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Spatial distribution of physiologic 
12‑lead QRS complex
Katerina Hnatkova1, Irena Andršová2, Ondřej Toman2, Peter Smetana3, Katharina M. Huster4, 
Martina Šišáková2, Petra Barthel4, Tomáš Novotný2, Georg Schmidt4 & Marek Malik1*

The normal physiologic range of QRS complex duration spans between 80 and 125 ms with known 
differences between females and males which cannot be explained by the anatomical variations of 
heart sizes. To investigate the reasons for the sex differences as well as for the wide range of normal 
values, a technology is proposed based on the singular value decomposition and on the separation 
of different orthogonal components of the QRS complex. This allows classification of the proportions 
of different components representing the 3-dimensional representation of the electrocardiographic 
signal as well as classification of components that go beyond the 3-dimensional representation 
and that correspond to the degree of intricate convolutions of the depolarisation sequence. The 
technology was applied to 382,019 individual 10-s ECG samples recorded in 639 healthy subjects 
(311 females and 328 males) aged 33.8 ± 9.4 years. The analyses showed that QRS duration was 
mainly influenced by the proportions of the first two orthogonal components of the QRS complex. 
The first component demonstrated statistically significantly larger proportion of the total QRS power 
(expressed by the absolute area of the complex in all independent ECG leads) in females than in males 
(64.2 ± 11.6% vs 59.7 ± 11.9%, p < 0.00001—measured at resting heart rate of 60 beats per minute) 
while the second component demonstrated larger proportion of the QRS power in males compared 
to females (33.1 ± 11.9% vs 29.6 ± 11.4%, p < 0.001). The analysis also showed that the components 
attributable to localised depolarisation sequence abnormalities were significantly larger in males 
compared to females (2.85 ± 1.08% vs 2.42 ± 0.87%, p < 0.00001). In addition to the demonstration of 
the technology, the study concludes that the detailed convolution of the depolarisation waveform is 
individual, and that smoother and less intricate depolarisation propagation is the mechanism likely 
responsible for shorter QRS duration in females.

As well known, the physiologically normal adult QRS complex is 80–125 ms wide1,2. It has also been long 
understood3 that in addition to the heart size and to the ventricular myocardial mass4, the duration of the QRS 
complex is influenced by the myocyte geometry and layer orientation5, Purkinje fibre tree structure6, and depo-
larising ion currents7. It is also known that compared to males, females have shorter QRS complex8,9, and that 
QRS duration disparities exist between races9,10.

The electrophysiologic reasons for the sex and race differences are poorly understood but they cannot be 
explained by the differences in heart sizes and myocardial volume alone. In proportional terms, adult heart sizes 
are less variable compared to the QRS duration11 and while heart size reasonably correlates with body size12, 
the QRS duration does not9. This all potentially makes the broad range of the normal QRS complex durations 
somewhat unexpected.

The usual understanding of cardiac electrophysiology considers depolarisation sequence as a rather simple ion 
exchange reaction that propagates along myocardial fibre bands with practically uncontrolled cell to cell excita-
tion transmission across gap junctions. The contribution of the differences in myocyte geometric composition 
and of the details in Purkinje fibre distribution must thus be rather substantial to explain the appreciable spread 
of myocardial depolarization duration. Considering these histology factors, the inter-subject differences in the 
QRS width have to be largely caused by heterogeneity in the propagation of the depolarization sequence includ-
ing the anisotropic differences between longitudinal and cross-fibre excitation transmission combined with gap 
junction discontinuities13,14. At the same time, while showing substantial inter-subject differences, QRS complex 
duration is reasonably stable within each healthy subject, especially when considering repeated measurements at 
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corresponding underlying heart rates9,15. Thus, the anisotropy of excitation propagation is likely to show similar 
intra-subject stability combined with appreciable inter-subject variability.

To allow clinical assessment of the myocardial depolarisation anisotropy and to permit investigation of its 
implication among clinically defined populations, a non-invasive method for the assessment of the spatial distri-
bution of myocardial excitation waveforms is needed, preferably based on standard 12-lead electrocardiograms 
(ECG). Having this need in mind, we have tested the application of singular value decomposition (SVD)16 to the 
12-lead QRS complex electrocardiograms. SVD was previously successfully used in a broad spectrum of electro-
cardiographic studies including, among others, ECG compression17,18, noise removal19, interval measurement20, 
and ECG component complexity analyses21–23. For the purposes of the present study, we have extended SVD 
algorithms as well as the interpretation of their results applied to the QRS signal complexity analysis. In addition 
to testing the application of the technology, we aimed at investigating whether the SVD signal analysis would 
help explaining the differences in QRS complex duration among healthy subjects and whether, similar to the 
differences in the QRS duration, it would show differences in QRS composition between the sexes. We have 
researched this using data that have previously been collected in a battery of clinical pharmacology studies.

Methods
Investigated population and electrocardiographic recordings.  A collection of Holter recordings 
previously analysed for a different purpose was used24. Altogether 639 healthy subjects participated at six dif-
ferent clinical pharmacology studies. All subjects were screened before enrolment and all had a normal resting 
ECG and normal clinical investigation as mandated in clinical pharmacology research25. Clinical conduct of the 
studies including the procedures of electrocardiogram acquisition adhered strictly to the relevant guidelines 
and regulations25,26. All these studies were ethically approved by the institutional ethics bodies (Focus in Neuss; 
Parexel in Baltimore, Bloemfontein, and Glendale; PPD in Austin; and Spaulding in Milwaukee). All subjects 
gave informed written consent to the participation. All the source studies were conducted in accordance with 
the Helsinki declaration.

