti-inflammatory and angiogenic 
monocytes/helper T lymphocytes (67).

ReCeNT CLiNiCAL TRiALS FOR STeM 
CeLL THeRAPY iN Mi

Along with a vast amount of preclinical studies, various human 
clinical trials have tested the efficacy of stem cell therapy in 
MI. The results varied even though they were conducted under 
contemporary treatment strategies for MI during the past decade 
(6, 8, 9, 68–72). Some studies reported positive effects of stem cell 
therapy, while others failed (Table  1). These conflicting results 
in clinical studies in contrast to the positive results of preclinical 
ones emphasize the necessity to augment therapeutic efficacy of 
stem cell therapy by refining the protocol.

There are several ongoing clinical studies of cell therapy for 
acute MI, which may report results within the next couple of years 
(searched from www.clinicaltrials.gov, using keywords of “stem 
cell” and “myocardial infarction”). These studies include the 

EXpanded CELL ENdocardiac Transplantation (EXCELLENT) 
trial (NCT02669810), which will evaluate the efficacy of intracar-
diac injection of ProtheraCytes (autologous PB-CD34+ stem cells 
after automated ex vivo expansion with the StemXpand machine), 
the A Randomized, Open labEled, muLticenter Trial for Safety and 
Efficacy of Intracoronary Adult Human Mesenchymal stEm Cells 
Acute Myocardial inFarction (RELIEF) study (NCT01652209), 
which will evaluate the efficacy of adult human mesenchymal 
stem cells, and the Enhanced Angiogenic Cell Therapy – Acute 
Myocardial Infarction (ENACT-AMI) trial (NCT00936819), 
which uses autologous progenitor cells by overexpressing eNOS 
to enhance the function of autologous progenitor cells. Also, 
the BAMI (The Effect of Intracoronary Reinfusion of Bone 
Marrow-derived Mononuclear Cells on All-Cause Mortality in 
Acute Myocardial Infarction) trial (NCT01569178) is currently 
ongoing to demonstrate whether a single intracoronary infusion 
of autologous BM-MNC is safe and reduces all-cause mortality 
in patients with reduced left ventricular ejection fraction after 
successful reperfusion for acute MI. There trials may give us more 
specific answers for the efficacy of stem cell treatment on AMI.

THe UNiQUe COMBi-CYTOKiNe-BASeD 
AUTOLOGOUS PB-MPCs THeRAPY FOR 
PATieNTS wiTH ACUTe Mi: MAGiC CeLL 
THeRAPY

During the past 15 years, our institute has performed a series of 
clinical trials of cytokine-based cell therapy, named the MAGIC 
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cell (Myocardial Regeneration and Angiogenesis in Myocardial 
Infarction with G-CSF and Intracoronary Stem Cell Infusion) 
trial. By a series of work, we could demonstrate that intracoro-
nary infusion of PB-MPCs in MI patients is safe and effective in 
improving cardiac function (7) with persistent efficacy in a 
5-year follow-up (73). The plausible mechanism of long-term 
efficacy comes from the pro-healing effect of cell therapy on the 
coronary arterial segment implanted with drug-eluting stent (74). 
Currently, the MAGIC cell therapy has been approved by the 
Korean government and is being performed in tertiary hospitals. 
The PB-MPCs that we are using in this MAGIC cell protocol are 
primed by multiple agents/conditions, based on the results from 
previous study results.

First, the patient and PB-MPCs are primed in vivo by EPO 
and G-CSF; each are injected to the patient by (1) intravenous 
infusion of 4.5 μg/kg darbepoetin (long-acting EPO), (2) sub-
cutaneous G-CSF at 5 μg/kg body weight twice daily for 3 days. 
Second, priming with autologous APS and hypoxia is achieved in 
the apheresis process. PB-MPCs are collected under an apheresis 
system [minimum target cell dose is 2  ×  109 monocytes and 
7 × 106 CD34(+) cells/patient] and by using the mononuclear 
cell collection method, not only PB-MPCs but also platelets 
are collected. Platelets are activated by the apheresis process, 
forming an autologous APS. Therefore, during the short incu-
bation period within the sealed apheresis package, PB-MPCs 
are primed by APS and also by hypoxia. Overall, we combined 
various priming/conditions so as to maximize the therapeutic 
efficacy of PB-MPC cell therapy. The beneficial cellular effects 

of each single priming agent, based on preclinical studies, are 
shown in Table 2.