As previously described24, each of the studies included repeated 12-lead day-time Holter recordings in each 
participant. The recordings were made during multiple baseline days. During these baseline days, study protocols 
included repeated provocative manoeuvres with the aim of capturing wide heart rates ranges in each participant. 
The postural provocative manoeuvres included time-points during which the study subjects were, per protocol, 
in undisturbed supine, unsupported sitting, and unsupported standing positions. In addition to these, other 
study per-protocol time-points required the subjects to maintain strict supine positions. The Holter recordings 
used Mason-Likar electrode positions. Clinical conduct of the baseline days did not differ between individual 
units. The investigation described in this text utilized the baseline Holter recordings when the subjects were off 
any medication, did not smoke, and refrained from consuming caffeinated drinks. Further details of the clinical 
pharmacology studies are therefore irrelevant.

Electrocardiographic measurements.  Using previously developed technology combining computer-
ized signal processing with visual checks and manual corrections of the measurements24,27,28, multiple 10-s seg-
ments were extracted from each of the Holter recordings aiming at the inclusion of segments with different 
underlying heart rates. That is, in addition to the extractions at pre-specified study time-points described in the 
previous section, instantaneous heart rate was measured throughout the complete day-time Holters and addi-
tional segments were extracted to cover the range of captured heart rates uniformly. These additional extractions 
were made during times when the study subjects were not restricted by study protocols although the standard 
clinical pharmacology research requirements were observed20. Apart from the postural provocative manoeuvres, 
the source studies did not include any physical or mental challenges. During the day-time Holter recordings, the 
subjects were allowed neither to sleep nor to leave the confined area of the clinical unit.

For each extracted segment, 2-min history of preceding RR interval was obtained and within these 2-min 
intervals, heart rate was measured in non-overlapping 30-s sections. Extracted segments were used in this study 
only if they were preceded by reasonably stable heart rates which were defined as the range between minimum 
to maximum heart rate measured in the 30-s sections not exceeding 5 beats per minute (bpm).

Each extracted 10-s ECG segment was filtered to reduce noise pollution and to eliminate baseline wander27,28. 
Subsequently, a representative median beat was constructed, as previously used in other ECG studies28,29. Specifi-
cally, in the waveforms of the original recording sampled at 1000 Hz, QRS complexes were identified, superim-
posed by obtaining autocorrelation maxima across all independent leads, and sample by sample medians of all 
superimposed P-QRS-T morphologies were used to form the representative beat (our unpublished experience 
suggests that by eliminating outlier values, the sample-by-sample medians reduce the noise of the representative 
beat compared to sample-by-sample averages). In this representative beat, all 12 leads were superimposed on the 
same isoelectric axis and QRS onset and offset points were identified using previously developed algorithms27,28. 
The quality control of the identification of these points included visual verification and manual correction of 
computerized measurements by at least two independently working cardiologists with subsequent independent 
reconciliation in case of measurement disagreement. Pattern matching algorithms30 were also applied to ensure 
that comparable morphologies of QRS onset and offset were measured systematically.

In each measured ECG segment, the QRS width was defined as the time distance between the QRS onset and 
offset. The underlying heart rate was defined as the heart rate calculated from the averaged duration of the RR 
intervals in the preceding 2-min (which also included the 10 s of the measured ECG segment itself).

Singular value decomposition.  The SVD principles of ECG signal were published in detail many times 
before16,20,22. In brief, the 12-lead ECG contains only 8 algebraically independent leads I, II, V1, V2, …, V6 since 
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the unipolar limb leads are only simple algebraic combinations of leads I and II. Hence, the ECG signal may be 
considered to constitute a matrix M8,n of voltage values which has 8 rows ⋗i corresponding to individual leads, 
and n columns, each corresponding to one time-instant. That is, each row ⋗i is a function of time and the values 
⋗i(t) , where 0 ≤ t < n , create the image of the i-th lead of the original ECG recording. The decomposition is 
based on an algorithm that creates a diagonal matrix �8,n and matrices U8,8 and Vn,n such that � = U

T
MV , 

which means M = UW , where W8,n = �V
T .� is a diagonal matrix with non-zero values only in the left-most 

diagonal. These elements of � (all > 0) are the eigenvalues {σi}8i=1 of the decomposition while the columns of 
matrices U and V are the left and right singular vectors. The rows of matrix W are the algebraically orthogonal 
components {�i}8i=1 of the decomposition.

Orthogonal ECG signal reconstruction.  In previous electrocardiographic SVD applications, the orthog-
onal components of matrix W were standardly sorted according to the corresponding values of eigenvalues. For 
the purposes of the present investigation, we used a different approach.

Original ECG signal in matrix M can be reconstructed using only subset of components of orthogonal 
signal matrix W . Specifically, for any subset of the 8 orthogonal components (i.e. any selection of one, two, or 
more of the components �i ), a matrix X8,n can be created, for which the rows of the subset are the same as the 
corresponding rows of W while other rows contain zeros. The original matrix M can then be approximated by 
matrix N8,n = UX. Each of the 8 rows of matrix N correspond to the approximation of the corresponding ECG 
lead that originally constituted the matrix M.

Various ways of quantifying the difference between M and N ECG signal can be proposed. In this study, we 
used the perhaps simplest possibility which was to calculate the area between the signals of individual leads of 
M and N . That is for each lead l ∈ {I, II, V1, V2, . . . , V6} , we calculated the difference �l between original lead 
⋗l and its approximation ⋉l as �l =

∑n−1
t=0 |⋗l(t)−⋉l(t)| and quantified the difference � between M and N as 

the average of all �l (i.e. the average over different leads).
Obviously, if the selected subset of the 8 orthogonal components was empty (i.e. if no orthogonal components 

were used), the matrix N contained only zeros and all �l =
∑n−1

t=0 |⋗l(t)|.
This allowed to order the orthogonal components {�i}8i=1 according to their contribution to the original ECG 

signal. That is, we firstly selected a single component �1st such that if only this component was used in matrix 
X , the corresponding N to M difference � was the smallest among all single components �i . Subsequently, we 
selected a second component �2nd such that if the matrix X was composed of components ( �1st

⊕
 �2nd)—i.e. if 

the matrix X had only two non-zero rows, the corresponding N to M difference � was the smallest among all 
two component combinations ( �1st

⊕
 �i ), where �i  = �1st . The same process was repeated and �3rd was selected 

for minimum approximation difference based on ( �1st
⊕

 �2nd
⊕

 �3rd ), and so on, up to the selection of the last 
�8th orthogonal component.

This selection of � components results in a sequence of N to M differences {�i}
8
i=0 where �i corresponds to 

the approximation signals N composed of the first i components selected during the described selection process. 
Clearly �0 ≥ �1 ≥ �2 ≥ · · · ≥ �8 = 0 . The absolute contribution of the i-th component to the reconstruc-
tion of original ECG signal M is equal to �i−1 −�i . Clearly, the value of this absolute contribution depends 
on the magnitude of the original ECG and cannot be directly used for comparisons of different ECGs. For that 
purpose, it is appropriate to consider the contribution of the i-th component in relative terms, i.e. as a value 
∇i = (�i−1 −�i)/�0.

Geometric interpretation.  When applying the SVD algorithm to the QRS complex, i.e. having the col-
umns of matrix M spanning sample-by-sample between QRS onset and QRS offset, �0 becomes the absolute 
area under the QRS waveforms, i.e. the total “power” of the QRS signal (averaged over all 8 independent leads) 
and is measured in milliseconds*millivolts. The relative contribution of the first component ∇1 specifies the pro-
portion of the signal that can be explained by projection of the depolarisation waveform only in one direction 
along (and backwards) of the main spatial QRS vector. There are only rare ECGs (example in Fig. 1A) in which 
almost all the QRS signal is explained by the first component, i.e. for which the electrocardiographic projection 
of the depolarisation waveform is practically only unidirectional. By the SVD principles, the second compo-
nent corresponds to a projection of the depolarisation waveform that is perpendicular to the vector of the first 
component. That is, the sum ∇1 +∇2 specifies how much of the QRS signal can be explained by depolarization 
projection onto a 2-dimensional plane (defined by the perpendicular vectors of components �1st and �2nd ). In 
some ECGs in which the total QRS power is far from explained by the first component, projection onto a single 
plane explains most of the QRS signal (example in Fig. 1B). In other ECGs, even the sum of ∇1 +∇2 is still sub-
stantially below 1 and the third component needs to be added, i.e. more faithful reconstruction of the original 
signal is obtained by considering the electrocardiographic projection of depolarisation in 3-dimensional space 
(example in Fig. 1C). Nevertheless, once the QRS signal is fractionated differently in different leads, further com-
ponents algebraically perpendicular to the 3-dimensional space of the first 3 components (well beyond mental 
spatial imagination) are needed to reconstruct the original signal (example in Fig. 1D).

For these reasons, the decomposition components ∇i allow expressing the “proportion” of the ECG signal that 
is represented by electrical field changes in one vector direction, by changes along a combination of two perpen-
dicular vectors, three perpendicular vectors, and so on. Similar attempts of quantifying these proportions were 
previously made based on decomposition eigenvalues {σi}8i=1

21,22,31. To study the differences between these 
approaches, we applied the analysis to the QRS complex signals of the data analysed in this study and compared 
the ∇i values with corresponding eigenvalue proportions   The comparison was based on their relative 

differences, i.e. values  which allowed to judge the comparisons independent of the dimension i.
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Covariates.  In each study subject, covariate analysis was performed using data obtained from all ECGs of 
the given subject. The relative values of individual components as well as the values of their different combina-
tions (i.e. values ∇i +∇j + · · · ) were related to the RR intervals representative of the underlying heart rate of the 
corresponding ECG as well as to the duration of the QRS complex in the ECG. For this purpose, both linear and 
log-linear regression models were employed. As previously observed9, log-linear model fitted the relationship 
between QRS duration and the RR intervals better than the linear model. The intra-subject fits of the linear and 
log-linear models between the relative components and RR intervals and QRS duration were similar (i.e. for 
some of the components, linear model provided somewhat lower regression residua while for others, the fit by 
the log-linear model was tighter). For consistency, we have therefore used the log-linear regression models for all 
the intra-subject dependencies. Although some cases showed noticeable spread of the measured values (example 
in Figs. 2 and 3) the patterns of the regressions were still clearly detected.