STReNGTH AND LiMiTATiONS OF CeLL 
THeRAPY iN iSCHeMiC HeART DiSeASe

Stem cells are ideal candidates for use in regenerative medicine 
because of their ability to differentiate to multiple cell lineages. 
In the case of ischemic heart diseases, stem cell therapy could 
regenerate the damaged myocardial or vascular tissue and/or 
prevent adverse ventricular remodeling after infarction. Current 
options for reperfusion (e.g., medical treatment, percutaneous 
coronary intervention, and surgical treatment) have significantly 
improved outcomes after MI; however, these techniques do not 
reverse the necrosis process after ischemia. In this aspect, stem 
cell therapy may provide a unique additional treatment for MI.

Despite the advantages of stem cell therapy, it is important to 
point out the limitations, so as to prevent unnecessary optimism. 
First, stem cells are not fully under control; adult stem cells are 
difficult to expand in culture, whereas embryonic stem cells have 
the risk of chromosomal abnormalities (75). Sufficient expan-
sion is needed for treatment efficacy, whereas chromosomal 
abnormalities have the risk of teratoma formation. Also, the 
adequate type/timing and number of cells delivered at the site of 
engraftment has not been fully evaluated. Ex vivo expansion of 
injected cells may be a method to increase efficacy; however, this 
is a procedure prone to contamination. The most fundamental 

TABLe 2 | Study results of priming agents for peripheral blood mononuclear cells or peripheral blood mobilized-progenitor cells from the bone marrow.

Priming agent and 
priming method

Cell species Animal model Outcome Reference

Agent> angiopoietin-1 
(Ang-1)
Method> primed with 
COMP-Ang-1 (400 ng/ml) 
for 2–4 h

PBMCs/PB-MPCs 
from acute 
myocardial infarction 
patients

Rabbit ear ischemia 
and reperfusion 
model
Athymic nude 
mouse hind limb 
ischemia model

•	 Increased expression of endothelial cell markers (CD31 and VE-cadherin) and 
adhesion molecules (integrin α4, α5, and β1)

•	 Increased Matrigel tube formation and incorporation ability
•	 Enhanced first-pass engraftment into the distal vascular bed and enhances 

neovascularization of the ischemic area (Animal model)

(34)

Agent> erythropoietin
Method> primed with 
Human recombinant EPO 
(10 IU/ml) for 6 h

PBMCs/PB-MPCs 
from healthy 
volunteers after 
3-day subcutaneous 
injection of G-CSF 
(10 μg/kg)

Athymic nude 
mouse hind limb 
ischemia model 
and myocardial 
infarction model

•	 Increased synthesis of vasculogenesis-related cytokines and integrins (IL8, 
IL10, bFGF, PDGF, MMP2, integrin αV, β1, β2, and β8)

•	 Increased proliferation of CD14(++)/CD16(+) angiogenic mononuclear cells 
and reduced apoptotic cells

•	 Enhance neovascularization in ischemic limb and repair myocardium after 
infarction through cellular and humoral mechanisms (Animal model)

(43)

Agent> G-CSF
Method> in vivo injection

Rabbit Rabbit myocardial 
infarction model

•	 Upregulation of VEGF, MMP-1, SDF-1 expression within infarcted area  
(Animal model)

•	 Increased CXCR4(+) bone marrow cells and macrophages to infarcted area 
(Animal model)

•	 Reduction of scar area in myocardial infarction model

(19)

Agent> activated platelet 
supernatant (APS)
Method> primed with 
APS for 6 h

PBMCs/PB-MPCs 
from healthy 
volunteers after a 
3-day subcutaneous 
injection of G-CSF 
(10 μg/kg)

Athymic nude 
mouse hind limb 
ischemia model

•	 Increased gene expression of cytokines (i.e., IL8, IL10, IL13, IL17, bFGF, and 
TNFα)

•	 Increased CD34(+), CD31(+), Tie2(+), CXCR4(+) cells
•	 Increased proliferation of CD14(++)/CD16(+) angiogenic mononuclear cells 

and reduced apoptotic cells
•	 Enhanced adhesion and migration activity
•	 Increased tissue regeneration and angiogenesis (Animal model)

(50)

COMP, cartilage oligomeric matrix protein; PBMC, peripheral blood mononuclear cell; PB-MPCs, peripheral blood mobilized-progenitor-cells from bone marrow.
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CONCLUSiON AND FUTURe DiReCTiONS

Despite the promising results of cell therapy in preclinical 
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shown marginal benefits compared to placebo. However, by 
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