To allow comparisons across subjects, these log-linear regression models were used to project the individual 
components and their combinations to the heart rate of 60 and 120 bpm, as well as to the QRS duration of 100 ms.

In each subject, Spearman correlation coefficients were also calculated between the values of the relative 
components and their combinations, and the RR intervals of the underlying heart rate, and the QRS durations.

Statistics and data presentation.  Data are presented as means ± standard deviation. Differences between 
subject groups (mainly between female and male participants) were evaluated using two-sample two-tail t-test 
assuming different variances of compared samples. Intra-subject comparisons (e.g. comparisons between com-
ponents projected to heart rates of 60 and 120 bpm) were evaluated using two-tail paired t-test. P-values above 

Figure 1.   Examples of QRS reconstruction by orthogonal components. In all panels, superimposition of all 
12 leads of the filtered representative median image of the QRS complex (12 lead) is shown together with the 
orthogonal components of matrix W (SVD) and with individual independent leads (I, II, V1, V2, …, V6) 
superimposed with the reconstruction. In all panels, the original ECG waveforms are shown in blue, the first, 
second, third, and fourth orthogonal components in violet, red, green, and amber, respectively (with all further 
components shown in grey). Panel (A) shows an ECG of a 51-year old female in which the reconstruction by the 
first component (full violet lines in the images of individual leads) explained 91.15% of the QRS area. Panel (B) 
shows an ECG of a 22-year old female in which the reconstruction by the first component (dotted violet lines 
in the lead images) explained 73.46% of the QRS area but the combination of the first and second component 
(full red lines in the lead images) explained 97.93% of the QRS area. Panel (C) shows an ECG of a 28-year old 
male in which the first and first + second component (dotted violet and red lines in the lead images, respectively) 
explained 58.49% and 72.56% of the QRS area but in which the combination of the first 3 components (full 
green lines in the lead images) explained 93.17% of the QRS area. Panel (D) shows an ECG of a 37-year old male 
in which the first, first + second, and first + second + third components (the same colour coding as in panel (C) 
explained 42.83%, 80.27%, and 87.76% of the QRS area, respectively.
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Figure 2.   Example of relationship between values measured in a 23-year old male. Individual panels show 
the dependency of QRS duration, of absolute QRS area, and of selected orthogonal components and their 
combination on the RR intervals of the underlying heart rate.
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Figure 3.   Example of relationship between measured values in the same 23-year old male as presented in Fig. 2. 
Individual panels show the dependency of absolute QRS area and of selected orthogonal components and their 
combination on the QRS duration. For completeness, the inverse relationship between the QRS duration and the 
RR interval of the underlying heart rate is also shown. The layout of the panels corresponds to that of Fig. 2.
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0.05 were considered statistically non-significant (NS). Because of the inter-dependency of evaluated data, no 
correction for multiplicity of testing was performed and all statistical tests performed are presented.

In each ECG, SVD calculations were made covering the interval between QRS onset and QRS offset. To avoid 
the possibility of the SVD results being influenced by QRS duration, the calculation was also repeated using a 
fixed width of the interval covered by matrix M in all ECGs. Specifically, this repeated calculation spanned the 
interval starting 5 ms before QRS onset and finishing 130 ms later. (The results of the fixed width calculations 
were only used to confirm the stability of the main analyses that are presented).

The SVD calculations were made using a custom software package developed in C++ (compiler of Microsoft 
Visual Studio version 15.4.0). Statistical evaluation used IBM SPSS package version 25.

Results
Population and electrocardiographic measurements.  The source clinical pharmacology studies 
investigated 639 subjects (311 females). The ages of sex-defined sub-groups were practically identical (females 
33.8 ± 10.1  years; males 33.9 ± 8.7  years, NS). The numbers of analysed ECG samples were also not different 
between females (609 ± 192) and males (591 ± 200, NS). The complete study evaluated 382,019 ECG samples.

The spread (i.e. the minimum to maximum range) of heart rates of the analysed ECG segments was also simi-
lar in females and males (57.8 ± 12.7 vs 56.2 ± 12.7 bpm, NS). Nevertheless, the spread of measured QRS widths 
was narrower in females (8.7 ± 5.8 ms) compared to that in males (10.2 ± 5.5 ms, p < 0.001). The regression-based 
extrapolation to the QRS width of 100 ms have thus involved some marginal extrapolations beyond available 
values, especially for females with markedly short QRS complexes.

Summaries of individual ECG measurements are shown Fig. 4, their numerical values are listed in the Sup-
plementary Table. The observations made with the repeated SVD analyses using the fixed 130 ms intervals were 
practically the same (not shown here). That is, albeit the numerical values were little different, their proportions 
and sex comparisons led to the very same conclusions as described further.

Comparison with eigenvalue proportions.  In 8.27% of the analysed ECG samples, the order of the 
decomposition components ∇i was different from the order of SVD eigenvalues σi that are standardly used for 
component ordering16. In 1.40% and 4.10% of the samples, this difference of the order occurred in the first 3 and 
in the 4th to 6th dimensions, respectively. More important, however, were the numerical differences between 
components ∇i and the corresponding eigenvalue proportions . These are displayed in Fig. 5 which shows that 
with higher dimensions, these numerical differences spanned between approximately − 80 to + 40%.

Absolute area under the QRS waveform.  Consistent with previous observations9, QRS durations were 
significantly shorter in females than in males (98.9 ± 5.5 vs 103.5 ± 5.9 ms, p < 0.00001, at 60 bpm, Fig. 6). As also 
seen in Fig. 6, total QRS area, i.e. the �0 value, was also significantly smaller in females compared to males but 
this difference was unrelated to the differences in QRS durations (when projected to 100 ms of QRS duration, the 
�0 areas were 24.21 ± 6.52 and 31.26 ± 9.26 ms*mV in female and males, respectively, p < 0.00001).

Also consistent with previous observations9, we observed QRS widening with increasing heart rate in approxi-
mately 30% of the subjects while QRS was shortening with increasing heart rate in others. Similar proportions 

Figure 4.   Summary of measured QRS components in individual study subjects. The right panel shows 
the contribution of individual components to the absolute QRS area, the left panel shows the proportion 
of the absolute QRS area remaining after the first, first + second, first + second + third, etc., component have 
been used to recompose the original electrocardiograms. The data in females and males are shown in red 
and blue, respectively, the dark and light columns correspond to the data projected to heart rates of 60 and 
120 bpm, respectively. Mean values ± standard deviations are shown (note the logarithmic vertical axes). The 
8th component is not shown since the combination of all 8 components covers the absolute QRS area fully 
and therefore, the contribution of the 8th component corresponds to the remainder after the use of the first 7 
components.
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Figure 5.   To demonstrate the differences between the decompositions approach that we used and the usual 
order of eigenvalues, the figure shows Bland–Altman type comparisons of relative eigenvalue proportions 

 and ∇i for all i , 1 ≤ i ≤ 8. To allow comparison between different components, the vertical 
values show relative differences, that is values   The scatter diagrams show the data of all 
evaluated 10-s ECG samples, the bold horizontal lines are the means of the relative  values, the dashed 
lines are their means ± standard deviations. Note that the individual data include multiple readings in different 
subjects and that the values shown in the scatter diagrams are not fully mutually independent.
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Figure 6.   Data of QRS duration and of absolute QRS area. Panels (A) and (B) show the scatter diagrams of the 
relationship between the QRS duration and the absolute QRS area at heart rates of 60 and 120 bpm, respectively. 
Panels (C) and (D) show the cumulative distributions of QRS duration and of absolute QRS area. Panel (E) 
shows the scatter diagram of the relationship between intra-subject changes of QRS duration and of absolute 
QRS area corresponding to heart rate changes between 60 and 120 bpm and panel (F) shows the cumulative 
distributions of these intra-subject changes. In panels (A), (B), and (E), the red circles and blue squares show 
data of female and male subjects, respectively. The solid red and solid blue lines show the linear regressions 
between the displayed values in females and males, respectively. The red shaded and blue shaded areas are 
the 95% confidence intervals of the regression lines; the violet areas are the overlaps between the confidence 
intervals of the sex-specific age-regressions. In panels (C), (D), and (F), the red and blue lines correspond to 
female and male subjects, respectively. In panels (C) and (D), the full lines and dashed lines correspond to the 
values at 60 and 120 bpm, respectively. The dotted lines in panel (D) show the values at QRS duration of 100 ms. 
The full and dashed lines in panel (F) show the changes of QRS duration and of absolute QRS area, respectively.
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of subjects showed QRS area to increase and decrease with increasing heart rate but the heart rate influences of 
QRS duration and of QRS area were practically independent of each other (Fig. 6).

Components of the 3‑dimensional space.  Within individual subjects, the first relative component (i.e. 
the ∇1 value) was, on average, negatively but moderately correlated with QRS duration (intra-subject Spearman 
correlation r of − 0.159 ± 0.327 and − 0.146 ± 0.347 in females and males, respectively). It was therefore somewhat 
surprising that the population correlations between ∇1 and QRS duration assessed at specific heart rates were 
noticeably stronger (− 0.529 and − 0.346 at the rate of 60 bpm, and − 0.528 and − 0.309 at 120 bpm, in females 
and males, respectively). There was also a noticeable discrepancy between intra-subject relationship of ∇1 to QRS 
duration and to the underlying heart rate. While the intra-subject correlation to QRS was positive in approxi-
mately 30% of the subjects, the intra-subject correlation to heart rate was positive in approximately 70% of the 
subjects. All this is shown in the left panels of Fig. 7 (note the cumulative distributions in panel G of the figure).

The right panels of Fig. 7 show that the relationship of ∇2 to heart rate and QRS duration was almost exactly 
the opposite to that of the ∇1 . Note that the cumulative distributions shown in panels G and H of the figure are 
practically mirror images of each other. While the intra-subject correlation with QRS width was only moderately 
positive (intra-subject r of 0.155 ± 0.330 and 0.149 ± 0.345 in females and males) the population correlation 
assessed at 60 bpm led to r of 0.474 and 0.290 in females and males, respectively. At 120 bpm, the corresponding 
r values were 0.443 and 0.234.

Left part of Fig. 8 shows that ∇3 values were much less related to QRS duration with averages of intra-subject 
correlations close to 0 and population correlations at 60 bpm with r of 0.188 and 0.140 in females and males, 
respectively. When all first three components were combined (i.e. values of ∇1+∇2+∇3 considered) more than 
90% of the QRS absolute area was covered and the population dependency on QRS duration almost disappeared 
(right part of Fig. 8).

QRS fractionation components.  On average, there were no meaningful intra-subject correlations of ∇4 , 
∇5 , or ∇6 to QRS duration (the absolute values of all r averages were below 0.02). This contrasted with the positive 
population correlations which, at 60 bpm, led to r values of 0.294 and 0.295 in females and males, respectively, 
for ∇4 . For ∇5 , the corresponding r values were 0.329 and 0.292, while for ∇6 , the r values were 0.388 and 0.305. 
Similar gradual increase of r from ∇4 to ∇6 was also seen at heart rate of 120 bpm (Fig. 9).

As expected, the contribution of components ∇4 to ∇6 was gradually decreasing and in the majority of cases, 
the component combination ∇4+∇5+∇6 represented less than 3% of the absolute QRS area. Compared to ∇4+∇5 , 
the combination ∇4+∇5+∇6 showed only a small albeit noticeable increase while still maintaining relatively strong 
correlation with QRS duration (Fig. 10). On the contrary, the population heart rate dependency of components 
∇4 , ∇5 , and ∇6 and of their combinations was practically absent (Figs. 9 and 10).

Decomposition residuals.  The situation was different with the combination of final components ∇7+∇8

(Fig. 11). On average, this combination showed no intra-subject correlation with QRS complex (r of 0.001 ± 0.151 
and − 0.014 ± 0.157 for females and males, respectively). However, in population data, significant correlations 
with QRS complex were observed. At the rate of 60 bpm, r values of 0.521 and 0.409 were observed for females 
and males, respectively. At 120 bpm, these r values decreased to 0.332 and 0.237, respectively. Substantial intra-
subject effect of heart rate was also noted. Although numerically rather small, the value ∇7+∇8 increased from 
0.364 ± 0.087 and 0.402 ± 0.093% in females and males at 60 bpm, to 0.501 ± 0.172 and 0.538 ± 0.189% at 120 bpm 
(p < 0.00001 and p = 0.012 in females and males, respectively).

Sex comparisons.  Since these observations suggest the electrophysiologic basis for shorter QRS duration 
in females compared to males, Fig. 12 summarises the observed sex differences.

The results were similar for components values projected to 60 bpm and to 120 bpm. Females showed larger 
∇1 compared to males (e.g. 64.2 ± 11.6 vs 59.7 ± 11.9% at 60 bpm, p < 0.00001) while all ∇2 to ∇7 are larger in 
males with different levels of statistical significance. ∇8 were also larger in males than in females but we observed 
statistically significant differences only at 60 bpm while at 120 bpm, the values were still numerically smaller in 
females (0.241 ± 0.096 vs 0.250 ± 0.099%) but not significantly different.

When eliminating the influence of different QRS durations by using data projected to the same level of 100 ms, 
the sex comparison was different. The components ∇1 to ∇3 were practically the same between sexes. ∇4 to ∇7 

Figure 7.   Data of first two components ∇1 and ∇2 . On the left side, panel (A) shows the scatter diagram of 
the relationship of ∇1 to QRS duration at heart rate of 60 bpm. Panel (C) shows the scatter diagram of the ∇1 
changes between 120 and 60 bpm to the corresponding changes of QRS duration. Panel (E) shows the scatter 
diagram of the relationship between intra-subject correlation coefficients ∇1 versus RR interval and ∇1 versus 
QRS duration. Panel (G) shows the cumulative distributions of these correlation coefficients. On the right side, 
panels (B), (D), (F) and (H) show the same data comparisons for ∇2 component. The meaning of the symbols 
in scatter diagrams in panels (A), (B), (C), and (D) is the same as in the scatter diagrams of Fig. 6. In panels (E) 
and (F), the red circles and blue squares again correspond to the female and male subjects, respectively. The 
light red and light blue elliptical shapes show the mean ± standard deviation of the correlation coefficients (the 
elliptical shapes are oriented to represent the optimal orthogonal projection of the data). The violet areas are the 
overlaps between the sex-specific elliptical shapes. In panels (G) and (H), the red and blue lines correspond to 
females and males, respectively; the full and dashed lines show the intra-subject correlation coefficients of the 
orthogonal components to heart rate and to the QRS duration, respectively.

◂



12

Vol:.(1234567890)

Scientific Reports |         (2021) 11:4289  | https://doi.org/10.1038/s41598-021-83378-8

www.nature.com/scientificreports/

Figure 8.   The layout and meaning of panels of the figure is the same as in Fig. 7. The left panels (A), (C), (E), 
and (G) correspond to the component ∇3 , whilst the right panels (B), (D), (F), and (H) correspond to the 
combination of components ∇1+∇2+∇3.
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were larger in males than in females (the difference did not reach statistical significance for ∇4 , likely because 
large spread of projected values in females) while ∇8 showed again no difference between sexes.

Discussion
In addition to the setup of the technology, these data analyses offer electrophysiological insights and lead to 
potentially unexpected observations.

Previous clinical experience with vectorcardiography32–34 might lead to expectations that the first two (if not 
the first three) components ∇1 to ∇2 (or, in some cases, to ∇3 ) would contribute similarly to the 3-dimensional 
composite of the QRS complex. Indeed, the directions of the projections of the first 3 components also create 
an orthogonal 3-dimensional system which can be represented as an optimal rotation of the XYZ coordinate 
system so that the maximum QRS power projects into the first direction, the maximum of the reminder into 
the perpendicular second direction, and so on. Nevertheless, the optimum orientation of coordinates by SVD 

Figure 9.   The left panels (A) and (C) show scatter diagrams of the intra-subject relationship of component ∇4 
to QRS duration at heart rate of 60 and 120 bpm, respectively. The panel (E) shows the scatter diagram of the ∇4 
changes between 120 and 60 bpm to the corresponding changes of QRS duration. The right panels B, D, and F 
show the same for component ∇5 . The meaning of the symbols in scatter diagrams is the same as in the scatter 
diagrams of Fig. 6.
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results in different proportions of the components. It is easy to understand that, in principle, ∇3 is a measure of 
QRS planarity33,35. Since it is known that electrophysiology of normal hearts is characterised by an almost perfect 
planarity of the spatial QRS loop36,37, the contribution of ∇3 only around 3% to 4% of the total QRS absolute area 
is not surprising. Nevertheless, the practically 2:1 proportion between ∇1 to ∇2 was somewhat unexpected as was 
the proportion of subjects in whom ∇1 exceeded 80% and ∇2 was below 20% (see top panels of Fig. 7). Although 
similar proportion has previously been described for the eigenvalues of resting ECGs23 we initially assumed that 
similar to the vectorcardiography images, the contributions of ∇1 and ∇2 would not be this different since the 
proportions of this decomposition are not similar those of eigenvalues (see Fig. 5).

The marked differences between the intra-subject and inter-subject relationship of the components to the 
QRS complex duration suggest that the proportions of the components (perhaps except for ∇7 and ∇8 ) are not 
determined dynamically by physiologic regulatory processes but are driven by individual anatomic and histologic 
composites of the ventricular myocardium. Our observations also strongly support the physiologic expectation 
that even in healthy subjects, narrower QRS complex is a consequence of a more direct and less convoluted path 
of the depolarisation sequence.

Figure 10.   The layout and meaning of panels of the figure is the same as in Fig. 9. The left panels (A), (C), and 
(E) correspond to the combination of components ∇4+∇5 , whilst the right panels (B), (D), and (F) correspond 
to the combination of components ∇4+∇5+∇6.
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Figure 11.   Panels (A) and (B) show scatter diagrams of the intra-subject relationship of component combination 
∇7+∇8 to QRS duration at heart rate of 60 and 120 bpm, respectively. Panel (C) shows the scatter diagram of the ∇7

+∇8 changes between 120 and 60 bpm to the corresponding changes of QRS duration. The meaning of the symbols 
in these scatter diagrams is the same as in the scatter diagrams of Fig. 6. Panel (D) shows the scatter diagram of 
the relationship between intra-subject correlation coefficients ∇7+∇8 versus RR interval and ∇7+∇8 versus QRS 
duration. The layout of this panel is the same as panels (E) and (F) in Fig. 7 (note that the data points are clustered so 
compactly that the underlying elliptical shapes are not easily visible). Panel (E) shows the cumulative distribution of 
intra-subject ∇7+∇8 changes between heart rates of 120 and 60 bpm; for comparison, panel (F) shows the same for 
∇4+∇5+∇6 changes. Panel (G) shows the cumulative distribution of intra-subject correlations of ∇7+∇8 versus RR 
interval (full lines) and versus QRS duration (dashed lines). For comparison, panel (H) shows the same for intra-
subject ∇4+∇5+∇6 correlations. In panels (E), (F), (G), and (H), the red and blue lines correspond to female and male 
subjects, respectively.
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Figure 12.   The panels show the mean (± standard deviation) values of decomposition components ∇1 to ∇8 
for female (red graphs) and male (blue graphs) subjects. The top, middle, and bottom panels show the values of 
components assessed at 60 bpm heart rate, 120 bpm heart rate, and 100 ms of QRS duration, respectively. For 
each component showing statistically significant difference between females and males, the level of significance 
is shown above the horizontal axis (▲—p < 0.05, ▲▲—p < 0.01, ▲▲▲—p < 0.001, ▲▲▲▲—p < 0.0001, 
▲▲▲▲▲—p < 0.00001). Note the logarithmic scale of the vertical axes.
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Although the ECG signals were not only filtered but also processed by the construction of median repre-
sentative beat (which, we believe, also has noise-reduction properties) before applying the SVD analysis, the 
component ∇8 , and perhaps also the component ∇7 , represents mainly the residual noise in the recordings. This 
is consistent with the marked increase of these components between rates of 60 and 120 bpm which is frequently 
accompanied by some decrease of signal quality especially if the heart rate increase reflects physical activity.

The observation of the likely relationship between QRS duration and the convolutedness of the depolarisation 
sequence might also provide insight into the sex difference of QRS complex. The shorter QRS complex duration 
in females has previously been repeatedly described38. It has also been repeatedly proposed that this sex difference 
might reflect differences in heart sizes. Nevertheless, this has not been confirmed9. Rather, the sex differences 
might be driven by the depolarisation sequence initiated by the His-Purkinje system. Our results seem to indi-
cate that compared to males, the propagation of the depolarisation sequence in females is more direct and less 
curled and twisted. This is not supported only by the proportions between ∇1 (larger in females) and ∇2 (larger 
in males) but also by the sex differences in the higher components above the 3-dimensional projections as shown 
in Fig. 12. Such a lesser complexity of the female depolarisation sequence might also be the basis for the known 
decreased incidence of ventricular tachyarrhythmias in females39–41 (with the exception of channelopathy-based 
arrhythmias42 that are unrelated to the depolarisation abnormalities). Since the present study evaluated healthy 
adults with females largely of pre-menopausal ages, we cannot comment on whether the observed sex differences 
are a consequence of hormonal influence. Electrocardiography studies in children and adolescents43 as well as 
studies of the influence of menstrual cycle are needed to address these details.

SVD analyses have previously been applied also to body surface maps and multi-lead ECGs44,45. These analy-
ses showed that larger number of independent ECG components can be detected. Nevertheless, since we had 
only 12-lead ECG available, we were unable to decompose the signals to more than 8 algebraic dimensions 
corresponding to the number of independent leads. While a system analysing standard 10-s 12-lead ECGs is 
more practical for further applications of the technology that we have described here, application of the same 
principles to multi-lead ECG recordings would be of research interest.

Visible fragmentation of the QRS complex has repeatedly been described as an indicator of increased risk 
of adverse cardiac events46–49. It has also been observed that fragmented QRS complex is more often present in 
males compared to females50 and that, in cardiac patients, QRS abnormalities were more predictive in patients 
with prolonged QRS complex51. Having used data of healthy subjects, we cannot link our methodological results 
to these studies directly. Nevertheless, the logic of the analysis suggests that the comparison between the orthogo-
nal components ∇1 to ∇3 and the value of the ∇4 to ∇6 (or perhaps ∇4 to ∇7 ) components might offer automatic 
detection of fragmented QRS complex including the distinction of micro-fragmented cases that are not directly 
apparent during standard visual judgement and diagnosis. Further studies are needed in this respect, but the 
data presented here might suggest prospectively defined normality limits (e.g. 3.5% for the combination of ∇4

+∇5+∇6 – see Fig. 10). The so-called non-dipolar components (based on eigenvalue proportions) of the T wave 
have previously been proposed as risk indicators in cardiac patients52. It seems therefore logical to extend this 
technology also to repolarisation signals.

QRS complex duration, its morphological characteristics, and ECG-based depolarisation abnormalities are 
also used to optimise and to predict the outcome of cardiac resynchronisation therapy53,54. We are again unable to 
comment on the possible use of the described technology for these purposes but, based on the electrophysiologic 
understanding of the analysis, it appears feasible to suggest that studies of this kind might be worth conducting.

Intentionally, we analysed only ECG segments preceded by stable heart rate. This allowed avoiding potential 
problems with heart rate hysteresis and led to inter-subject differences in the number of analysed ECG seg-
ments. Hysteresis-driven disparity between ECG indices and simultaneously measured heart rate occurs when 
the adaptation to heart rate changes is delayed. This is a known property of repolarisation-related intervals55–57 
which has important practical implications58,59. Nevertheless, it is not known whether QRS duration exhibits 
any delayed heart rate adaptation9. Similarly, based on the analysed data, we cannot address the question of how 
quickly the decomposition components alter in response to abrupt heart rate changes.

Limitations.  Further limitations of the analytical technique also need to be considered. The algebraic pro-
cess of SVD is based on signal reconstruction analysis and therefore cannot map the depolarisation wave propa-
gation directly. The ECG images of localised depolarisation abnormalities might cancel each other and thus be 
beyond SVD detection. The presented analysis might therefore underestimate but not overestimate depolari-
sation abnormalities. As already stated, while the span of heart rates covered by different ECGs in individual 
subjects was reasonably wide, the span of the QRS durations was limited in some subjects. In such cases, the 
regression projections to 100 ms of QRS duration might have involved substantial extrapolation beyond avail-
able data and might thus have polluted the estimates by some errors. The source clinical studies did not involve 
echocardiographic examinations and we are thus unable to relate the observations to anatomical heart sizes. The 
original Holter recordings used Mason-Likar electrode positions. We cannot answer the question of whether 
this influenced the measured values and whether any derived normality limits would be different if standard 
ECG leads were used. The spans of the ages of the subjects were not wide enough to investigate age influence. 
Although the ECG signal quality might be influenced by obesity, we have not related the measurements to body 
mass index.

Conclusion
Despite these limitations, the presented technology and data analyses suggest that components of QRS complex 
beyond the 3-dimensional reconstruction can reliably be estimated and that they have an electrophysiologic role 
in judging the propagation of the depolarisation waveform through the myocardium. It appears that the detailed 
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convolution of the depolarisation waveform is individual, and that smoother and less intricate depolarisation 
propagation is the mechanism responsible for shorter QRS duration in females.
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